当前位置:文档之家› 石墨烯及其复合材料在水处理中的研究

石墨烯及其复合材料在水处理中的研究

石墨烯及其复合材料在水处理中的研究
石墨烯及其复合材料在水处理中的研究

石墨烯及其复合材料在水处理中的研究

摘要:石墨烯作为一种新型碳纳米材料,具有巨大的比表面积、较高的机械强度和稳定的化学性质等优点,在诸多领域有广泛的应用。石墨烯因具有巨大的比表面积和高的反应活性,作为一种优异的吸附材料在水处理方向具有较好的应用前景。本文概述了石墨烯及其复合材料在水处理方面的研究进展。石墨烯及其复合材料对于处理重金属离子和有机污染物质的吸附效果好,吸附容量高。最后对其在水处理中的应用前景做了展望。关键词:石墨烯;复合材料;吸附;水处理

引言

石墨烯(graphene,GN)自2004年发现以来,由于具有独特的结构与性能,很快成为新材料研究领域的热点。石墨烯是一种sp2杂化的碳原子以六边形排列的周期性蜂窝状二维碳质新材料[1]。石墨烯具有独特的物理化学性质[2],除强度较高外,其理论比表面积竟高达2630m2/g,孔隙结构较丰富,这一点使其成为良好吸附材料的基础[3]。除此之外,还具有良好热导率和电导率[4]~[5],可在传感器、电极材料、储氢材料等应用[6]。

石墨烯作为水处理材料,在环保领域拥有广阔的应用前景。这主要是因为,它具有二维的平面结构、开放的孔结构、良好的柔韧性、稳定的化学特性、巨大的比表面积等优点;石墨烯的比表面积比碳纳米管更大,吸附能力更强。从而应用石墨烯的优异性能,可将其加工成催化材料、吸附材料和过滤材料等,可以有效吸附水中的多种污染物。同时,由于制造石墨烯的石墨来源比较广泛,且石墨烯相比碳纳米管价格比较低廉,制备过程简单,许多学者开始研究石墨烯在水处理中的应用[7]~[8]。

本文介绍了石墨烯与水处理相关的主要性能,综述了石墨烯及其复合材料在水处理中的研究进展,并对当今石墨烯材料在水处理研究中遇到的挑战和问题做了进一步分析,对今后这一领域的研究作了展望。

1石墨烯及其复合材料在水处理中的研究

1.1石墨烯

石墨烯因其吸附原理简单、费用低及处理效果好等优点广泛应用在水环境治理中。巨大的比表面积使石墨烯成为良好的吸附材料。作为吸附剂在水处中的相关研究主要集中在吸附两类污染物:有机物与无机阴离子[9]。水中的有机污染物易与石墨烯表面发生相互作用,形成稳定的复合物,进一步得到去除。因而许多学者主要研究了石墨烯吸附去除水中的有机染料。

Liu 等人研究了石墨烯在不同温度、pH值、接触时间和浓度下对亚甲基蓝的吸附,研究发现石墨烯最大吸附量高达到153.85mg/g,吸附等温线符合Langmu模型[10]。Wu 等人研究了石墨烯对丙烯腈、甲苯磺酸及甲基蓝的吸附,与其他碳纳米材料相比,石墨烯表现出较强的吸附能力,甲基蓝因为有苯环和大分子,从而使石墨烯的吸附速度更快,吸附容量更大[11]。Li等人研究了石墨烯在不同温度、pH值、反应时间下对氟化物的吸附性能,结果发现在298K下,当氟化物的初始浓度为25mg/L时,石墨烯的吸附量可达17.65 mg/g[12]。石墨烯对无机污染物的吸附研究使其在水处理领域的研究进一步扩大。

但是由于石墨烯表面活性官能团较少,因此许多研究者针对石墨烯进行修饰和改性后,将其应用于重金属的吸附,取得了较好的吸附效果,甚至可以实现多种重金属离子的同时吸附去除[13]。

1.2石墨烯复合材料

由于石墨烯自身具有憎水性和易聚性的特点,从而限制了其在水处理领域中的应用,研究亲水性和生物相容性的复合材料是新型石墨烯材料的研究方向。石墨烯表面呈现稳定的惰性,不利于在溶剂中溶解,更难与其他有机或无机材料均匀地复合。因此,制备石墨烯复合材料大多是先将氧化石墨烯与纳米材料复合,再将复合后的材料还原得到石墨烯复合材料。

