当前位置:文档之家› 哈工大概率论与数理统计课后习题答案 一

哈工大概率论与数理统计课后习题答案 一

哈工大概率论与数理统计课后习题答案 一
哈工大概率论与数理统计课后习题答案 一

·1·

习 题 一

1.写出下列随机试验的样本空间及下列事件中的样本点:

(1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;

(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;

(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;

(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;

(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i = , 135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S =

(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)

(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)

(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)

(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)

(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)};

{(4,6),(5,5),(6,4)}A =;

{(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)}

{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =

(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

(5){0,1,2,},{0,1,2,3,4},{3,4,}S A B === 。

2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

(1)仅A 发生;

(2),,A B C 中至少有两个发生;

·2·

(3),,A B C 中不多于两个发生;

(4),,A B C 中恰有两个发生;

(5),,A B C 中至多有一个发生。

解 (1)ABC

(2)AB AC BC 或ABC ABC ABC ABC ;

(3)A B C 或ABC ABC ABC ABC ABC ABC ABC ;

(4)ABC ABC ABC ;

(5)AB AC BC 或ABC ABC ABC ABC ;

3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;

(3)恰有一件产品是次品;(4)至少有两件产品不是次品。

解 (1)123A A A ;(2)123A A A ;

(3)123123123A A A A A A A A A ;(4)121323A A A A A A 。

4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。 解 设A =‘任取一电话号码后四个数字全不相同’,则

4104126()0.50410250

P P A === 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求

(1)5只全是好的的概率;

(2)5只中有两只坏的的概率。

解 (1)设A =‘5只全是好的’,则

537540

()0.662C P A C = ; (2)设B =‘5只中有两只坏的’,则

23337540

()0.0354C C P B C = . 6.袋中有编号为1到10的10个球,今从袋中任取3个球,求

(1)3个球的最小号码为5的概率;

(2)3个球的最大号码为5的概率.

解 (1)设A =‘最小号码为5’,则

253101()12

C P A C ==;

·3·

(2)设B =‘最大号码为5’,则

243101()20

C P B C ==. 7.(1)教室里有r 个学生,求他们的生日都不相同的概率;

(2)房间里有四个人,求至少两个人的生日在同一个月的概率.

解 (1)设A =‘他们的生日都不相同’,则

365()365

r r P P A =; (2)设B =‘至少有两个人的生日在同一个月’,则

212223214121141241212441()1296

C C P C C C P C P B +++==; 或

412441()1()11296

P P B P B =-=-=. 8.设一个人的生日在星期几是等可能的,求6个人的生日都集中在一个星期中的某两天,但不是都在同一天的概率.

解 设A =‘生日集中在一星期中的某两天,但不在同一天’,则

2676

(22)()0.011077C P A -==. 9.将,,,,,,C C E E I N S 等7个字母随机地排成一行,那么恰好排成英文单词SCIENCE 的概率是多少?

解1 设A =‘恰好排成SCIENCE ’

将7个字母排成一列的一种排法看作基本事件,所有的排法:

字母C 在7个位置中占两个位置,共有27C 种占法,字母E 在余下的5个位

置中占两个位置,共有25C 种占法,字母,,I N C 剩下的3个位置上全排列的方法

共3!种,故基本事件总数为22753!1260C C ??=,而A 中的基本事件只有一个,

227511()3!1260

P A C C ==??; 解2 七个字母中有两个E ,两个C ,把七个字母排成一排,称为不尽相异元素的全排列。一般地,设有n 个元素,其中第一种元素有1n 个,第二种元素有2n 个…,第k 种元素有k n 个12()k n n n n +++= ,将这n 个元素排成一排

·4·

称为不尽相异元素的全排列。不同的排列总数为

12!!!!

k n n n n , 对于本题有

141()7!7!1260

2!2!

P A ===. 10.从0,1,2,,9 等10个数字中,任意选出不同的三个数字,试求下列事件的概率:1A =‘三个数字中不含0和5’,2A =‘三个数字中不含0或5’,3A =‘三个数字中含0但不含5’.

解 3813107()15

C P A C ==. 333998233310101014()15

C C C P A C C C =+-=, 或

182231014()1()115

C P A P A C =-=-=, 2833107()30

C P A C ==. 11.将n 双大小各不相同的鞋子随机地分成n 堆,每堆两只,求事件A =‘每堆各成一双’的概率.

解 n 双鞋子随机地分成n 堆属分组问题,不同的分法共

(2)!(2)!2!2!2!(2!)n

n n = ‘每堆各成一双’共有!n 种情况,故 2!()(2)!

n n P A n ?= 12.设事件A 与B 互不相容,()0.4,()0.3P A P B ==,求()P AB 与()P A B

解 ()1()1()()0.3

P A B P A B P A P B =-=--= 因为,A B 不相容,所以A B ?,于是

()()0.6P A B P A ==

13.若()()P AB P AB =且()P A P =,求()P B .

解 ()1()1()()()

P A B P A B P A P B P A B =-=--+

·5· 由()()P AB P AB =得

()1()1P B P A p =-=-

14.设事件,A B 及A B 的概率分别为,,p q r ,求()P AB 及()P A B 解 ()()()()P AB P A P B P A B p q r =+-=+-

()()()()()1()()()P A B P A P B P AB P A P B P A P AB =+-=+--+ 11q p q r p r =-++-=+-.

15.设()()0.7P A P B +=,且,A B 仅发生一个的概率为0.5,求,A B 都发生的概率。

解1 由题意有

0.5()()()P AB AB P AB P AB =+=+

()()()()P A P AB P B P AB =-+-

0.72()P AB =-,

所以

()0.1P AB =.

解2 ,A B 仅发生一个可表示为A B AB - ,故

0.5()()()()2(),P A B P AB P A P B P AB =-=+-

所以

()0.1P AB =.

16.设()0.7,()0.3,

()0.2P A P A B P B A =-=-=,求()P AB 与()P AB . 解 0.3

()()()0.7(P A B P A P A B P A B =-=-=-, 所以

()0.4P AB =,

()0.6P AB =;

0.2()()()0.4P B P AB P B =-=-.

所以

()0.6P B =

()1()1()()()0.1P AB P A B P A P B P AB =-=--+=

17.设AB C ?,试证明()()()1P A P B P C +-≤

[证] 因为AB C ?,所以 ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-

·6·

()()()1P A P B P C +-≤. 证毕.

18.对任意三事件,,A B C ,试证

()()()()P AB P AC P BC P A +-≤.

[证] ()()()()()()P AB P AC P BC P AB P AC P ABC +-≤+-

()P AB AC = {()}()P A B C P A =≤ . 证毕.

19.设,,A B C 是三个事件,且1

()()(),()()04

P A P B P C P AB P BC =====,1()8

P AC =,求,,A B C 至少有一个发生的概率。 解 ()()()()()()()(P A B C P A P B P C P A B P A C P B C P A B C

=++---+ 因为 0()()0P A B C P A B ≤≤=,所以()0P ABC =,于是

315()488

P A B C =-= 20

.随机地向半圆0y <<(a 为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于/4π的概率.

解:半圆域如图

设A =

‘原点与该点连线与x 轴夹角小于/4π’ 由几何概率的定义

2221142()12a a A P A a ππ+==的面积半园的面积112π=+ 21.把长为a 的棒任意折成三段,求它们可以构成三角形的概率.

解1 设A =‘三段可构成三角形’,又三段的长分别为,,x y a x y --,则0,0,0x a y a x y a <<<<<+<,不等式构成平面域S .

A 发生0,0,222a a a x y x y a ?<<<<<+< 不等式确定S 的子域A ,所以 1()4

A P A ==的面积S 的面积 解2 设三段长分别为,,x y z ,则0,0,0x a y a z a <<<<<<且 x y z a ++=,不等式确定了三维空间上的有界平面域S .

·7·

A 发生x y z ?+>

x z y +>

y z x +> 不等式确定S 的子域A ,所以 1()4A P A ==的面积S 的面积. 22.随机地取两个正数和,这两个数中的每一个都不超过1,试求x 与y 之和不超过1,积不小于0.09的概率.

S . A =‘1,0.09x y xy +≤≥’则A 发生的 充要条件为01,10.09x y xy ≤+≤≥≥不 等式确定了S 的子域A ,故

0.90.10.9()(1)A P A x dx x ==--?的面积S 的面积 0.40.18ln 30.2=-=

23.(蒲丰投针问题)在平面上画出等距离(0)a a >的一些平行线,向平面上随机地投掷一根长()l l a <的针,求针与任一平行线相交的概率.

解 设A =‘针与某平行线相交’,针落在平面上的情况不外乎图中的几种, 设x 为针的中点到最近的一条平行线的距离。 ?为针与平行线的夹角,则

0,02

a x ?π<<<<,不等式确定了平面上 的一个区域S .

A 发生sin 2L

x ??≤,不等式确定S 的子域A 故 012()sin 22

L L P A d a a π??π

π==?

·8·

习 题 二

1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.

解 设i A =‘任取一件是i 等品’ 1,2,3i =,

所求概率为

13133()(|)()P A A P A A P A =

, 因为 312

A A A =+ 所以 312()()

()0.60.30.9P A P A P A =+=+= 131()()0.6P A A P A ==

1362(|)93

P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.

解 设A =‘所取两件中有一件是不合格品’

i B =‘所取两件中恰有i 件不合格’ 1, 2.i =

12A B B =+

11246412221010

()()()C C C P A P B P B C C =+=+, 所求概率为

2242112464()1(|)()5

P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.

解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+,

所求概率为

336113333611511/()()2(|)()()//3

C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都

·9·

是黑桃的概率.

解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则

345A B B B =++,

所求概率为

555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133913391391686

C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -. 解 ()()()() 1.1()(|) 1.10P A B P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.

6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。

解 设A =‘从乙袋中取出的是白球’,i B =‘从甲袋中取出的两球恰有i 个白球’0,1,2i =.

由全概公式

001122()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B =++

11223232222555416131021025

C C C C C C C =?+?+?=. 7.一个盒子中装有15个乒乓球,其中9个新球,在第一次比赛时任意抽取3只,比赛后仍放回原盒中;在第二次比赛时同样地任取3只球,求第二次取出的3个球均为新球的概率。

解 设A =‘第二次取出的均为新球’,

i B =‘第一次取出的3个球恰有i 个新球’0,1,2,3.i = 由全概公式

00112233()()(|)()(|)()(|)()(|)

P A P B P A B P B P A B P B P A B P B P A B =+++ 33123213336996896796333333331515151515151515

C C C C C C C C C C C C C C C C C C =?+?+?+? 5280.0895915

=≈. 8.电报发射台发出‘·’和‘–’的比例为5:3,由于干扰,传送(·)时失真的概率为2/5,传送‘–’时失真的概率为1/3,求接受台收到‘·’时发出信号恰是‘·’的概率。

解 设A =‘收到‘·’’,B =‘发出‘·’’,

·10·

由贝叶斯公式

53()(|)385(|)5331()(|)()(|)4

8583

P B P A B P B A P B P A B P B P A B ?===+?+?. 9.在第6题中,已知从乙袋中取得的球是白球,求从甲袋中取出的球是一白一黑的概率.

解 事件如第6题所设,所求概率为

1123251111/()(|)152(|)13

()26

25C C C P B P A B P B A P A ?=== 10.已知一批产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率是0.02,一个次品被误认为是合格品的概率是0.05,求在检查后认为是合格品的产品确是合格品的概率。

解 设A =‘任取一产品,经检查是合格品’,

B =‘任取一产品确是合格品’,

A BA BA =+

()()(|)()(|)P A P B P A B P B P A B =+

0.960.980.040.050.9428=?+?=,

所求概率为

()(|)0.960.98(|)0.998()0.9428

P B P A B P B A P A ?===. 11.假设有两箱同种零件:第一箱内装50件,其中10件一等品;第二箱内装30件其中18件一等品,现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1)先取出的零件是一等品的概率;

(2)在先取的零件是一等品的条件下,第二次取出的零件仍然是一等的概率. 解 设i A =‘第i 次取出的零件是一等品’,1,2i =.

i B =‘取到第i 箱’,1,2i =.

(1)1111212()()(|)()(|)P A P B P A B P B P A B =+1132()2555=+=.

·11· (2)121211222111()()(|)()()P A A P A A B A A B P A A P A P A +=

= 112121221()(|)()(|)()

P B P A A B P B P A A B P A += 2210182250301295140.4856249295

C C C C ??+??????==+= ???