石墨烯复合材料在水处理中的研究应用比较广泛。目前应用的途径主要有两种:一是吸附、降解污染物使其变成小分子物质;二是将污染物从高价态还原成低价态,主要去除有毒性的高价态金属离子[14]~[15]。

1)石墨烯与SiO2的复合

SiO2价廉、无毒害、化学稳定、且具有生物相容性等特点,对石墨烯表面采用纳米材料修饰可以解决石墨烯自身易聚性问题[16]。Hao等人采用两步合成法合成SiO2-石墨烯复合物,用于对Pb2+的去除研究,研究表明该复合物对于Pb2+的去除效果较好,吸附容量远高于单独纳米SiO2的应用,且该复合物可以迅速达到吸附平衡,具有明显的优势[17]。

2)石墨烯与壳聚糖的复合

壳聚糖是应用最广的天然有机材料,Cheng等人用简单的加热方法合成壳聚糖-石墨烯复合材料,该复材料具有较大的比表面积和独特的介孔结构。试验研究发现壳聚糖-石墨烯对RB5的去除效果较好,壳聚糖-石墨烯复合材料在水处理中有一定的应用前景[18]。

3)石墨烯与金属及其氧化物的复合

石墨烯与金属及其氧化物形成的复合材料在水处理中的应用一般需要依赖金属及其氧化物本身的特性。对环境友好的金属如Mn和Fe及其氧化物优先选用于与石墨烯材料复合。新型的金属氧化物对水中重金属离子的去除效果较好。如MnO2具有多种形态,作为吸附材料,具有特殊的物理化学等优势,由于在水中难以分散,从而限制了其在水处理领域的广泛应用。Ren等人用KMnO4与氧化石墨烯发生氧化还原反应制备了石墨烯-MnO2复合材料,用以去除水中的Ni2+,研究发现该复合材料对Ni2+的吸附容量高达46.6mg/g,是同一条件下MnO2单独使用的1.5倍,多次重复使用之后,石墨烯-MnO2的吸附能力还能恢复到最初的水平[19]。Sreeprasad等人用类似的方法合成了石墨烯-Ag 复合材料,该复合材料对于水中的Hg2+的吸附能力较石墨烯要强[20]~[21]。该复合材料对水环境中重金属污染物的去除提供了新的研究方向。

由于Fe纳米颗粒对染料脱色效果较佳,并且对环境没有毒害,在水处理中应用广泛。但是常规的还原法制备的Fe纳米颗粒反应活性较低,反应时间较长,且颗粒之间容易集聚。有人试图将Fe纳米颗粒与石墨烯进行复合。Guo等人通过还原Fe3+和氧化石墨烯获取Fe3+-石墨烯复合材料,相比单纯的Fe纳米颗粒,该复合物对染料甲基蓝的脱色能力有所提高[22]。作为Fe的氧化物Fe3O4具有较大的比表面积、良好的生物相容性,常常用于水处理领域。但Fe3O4粒径小,易团聚。石墨烯和Fe3O4复合能够有效克服上述缺点,而且复合后还能增强Fe3O4的使用寿命,目前此类复合材料能处理水中的各种

金属离子如Cr6+、Co2+、Pb2+、Cu2+等。除Fe3O4之外,石墨烯还可以与ZnO2、CoFe2O4、ZrO2等金属氧化物形成复合材料用于水处理,这些材料不仅具有良好的吸附性,而且还对某种金属离子具有较强选择性[23]。石墨烯与金属及其氧化物形成的复合材料在水处理吸附方面有很好的应用。

由于石墨烯本身机械强度高、化学性质稳定、比表面积大等突出优点,使得其在水处理中的应用前景值得期待。但是由于石墨烯为sp2杂化的C原子形成的单元子层结构,从而表现出较强的憎水性,此外,由于范德华力的作用使石墨烯片层容易重新堆积形成石墨,所以在实际应用中常用的是氧化石墨烯,它是石墨氧化的产物,经过还原即可转化为石墨烯。