. 12.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购一箱玻璃杯,售货员随意取一箱,顾客开箱随意地察看四只,若无残次品,则买下该箱,否则退回。试求:

(1)顾客买下该箱的概率α;

(2)在顾客买下的一箱中,确无残次品的概率β.

解 设A =‘顾客买下该箱’,

B =‘箱中恰有i 件残次品’,0,1,2i =,

(1)001122()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B α==++

441918442020

0.80.10.10.94C C C C =+?+?≈; (2)00()0.8(|)0.85()0.94

P AB P B A P A β===≈. 13.设有来自三个地区的各10名,15名和25名考生的报名表,其中女生报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后取出两份

(1)求先取到的一份为女生表的概率p ;

(2)已知后取到的一份是男生表,求先抽到的一份是女生表的概率q . 解 设A =‘先取到的是女生表’,

B =‘后取到的是男生表’,

i C =‘取到第i 个地区的表’,1,2,3.i =

(1)112233()(|)()(|)()(|)p P C P A C P C P A C P C P A C =++

137529310152590??=++=????

; (2)因为先取出的是女生表的概率为2990

,所以先取出的是男生表的概率为

·12·

6190,按抓阄问题的道理,后取的是男生表的概率61()90P B =. 于是

(2)123()()(|)()()

P ABC ABC ABC P AB q P A B P B P B ++=== 1231[(|)(|)(|)]3()

P AB C P AB C P AB C P B ++= 13778520203109151425246161

90

???+?+?????==. 14.一袋中装有m 枚正品硬币,n 枚次品硬币(次品硬币的两面均印有国徽)从袋中任取一枚,已知将它投掷r 次,每次都得到国徽,问这枚硬币是正品的概率是多少?

解 设A =‘任取一枚硬币掷r 次得r 个国徽’,

B =‘任取一枚硬币是正品’,

A BA BA =+,

所求概率为

()(|)(|)()(|)()(|)

P B P A B P B A P B P A B P B P A B =+ 122

12r r r m m m n m n m n m n m n ?? ?+??

==+???+ ?++??. 15.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,求甲击中的概率.

解 设A =‘目标被击中’,i B =‘第i 个人击中’ 1,2,i = 所求概率为

11111212()()()(|)()()1()

P B A P B P B P B A P A P B B P B B =

==+- 0.60.7510.40.5==-?.

·13·

16.三人独立地破译一个密码,他们能译出的概率分别是111,,

534

,求他们将此密码译出的概率. 解1 设A =‘将密码译出’,i B =‘第i 个人译出’ 1,2,3.i = 则

1231231213()()()()()()()P A P B B B P B P B P B P B B P B B =++=++-- 23123111111111()()534535434P B B P B B B -+=

++-?-?-? 11130.65345

+??==. 解2 事件如上所设,则

1234233()1()1()10.65345

P A P A P B B B =-=-=-??==. 17.甲、乙、丙三人向一架飞机进行射击,他们的命中率分别为0.4,0.5,0.7。设飞机中一弹而被击落的概率为0.2,中两弹而被击落的概率为0.6,中三弹必然被击落,今三人各射击一次,求飞机被击落的概率.

解 设A =‘飞机被击落’,i B =‘飞机中i 弹’ 1,2,3i =.

112233()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B =++ 1230.2()0.6()()P B P B P B =++

设 i C =‘第i 个人命中’,1,2,3i =,则

1123123123()()()()P B P C C C P C C C P C C C =++

0.40.50.30.60.50.70.60.50.30.36=??+??+??=, 212323123()()()()P B P C C C P CC C P C C C =++

0.40.50.30.40.50.70.60.50.70.41=??+??+??=, 3123()()0.40.50.70.14P B P C C C ==??=,

所以

()0.20.360.60.410.140.458P A =?+?+=.

18.某考生想借一本书,决定到三个图书馆去借,对每一个图书馆而言,有无这本书的概率相等;若有,能否借到的概率也相等,假设这三个图书馆采购、出借图书相互独立,求该生能借到此书的概率.

解1 设A =‘该生能借到此书’,i B =‘从第i 馆借到’1,2,3.i = 则

·14·

123()()()P B P B P B P ===(第i 馆有此书且能借到)

111224

=?=, 121323111()()(),4416P B B P B B P B B ===

?= 1231111()44464

P B B B =??=. 于是

1231231213()()()()()()()P A P B B B P B P B P B P B B P B B =++=++-- 2312333137()()4166464

P B B P B B B -+=-+=. 解2 3123337()1()1()1464P A P A P B B B ??=-=-=-= ???

. 解3 事件如解1所设,则

112123A B B B B B B =++,

112123()()()()P A P B P B B P B B B =++

1313313744444464

=+?+??=. 19.设()0,()0P A P B >>,证明A 、B 互不相容与A 、B 相互独立不能同时成立.

证 若A 、B 互不相容,则AB φ=,于是()0()()0P AB P A P B =≠>所以A 、B 不相互独立.

若A 、B 相互独立,则()()()0P AB P A P B =>,于是AB φ≠,即A 、B 不是互不相容的.

注:从上面的证明可得到如下结论:

1)若A 、B 互不相容,则A 、B 又是相互独立的()0P A ?=或()0P B =.

2)因A BA BA =+,所以()()()P A P BA P BA =+

如果 ()1P B =,则()0P BA =,从而

()()()()P AB P A P A P B ==

可见概率是1的事件与任意事件独立,自然,必然事件与任意事件独立.

如果()0P B =,则()0()()P AB P A P B ==,即概率是零的事件与任意事件独立,自然,不可能事件与任何事件独立。

20.证明若三事件,,A B C 相互独立,则A B 及A B -都与C 独立。

·15· 证 {()}()()()(P A B C P A C B C P A C P B C p A B C

==+- ()()()()()()()P B P C P B P C P A P B P C =+- [()()()]()P A P B P AB P C =+-

()()P A B P C =

即A B 与C 独立.

{()}()()()()()()P A B C P A B C P A P B P C P A B P C -=== ()()P A B P C =-

即 A B -与C 相互独立.

21.一个教室里有4名一年级男生,6名一年级女生,6名二年级男生,若干名二年级女生,为要我们在随机地选择一名学生时,性别和年级是相互独立的,教室里的二年级女生应为多少名?

解 设还应有N 名二年级女生,A =‘任选一名学生为男生’,B =‘任选一名学生为一年级’,则

10()16P A N =+,10()16P B N =+,1044()161016

P AB N N =?=++, 欲性别和年级相互独立,即

()()()P AB P A P B =,41010161616

N N N =?+++ 所以9N =,即教室里的二年级女生应为9名。

22.图中1,2,3,4,5表示继电器接点,假设每一继电器接点闭合的概率均为p ,且设各继电器闭合与否相互独立,求L 至R 是通路的概率.

解 设A =‘L R -是通路’,i B =‘第i 个接点闭合’ 1,2,3,4,5i =,则 1245135432A B B B B B B B B B B =

·16·

1245135432234512()()()()()()()P A P B B P B B P B B B P B B B P B B B B P B B B B =+++-- 12451235134512345()()()()P B B B B P B B B B P B B B B P B B B B B ---- 123451234512345()()()P B B B B B P B B B B B P B B B B B +++

23451234512345()()2252.P B B B B B P B B B B B p p p p +-=+-+

23.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,求该射手的命中率。

解 设该射手的命中率为p ,由题意

4801(1)81p =--,41(1)81p -=,113

p -= 所以 23

p =. 24.设一批晶体管的次品率为0.01,今从这批晶体管中抽取4个,求其中恰有一个次品和恰有两个次品的概率。

解 1344(1)(0.01)(0.99)0.0388P C ==.

22244(2)(0.01)(0.99)0.000588P C ==.

25.考试时有四道选择题,每题附有4个答案,其中只有一个是正确的。一个考生随意地选择每题的答案,求他至少答对三道题的概率。

解 答对每道题的概率为14

,所求概率为 34344413113(3)(4)444256P P C ????+=+= ? ?????

. 26.设在伯努里试验中,成功的概率为p ,求第n 次试验时得到第r 次成功的概率.

解 设A =‘第n 次试验时得到第r 次成功’,则

A =‘前1n -次试验,成功1r -次,第n 次试验出现成功’, 所以

()P A P =(前1n -次试验,成功1r -次)P (第n 次试验成功)

11111(1)(1)

r r n r r r n r n n C p p p C p p -------=-?=-. 27.设一厂家生产的每台仪器,以概率0.7可以直接出厂,以概率0.3需进一步调试,经调试后以概率0.8可以出厂,以概率0.2定为不合格品,不能出厂。现该厂生产了(2)n n ≥台仪器(假定各台仪器的生产过程相互独立)。求(1)全部能出厂的概率α;(2)其中恰有两台不能出厂的概率β;(3)其中至少有

·17·

两台不能出厂的概率θ。

解 设A =‘任取一台可以出厂’,B =‘可直接出厂’,C =‘需进一步调试’。

A BA CA =+,

()()(|)()(|)0.70.30.80.94P A P B P A B P C P A C p =+=+?== 将n 台仪器看作n 重伯努里试验,成功的概率为p ,于是

(1)(0.94)n α=,

(2)222(0.06)(0.94)n n C β-=,

(3)11(0.94)(0.06)(0.94)n n n θ-=--??。

28.设昆虫产k 个卵的概率为!k

k p e k λλ-=,又设一个虫卵能孵化成昆虫的

概率为p ,若卵的孵化是相互独立的,问此昆虫的下一代有L 条的概率是多少? 解 设A =‘下一代有L 条’,K B =‘产k 个卵’,1,,k L L =+ 则 ()()(|)(1)!k L L k L k k

k k L k L P A P B P A B e C p p k λλ∞∞-

-====-∑∑

()[(1)](1)

!()!!()!k L L k L k L k L k L

e p p p p e L k L k k L λλλλλ--∞∞--==-=-=--∑∑ (1)()()!!

L

L

p p p p e e e L L λλλλλ---==. 29.一台仪器中装有2000个同样的元件,每个元件损坏的概率为0.0005,如果任一元件损坏,则仪器停止工作,求仪器停止工作的概率.

解 考察一个元件,可视为一次贝努里试验,2000个元件为2000重贝努里试验。1np =,利用泊松逼近定理,所求概率为

2000

200012000111()0.63216!

k k p p k e k -====≈∑∑. 30.某人有两盒火柴,吸烟时从任一盒中取一根火柴,经过若干时间后,发现一盒火柴已经用完,如果最初两盒中各有n 根火柴,求这时另一盒中还有r 根的概率。

·18· 解 设A =‘发现一盒已经用完另一盒还有r 根’。

B =‘发现甲盒已经用完乙盒还有r 根’。

()2()P A P B =

B 发生?甲盒拿了1n +次,乙盒拿了n r -次,共进行了21n r +-次试验,而且前2n r -次试验,甲发生n 次,第21n r +-次试验甲发生。

2211()22

n r n n r P B C --??=? ???

从而 221()2()2n r n n r P A P B C --??== ???

.

(完整word版)大一高数练习题

1.填空题 1、当0→x 时,x cos 1-与2x 相比较是 同阶 无穷小。 2、=→2 203sin lim x x x 1/3 3、曲线(1cos ),sin x t t y t =-=在t π=处的切线斜率为 -1/2 4、当k 满足条件__x>2_________时,积分?+∞-1 1k x dx 收敛 5、曲线||x y =的极值点是 x=0 6 、设函数y =则dy = 2xdx 7、若()lim(1)x x t f t x →∞ =+,则=')(t f e t 8、?-=22 35sin cos π πxdx x 0 9、若?=t xdx t f 12ln )(,则=')(t f ln 2 t 10、微分方程0cos 2=-y dx x dy 的通解为siny=x 2__________ 1、当0→x 时,x cos 1-与22x 相比较是 无穷小. 2、设函数?????=≠=0001sin )(3x x x x x f 当当,则=')0(f . 3、设)4)(2)(3)(5()(--++=x x x x x f ,则方程0)(='x f 有 个实根. 4、当k 满足条件___________时,积分1 2k dx x +∞+?收敛. 5、设函数21x y -=,则dy = . 6、函数)2(-=x x y 的极值点是 . 7、=≠∞→)0(sin lim a x a x x . 8、若?=t x dx e t f 02 )(,则=')(t f .