2氧化石墨烯及其复合材料在水处理中的研究

2.1氧化石墨烯

氧化石墨烯(graphene oxide, GO)作为石墨烯的氧化物,与石墨烯相比,GO表面具有丰富的极性含氧基团,如羟基、羧基、环氧基和羧酸基等,表现出良好的亲水性,并可以通过功能基团的作用与其他聚合物结合形成复合物。此外GO能稳定地分散在水溶液中,便于制备,便于大规模生产。GO表面的含氧基团还能与金属离子发生络合反应,同时还可以与有机污染物相互作用。所以GO可以用于去除水中的金属和有机污染物。与碳纳管相比,GO的生物相容性更好,与石墨烯相比,GO更便宜,上述特性使得GO成为一种得天独厚的吸附剂[24]~[25]。

GO能吸附大多数的金属离子,其中对Cu2+、Pb2+、Zn2+、Co2+等的吸附量较高、吸附性能较好[26]。Yang等人研究用GO去除水中的Gu2+,其吸附饱和量可达46.6mg/g[27]。Zhao等用GO吸附水中的Pb2+,利用GO表面的含氧基团与Pb2+的络合作用,研究发现溶液的pH值对Pb2+的吸附影响较大:当pH值在1~8范围内时,GO的吸附量随pH值的增加而增大;当pH值大于8时,吸附量随pH值增加而减小[28]。

Wang等人利用GO除去水中的Zn2+,研究发现Zn2+在GO上的吸附量在20min内迅速增加,并逐渐达到平衡[29]。GO具有大量的含氧基团以及大的比表面积是其具有较大吸附量的根本原因。GO对有机物的去除研究主要集中于有机染料。Yang等人用Hummers 制备了GO,研究了GO对亚甲基蓝的吸附去除。研究表明GO对于亚甲基蓝具有较强的吸附能力,吸附容量远远高于石墨烯和碳纳米管[30]。

2.2氧化石墨烯复合材料

为了进一步增强去除水中污染物的能力,GO还可以与其他材料复合。如Fe3O4,GO 和Fe3O4复合可以形成具有磁性的GO/Fe3O4,该复合材料可以有效的去除水中的Co2+、CrO42-等。Liu等人将GO溶液与FeCl3和FeCl2溶液混合,然后快速滴加氨水使Fe2+/Fe3+沉淀即可得到GO/Fe3O4。该复合材料既可以去除水中的Co2+,又因GO的加入阻止了Fe3O4纳米粒子的吸附团聚[31]。Lee等人将GO的溶液和含有TiO2前体的异丙醇溶液混合,然后采用水热的方法制备出花状的TiO2,并负载在GO的表面,该复合材料对水中重金属离子有较高的吸附性[32]。Peng等人通过一种简单的方法合成GO-FeOOH复合材料来去除水中的砷,研究表明,作为吸附剂,该复合材料具有良好的吸附性能,吸附容量大、吸附速率快,最大吸附容量为73.42mg/g[33]。

3结语

石墨烯在水溶液中的分散性不好从而限制其在水处理中的应用,而作为石墨烯的氧化物氧化石墨烯因表面含有大量的羟基、羧基、环氧基等极性官能团,具有亲水性较好,表面的负电荷较高的特点,对于金属离子和带正电荷的染料废水均具有较好的处理效果。研发新型的石墨烯复合材料主要是依据材料本身去除污染物的特性,通过与石墨烯类碳材料复合,来增强材料在吸附、电子传递及还原等方面的能力。

石墨烯及其复合材料去除污染物的机理尚不清楚,目前对石墨烯材料吸附的机理主要是按照传统的吸附模型来进行,而对一些新的问题还缺乏深入的研究。例如,有的石墨烯复合材料对金属离子具有良好的选择性吸附,这对特定离子的吸附有十分重要的应用价值,而对其机理却没有进一步的的分析。加强对相关吸附机理的研究,从分子水平探索石墨烯复合材料与吸附质的相互作用,弄清相关吸附机理,进而改进其结构并能进一步提高其吸附性能[34]。此外,石墨烯及其复合材料的稳定性还需提高,稳定石墨烯复合材料的制备也是石墨烯在水处理广泛应用中存在的难点问题。

石墨烯及其复合材料因其独特的理化特性得到越来越多的关注,随着相关研究的深入发展以及新型石墨烯复合材料的研发,相信它将会在水处理领域发挥越来越重要的作用。

参考文献

[1]Geim A K,Novoselov K S.Nat.Mater.,2007,6:183—191.

[2]Lee C G,Wei X D,Kysar J W,Hone J.Science,2008,321:385—388.

[3]曹明莉等.石墨烯及其复合材料在重金属离子吸附方面的应用[J]. 功能材料2016(08):8001-8007.