9、?-=π πxdx x 32sin . 10、微分方程 0cos 2=-x dy y dx 的通解为___________. 一、 单项选择题(每小题2分,共10分) 1、函数x x y -=3ln 的定义域为(B ) A ),0(+∞ B ]3,(-∞ C )3,0( D ]3,0( 2、函数()f x 在0x 处)0()0(00+=-x f x f 是()f x 在0x 处连续的( B ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 无关条件 3、函数93)(+=x x f 在0=x 处(C ) A 不连续 ; B 可导; C 连续但不可导; D 无定义 4、下列式子中,正确的是(B ) A. ()()f x dx f x '=? B. 22()()d f x dx f x dx =? C. ()()f x dx f x =? D.?=)()(x f dx x f d 5、设()x f x e -=,则(ln )f x dx x =? _C______. A . 1C x + B. ln x C + C. 1C x -+ D. ln x C -+ 二、单项选择题(每小题2分,共10分) 1.函数241)(x x x f -+=的定义域为( C ). A .]2,2[-; B. )2,2(-; C. ]2,0()0,2[ -; D. ),2[+∞. 2、若)(x f 在0x 的邻域内有定义,且)0()0(00+=-x f x f ,则(B ). A )(x f 在0x 处有极限,但不连续; B )(x f 在0x 处有极限,但不一定连续;

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

2004图论复习题答案

图论复习题答案 一、判断题,对打,错打 1.无向完全图是正则图。 () 2.零图是平凡图。() 3.连通图的补图是连通图.() 4.非连通图的补图是非连通图。() 5.若连通无向简单图G中无圈,则每条边都是割边。() 6.若无向简单图G是(n,m)图,并且m=n-1,则G是树。() 7.任何树都至少有2片树叶。() 8.任何无向图G都至少有一个生成树。() 9.非平凡树是二分图。() 10.所有树叶的级均相同的二元树是完全二元树。() 11.任何一个位置二元树的树叶都对应唯一一个前缀码。() 12. K是欧拉图也是哈密顿图。() 3,3 13.二分图的对偶图是欧拉图。() 14.平面图的对偶图是连通图。() 页脚内容1

15.设G*是平面图G的对偶图,则G*的面数等于G的顶点数。() 二、填空题 1.无向完全图K6有15条边。 2.有三个顶点的所有互不同构的简单无向图有4个。 3.设树T中有2个3度顶点和3个4度顶点,其余的顶点都是树叶,则T中有10片树叶。 4.若连通无向图G是(n,m)图,T是G的生成树,则基本割集有n-1个,基本圈有m-n+1个。 5.设连通无向图G有k个奇顶点,要使G变成欧拉图,在G中至少要加k/2条边。 6.连通无向图G是(n,m)图,若G是平面图,则G有m-n+2个面。 三、解答题 1.有向图D如图1所示,利用D的邻接矩阵及其幂运算 求解下列问题: (1)D中长度等于3的通路和回路各有多少条。 (2)求D的可达性矩阵。 (3)求D的强分图。 解:(1) a b c d e 图1 页脚内容2

页脚内容3 M=????????????????000101000000001 010*******M 2=?? ? ? ??????? ?????010******* 000101000001000 M 3=????????????????10000 01000010000001010000M 4=??? ???? ? ??? ?????00010 01000 100000100000010 由M 3可知,D 中长度等于3的通路有5条,长度等于3的回路有3条。 (2) I+M+M 2+M 3+M 4=????????????? ???100000100000100 0001000001 +??????????? ?? ???000101000000001 010******* +??????????? ?? ???010000001000010 1000001000 +??? ???? ? ??? ?? ???100000100001000 0001010000 + ????????????????00010 01000100000100000010 =??? ???? ???? ?? ???21020 1301011111 020******* D 的可达性矩阵为 R=B (I+M+M 2+M 3+M 4)=??? ???? ? ????? ???110101********* 1101011011 b c d e 图1

大一高等数学复习题含答案

复 习 题 一、 单项选择题: 1、5 lg 1 )(-= x x f 的定义域是( D ) A 、()),5(5,+∞∞-Y B 、()),6(6,+∞∞-Y C 、()),4(4,+∞∞-Y D 、())5,4(4,Y ∞-Y ()),6(6,5+∞Y 2、如果函数f(x)的定义域为[1,2],则函数f(x)+f(x 2 )的定义域是( B ) A 、[1,2] B 、[1,2] C 、]2,2[- D 、]2,1[]1,2[Y -- 3、函数)1lg()1lg(22x x x x y -++++=( D ) A 、是奇函数,非偶函数 B 、是偶函数,非奇函数 C 、既非奇函数,又非偶函数 D 、既是奇函数,又是偶函数 解:定义域为R ,且原式=lg(x 2+1-x 2 )=lg1=0 4、函数)10(1)(2≤≤--=x x x f 的反函数=-)(1 x f ( C ) A 、21x - B 、21x -- C 、)01(12≤≤--x x D 、)01(12≤≤---x x 5、下列数列收敛的是( C ) A 、1)1()(1 +-=+n n n f n B 、?????-+=为偶数为奇数n n n n n f ,11,11 )( C 、?????+=为偶数为奇数n n n n n f ,11,1 )( D 、???????-+=为偶数为奇数n n n f n n n n ,2 21,221)( 解:选项A 、B 、D 中的数列奇数项趋向于1,偶数项趋向于-1,选项C 的数列极限为0 6、设1 111.0个n n y Λ=,则当∞→n 时,该数列( C ) A 、收敛于0.1 B 、收敛于0.2 C 、收敛于 9 1 D 、发散 解:)10 11(91101101101111.02n n n y -=+++= =ΛΛ 7、“f(x)在点x=x 0处有定义”是当x →x 0时f(x)有极限的( D ) A 、必要条件 B 、充分条件 C 、充分必要条件 D 、无关条件

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

哈工大集合与图论习题

集合与图论习题 第一章习题 .画出具有个顶点地所有无向图(同构地只算一个). .画出具有个顶点地所有有向图(同构地只算一个). .画出具有个、个、个顶点地三次图. .某次宴会上,许多人互相握手.证明:握过奇数次手地人数为偶数(注意,是偶数). .证明:哥尼斯堡七桥问题无解. .设与是图地两个不同顶点.若与间有两条不同地通道(迹),则中是否有回路? .证明:一个连通地(,)图中≥. .设是一个(,)图,δ()≥[],试证是连通地. .证明:在一个连通图中,两条最长地路有一个公共地顶点. .在一个有个人地宴会上,每个人至少有个朋友(≤≤).试证:有不少于个人,使得他们按某种方法坐在一张圆桌旁,每人地左、右均是他地朋友.b5E2R。 .一个图是连通地,当且仅当将划分成两个非空子集和时,总有一条联结地一个顶点与地一个顶点地边. .设是图.证明:若δ()≥ ,则包含长至少是δ()地回路. .设是一个(,)图,证明: ()≥,则中有回路; ()若≥,则包含两个边不重地回路. .证明:若图不是连通图,则是连通图. .设是个(,)图,试证: ()δ()·δ()≤[()]([()]),若≡,,( ) () δ()·δ()≤[()]·[()],若≡( ) .证明:每一个自补图有或个顶点. .构造一个有个顶点而没有三角形地三次图,其中≥. .给出一个个顶点地非哈密顿图地例子,使得每一对不邻接地顶点和,均有 ≥ .试求中不同地哈密顿回路地个数. .试证:图四中地图不是哈密顿图. .完全偶图,为哈密顿图地充分必要条件是什么?

.菱形面体地表面上有无哈密顿回路? .设是一个(≥)个顶点地图.和是地两个不邻接地顶点,并且≥.证明:是哈密顿图当且仅当是哈密顿图. .设是一个有个顶点地图.证明:若>δ(),则有长至少为δ()地路. .证明具有奇数顶点地偶图不是哈密顿图. .证明:若为奇数,则中有()个两两无公共边地哈密顿回路. .中国邮路问题:一个邮递员从邮局出发投递信件,然后返回邮局.若他必须至少一次走过他所管辖范围内地每条街道,那么如何选择投递路线,以便走尽可能少地路程.这个问题是我国数学家管梅谷于年首先提出地,国外称之为中国邮路问题.p1Ean。 ()试将中国邮路问题用图论述语描述出来. ()中国邮路问题、欧拉图问题及最短路问题之间有何联系. 第三章习题 .分别画出具有、、个顶点地所有树(同构地只算一个). .证明:每个非平凡树是偶图. .设是一棵树且Δ()≥,证明:中至少有个度为地顶点. .令是一个有个顶点,个支地森林,证明:有条边. .设是一个个顶点地树.证明:若图地最小度δ()≥,则有一个同构于地子图. .一棵树有个度为地顶点,个度为地顶点,…,个度为地顶点,则有多少个度为地顶点? .设是一个连通图.试证:地子图是地某个生成树地子图,当且仅当 没有回路. .证明:连通图地任一条边必是它地某个生成树地一条边. .设是一个边带权连通图,地每条边均在地某个回路上.试证:若地边地权大于地任一其他边地权,则不在地任一最小生成树中.DXDiT。 . 设(,,)是一个边带权连通图,对任意∈,()≥.试证:地一个生成树是地最小生成树,当且仅当时地任一与地距离为地生成树′′满足条件:在中而不在′′中地边地权()不大于在′′中而不在中地边′地权(′).RTCrp。 .某镇有人,每天他们中地每个人把昨天听到地消息告诉他认识地人.已知任何 消息,只要镇上有人知道,都会经这种方式逐渐地为全镇上所有人知道.试证:可选出个居民代表使得只要同时向他们传达某一消息,经天就会为全镇居民知道.5PCzV。 个顶点地图中,最多有多少个割点? .证明:恰有两个顶点不是割点地连通图是一条路.

大一高等数学试题及答案

期末总复习题 一、填空题 1、已知向量2a i j k =+-r r r r ,2b i j k =-+r r r r ,则a b ?r r = -1 。 2、曲线2x z =绕z 轴旋转所得曲面方程为 z=x 2 + y 2 。 3、级数1113n n n ∞=?? + ???∑的敛散性为 发散 。 4、设L 是上半圆周222a y x =+(0≥y ),则曲线积分221L ds x y +?= a π 5.交换二重积分的积分次序:??--012 1),(y dx y x f dy =dy y x dx ),(f 0x -121?? 6.级数∑∞=+1)1(1 n n n 的和为 1 。 二、选择题 1、平面0)1(3)1(=+++-z y x 和平面02)1()2(=+--+z y x 的关系 ( B ) A 、重合 B 、平行但不重合 C 、一般斜交 D 、垂直 2. 下列曲面中为母线平行于z 轴的柱面的是 ( C ) A 、2221x z += B 、2221y z += C 、2221x y += D 、22221x y z ++= 3. 设)0(4:22>≤+y y x D ,则32222ln(1) 1D x x y dxdy x y ++=++??( A )

A 、2π B 、0 C 、1 D 、4π 4、设)0(4:22>≤+y y x D ,则??=D dxdy ( A ) A 、π16 B 、π4 C 、π8 D 、π2 5、函数22504z x y =--在点(1,-2)处取得最大方向导数的方向是 ( A ) A 、216i j -+ B 、216i j -- C 、216i j + D 、216i j - 6、微分方程222()()0y y y '''+-=的阶数为 ( B ) A 、1 B 、2 C 、4 D 、6 7.下列表达式中,微分方程430y y y ''-+=的通解为 ( D ) A 、3x x y e e C =++ B 、3x x y e Ce =+ C 、3x x y Ce e =+ D 、312x x y C e C e =+ 8.lim 0n n u →∞=为无穷级数1 n n u ∞=∑收敛的 ( B ) A 、充要条件 B 、 必要条件 C 、充分条件 D 、什么也不是 三、已知1=a ?,3=b ?,b a ??⊥,求b a ??+与b a ? ?-的夹角.P7

图论1-3藏习题解答

学号:0441 姓名:张倩 习题1 4.证明图1-28中的两图是同构的 证明:将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )?u i (1? i ? 10) 容易证明,对?v i v j ?E((a)),有f(v i v j )?u i u j ?E((b)) (1? i ? 10, 1?j? 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: (a) v 1 v 2 v 3 v v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

m=4: m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 ()1 1 123121,1,,1,,,=d d n d d d d d π++---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 12.证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v1,v2,…,vn},对于G 中的路v1v2…vk,若vk 与v1邻接,则构成一个圈。若vi1vi2…vin 是一条路,由于?? 2,因此,对vin ,存在点vik 与之邻接,则vik?vinvik 构成一个圈 。 17.证明:若G 不连通,则G 连通。 证明 对)(,_ G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

哈工大图论习题

哈工大图论习题

————————————————————————————————作者:————————————————————————————————日期:

1.画出具有4个顶点的所有无向图(同构的只算一个)。 2.画出具有3个顶点的所有有向图(同构的只算一个)。 3.画出具有4个、6个、8个顶点的三次图。 4.某次宴会上,许多人互相握手。证明:握过奇数次手的人数为偶数(注意,0是偶数)。 5.证明:哥尼斯堡七桥问题无解。 6.设u与v是图G的两个不同顶点。若u与v间有两条不同的通道(迹),则G中是否有回路? 7.证明:一个连通的(p,q)图中q ≥p-1。 8.设G是一个(p,q)图,δ(G)≥[p/2],试证G是连通的。 9.证明:在一个连通图中,两条最长的路有一个公共的顶点。 10.在一个有n个人的宴会上,每个人至少有m个朋友(2≤m≤n)。试证:有不少于m+1个人,使得他们按某种方法坐在一张圆桌旁,每人的左、右均是他的朋友。 11.一个图G是连通的,当且仅当将V划分成两个非空子集V1和V2时,G总有一条联结V1的一个顶点与V2的一个顶点的边。 12.设G是图。证明:若δ(G)≥ 2,则G包含长至少是δ(G)+1的回路。 13.设G是一个(p,q)图,证明: (a)q≥p,则G中有回路; (b)若q≥p+4,则G包含两个边不重的回路。 14.证明:若图G不是连通图,则G c 是连通图。 15.设G是个(p,q)图,试证: (a)δ(G)·δ(G C)≤[(p-1)/2]([(p+1)/2]+1),若p≡0,1,2(mod 4) (b) δ(G)·δ(G C)≤[(p-3)/2]·[(p+1)/2],若p≡3(mod 4) 16.证明:每一个自补图有4n或4n+1个顶点。 17.构造一个有2n个顶点而没有三角形的三次图,其中n≥3。 18.给出一个10个顶点的非哈密顿图的例子,使得每一对不邻接的顶点u和v,均有 degu+degv≥9 19.试求Kp中不同的哈密顿回路的个数。 20.试证:图四中的图不是哈密顿图。 21.完全偶图Km,n为哈密顿图的充分必要条件是什么? 22.菱形12面体的表面上有无哈密顿回路? 23.设G是一个p(p≥3)个顶点的图。u和v是G的两个不邻接的顶点,并且degu+degv ≥p。证明:G是哈密顿图当且仅当G+uv是哈密顿图。 24.设G是一个有p个顶点的图。证明:若p>2δ(G),则有长至少为2δ(G)的路。 25.证明具有奇数顶点的偶图不是哈密顿图。 26.证明:若p为奇数,则Kp中有(p-1)/2个两两无公共边的哈密顿回路。 28.中国邮路问题:一个邮递员从邮局出发投递信件,然后返回邮局。若他必须至少一次走过他所管辖范围内的每条街道,那么如何选择投递路线,以便走尽可能少的路程。这个问题是我国数学家管梅谷于1962年首先提出的,国外称之为中国邮路问题。 (1)试将中国邮路问题用图论述语描述出来。 (2)中国邮路问题、欧拉图问题及最短路问题之间有何联系。

哈工大威海校区2015春集合图论试题A

姓名: 班级: 学号: 遵 守 考 试 纪 律 注 意 行 为 规 范 哈尔滨工业大学(威海)2014 / 2015学年春季学期 集合论与图论 试题卷(A ) 考试形式(开、闭卷):闭卷 答题时间:105(分钟)本卷面成绩占课程成绩 30 % 试卷说明: [1] 卷面总分100分,取卷面成绩的70%计入总分,平时成绩30%。 [2] 填空题请在答题卡内答题,其它处无效。 [3] 答卷时禁止拆开试卷钉,背面即为草稿纸。 一、填空题(每小题2分,共20分)

(1) 集合的()表示方法可能产生悖论。 (2) 映射f左可逆的充分必要条件是:()。 (3) 设R={(a, b),(c, d),(e, f)}是一个二元关系,则R的逆记为R-1,R-1=()。 (4) n个顶点的完全图的边的个数是( )。 (5) 一个无向图的边数为20,那么所有顶点的度数和为()。 (6) 设G是一个有p个顶点q条边的最大可平面图,则: q=( )。 (7) 一个图是树当且仅当G是连通的且p=()。 (8) G是一个p个顶点q条边的最大平面图,则G的每个面都是( )形。 (9) 若G是偶数个顶点的圈,则G是()色的。 (10) 当顶点数大于2时,树的连通度是()。

二、简答题(每小题5分,共20分) 1.设集合X={a,b,c,d,e},E={a,b,c}是X的子集。写出E的特征函数。 2.R={(1,b),(2,c),(3,a),(4,d)}是集合A={1,2,3,4}到集合B={a,b,c,d}的一个二元关系,画出R的关系矩阵和关系图。 3.举例说明什么是偏序关系?什么是偏序集? 4.简述图的连通度、边连通度、最小度之间的关系。

高等数学(大一)题库

(一)函数、极限、连续 一、选择题: 1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。 (A) ;1+=x y (B);2x x y -= (C)34+-=x y (D)25-=x y 2、 当+∞→x 时,函数f (x )=x sin x 是( ) (A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x x x x f -=+-= ?都是无穷小,则f (x )是)(x ?的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小 4、 x =0是函数 1 ()arctan f x x =的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点 5、 下列的正确结论是( ) (A ))(lim x f x x →若存在,则f (x )有界; (B )若在 0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0 x g x x →),(lim 0 x h x x →都存在, 则),(lim 0 x f x x →也 存在; (C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根; (D ) 当∞→x 时,x x x x x a sin )(,1) (== β都是无穷小,但()x α与)(x β却不能比. 二、填空题: 1、 若),1(3-=x f y Z 且x Z y ==1 则f (x )的表达式为 ; 2、 已知数列n x n 1014- =的极限是4, 对于,101 1=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ; 3、 3214 lim 1 x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设 ,)(a x a x x f --=则x =a 是f (x )的第 类 间断点; 5、 ,0 , ; 0, )(,sin )(?? ?>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ; 三、 计算题: 1、计算下列各式极限: (1)x x x x sin 2cos 1lim 0-→; (2)x x x x -+→11ln 1lim 0;

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

哈工大年集合论与图论试卷

-- 本试卷满分90分 (计算机科学与技术学院09级各专业) 一、填空(本题满分10分,每空各1分) 1.设B A ,为集合,则A B B A = )\(成立的充分必要条件是什么?(A B ?) 2.设}2,1{},,,2,1{==Y n X ,则从X 到Y 的满射的个数为多少?(22-n ) 3.在集合}11,10,9,8,4,3,2{=A 上定义的整除关系“|”是A 上的偏序关系, 则 最大元是什么? ( 无 ) 4.设{,,}A a b c =,给出A 上的一个二元关系,使其同时不满足自反性、反自 反性、对称性、反对称和传递性的二元关系。({(,),(,),(,),(,)}R a a b c c b a c =) 5.设∑为一个有限字母表,∑上所有字(包括空字)之集记为*∑,则*∑是 否是可数集? ( 是 ) 6.含5个顶点、3条边的不同构的无向图个数为多少? ( 4 ) 7.若G 是一个),(p p 连通图,则G 至少有多少个生成树? ( 3 ) 8. 如图所示图G ,回答下列问题: (1)图G 是否是偶图? ( 不是 ) (2)图G 是否是欧拉图? ( 不是 ) (3)图G 的色数为多少? ( 4 ) 二、简答下列各题(本题满分40分) 1.设D C B A ,,,为任意集合,判断下列等式是否成立?若成立给出证明,若不 成立举出反例。(6分) (1))()()()(D B C A D C B A ??=? ; (2)()()()()A B C D A C B D ?=??。 解:(1)不成立。例如}{,a c B D A ====φ即可。 (2)成立。(,)x y ?∈()()A B C D ?,有,x A B y C D ∈∈,即 ,,,x A x B y C y D ∈∈∈∈。所以(,),(,)x y A C x y B D ∈?∈?,因此 (,)()()x y A C B D ∈??,从而()()A B C D ??()()A C B D ??。 反之,(,)x y ?∈()()A C B D ??,有,,,x A x B y C y D ∈∈∈∈。即 (,)x y ∈()()A B C D ?,从而()()A C B D ???()()A B C D ?。

图论习题参考答案

二、应用题 题0:(1996年全国数学联赛) 有n(n≥6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。证明这n个人中必有3个人互相认识。 注:[n/2]表示不超过n/2的最大整数。 证明将n个人用n个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G。由条件可知,G是具有n个顶点的简单图,并且有 (1)对每个顶点x,) N G≥[n/2]; (x (2)对V的任一个子集S,只要S=[n/2],S中有两个顶点相邻或V-S中有 两个顶点相邻。 需要证明G中有三个顶点两两相邻。 反证,若G中不存在三个两两相邻的顶点。在G中取两个相邻的顶点x1和y1,记N G(x1)={y1,y2,……,y t}和N G(y1)={x1,x2,……,x k},则N G(x1)和N G(y1)不相交,并且N G(x1)(N G(y1))中没有相邻的顶点对。 情况一;n=2r:此时[n/2]=r,由(1)和上述假设,t=k=r且N G(y1)=V-N G(x1),但N G(x1)中没有相邻的顶点对,由(2),N G(y1)中有相邻的顶点对,矛盾。 情况二;n=2r+1: 此时[n/2]=r,由于N G(x1)和N G(y1)不相交,t≥r,k≥r,所以r+1≥t,r+1≥k。若t=r+1,则k=r,即N G(y1)=r,N G(x1)=V-N G(y1),由(2),N G(x1)或N G(y1)中有相邻的顶点对,矛盾。故k≠r+1,同理t≠r+1。所以t=r,k=r。记w∈V- N G(x1) ∪N G(y1),由(2),w分别与N G(x1)和N G(y1)中一个顶点相邻,设wx i0∈E, wy j0∈E。若x i0y j0∈E,则w,x i0, y j0两两相邻,矛盾。若x i0y j0?E,则与x i0相邻的顶点只能是(N G(x1)-{y j0})∪{w},与y j0相邻的顶点只能是(N G(y1)-{x j0})∪{w}。但与w相邻的点至少是3,故N G(x1)∪N G(y1)中存在一个不同于x i0和y j0顶点z与w相邻,不妨设z∈N G(x1),则z,w,x i0两两相邻,矛盾。 题1:已知图的结点集V={a,b,c,d}以及图G和图D的边集合分别为: E(G)={(a,a), (a,b), (b,c), (a,c)} E(D)={, , , , } 试作图G和图D,写出各结点的度数,回答图G、图D是简单图还是多重图? 解:a d a d b c b c 图G图D 例2图

图论(张先迪-李正良)课后习题答案(第一章)

习题一 作者---寒江独钓 1.证明:在n 阶连通图中 (1) 至少有n-1条边; (2) 如果边数大于n-1,则至少有一条闭迹; (3) 如果恰有n-1条边,则至少有一个奇度点。 证明: (1) 若G 中没有1度顶点,由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 若G 中有1度顶点u ,对G 的顶点数作数学归纳。 当n=2时,结论显然;设结论对n=k 时成立。 当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k. (2) 考虑G 中途径: 121:n n W v v v v -→→→→L 若W 是路,则长为n-1;但由于G 的边数大于n-1,因此,存在v i 与v j ,它们相异,但邻接。于是: 1i i j i v v v v +→→→→L 为G 中一闭途径,于是 也就存在闭迹。 (3) 若不然,G 中顶点度数至少为2,于是由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 这与G 中恰有n-1条边矛盾! 2.(1)2n ?12n 2?12n ?1 (2)2n?2?1 (3) 2n?2 。 证明 :u 1的两个邻接点与v 1的两个邻接点状况不同。所以, 两图不同构。 4.证明下面两图同构。 u 1 v 1

证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 5.指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。 (a) v 2 v 3 u 4 u (b)

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

相关主题
文本预览
相关文档 最新文档