[4]Balandin A A,Ghosh S,Bao W Z,Calizo I,Teweldebrhan D,Miao F,Lau C N.Nano Lett.2008,8:902—907.

[5]Bolotin K I,Sikes K J,Jiang Z,Klima M,Fudenberg G,HoneJ,Kim P,Stormer H L.Solid State Commun.,2008,146:351—355.

[6]徐秀娟( Xu X J) ,秦金贵( Qin J G) ,李振( Li Z).化学进展( Progress in Chemistry),2009,21( 12) :2559—2567.

[7]Lu K,Zhao G X,Wang X K.Chin.Sci.Bull.,2012,57:1223—1234.

[8]Liu Y,Liu C Y,Liu Y.Appl.Surf.Sci.,2011,257:5513—5518.

[9]肖蓝等. 石墨烯及其复合材料在水处理中的应用[J].化学进展,2013(Zl):419-430.

[10]Liu T,Li Y. Du Q, et al. Adsorption of methylene bluefrom aqueous solution by graphene[J] . Colloids Surf B,2012,90:197-203.

[11]Wu T,Cai X,Tan S, et al. Adsorption characteristics ofacrylonitrile,p-toluenesulfonic acid,1-naphthalenesulfo-nic acid and methyl blue on graphene in aqueous solutions[J]. Chem Eng J,2011,173:144-149.

[12]Li Y H,et al. Adsorption of fluoride from aqueous solutionby graphene[J]. J Colloid Interf Sci,2011,363(1):348.

[13]庄媛等. 石墨烯去除水中重金属和抗生素的研究进展[J].功能材料,2014(23):

23001-23009.

[14]刘彦静等. 石墨烯纳米复合材料在水处理中的应用研究进展[J].材料导报,2013(07)

:127-138.

[15]Lu K,Zhao G X,Wang X K.A brief review of graphene-based material synthesis and its

application in environmental pollution management[J]. Chinese Sci Bull,2012,57(11):1223.

[16]Williams G,Seger B,Kamat P V.ACS Nano,2008,2:1487—1491.

[17]Hao L Y,Song H J,Zhang L C,et al. SiO2/graphenecomposite for highly selective adsorption of Pb(Ⅱ)ion[J]. J Colloid Interface Sci,2012,369(1):381-387.

[18]Cheng J S,Du J,Zhu W J. Carbohyd. Polym.,2012,88:61—67.

[19]Ren Y M .Yan N .Wen Q. et al. Graphene/a-MnO2 composite as adsorbent for the

removal of nickel ions from wastewater [J]. Chem Eng J ,2011,175:1-7.

[20]Sreeprasad TS,Maliyekkal S M,Lisha K P,et al. Re-duced graphene oxide-metal/metal oxide composites:Facile synthesis and application in water purification.

[21]李新宝,谷巍,曹永. 石墨烯复合材料对水中金属离子的吸附研究进展[J].功能材料,2013(S1):5-10+14.

[22]Guo J,Wang R Y,Tjiu W W,Pan J S,Liu T X.J.Hazard.Mater.,2012,

225: 63—73.

[23]Zhao Z Q. Chen X .Yang Q,et al. Selective adsorption toward toxic metal ions results in

selective response: electrochemical studies on a polypyrrole/reduced gra-phene oxide nanocomposite [J]. Chem Commun,2012,48:2180-2182.

[24]Xu C,Wang X,Yang L C,Wu Y P.J.Solid State Chem.,2009,182: 2486—2490.

[25]Machida M,Mochimaru T,Tatsumoto H.Carbon,2006,44:2681—2688.

[26]陈亚妮. 氧化石墨烯对重金属和抗生素的吸附及运移影响研究[D]. 南京大学,2016.

[27]Yang S T,Chang Y L,Wang H F,et al.Folding/ag-gregation of graphene oxide and Itsapplication in Cu2+removal[J]. J Colloid Interface Sci,2010,351(1):122-127.

[28]Zhao G X,Ren X M,Gao X,et al. Removal of Pb2+ions from aqueous solutions on few-layered graphene oxide nanosheets[J] .Dalton Trans,2011,40(41):1094-10952. [29]Wang H,Yuan X,Wu Y,Huang H,Zeng G,Liu Y,et al. Adsorption characteristics

and behaviors of graphene oxide for Zn(Ⅱ) removal from aqueous solution[J]. Applied Surface Science,2013,279(8):432-40.

[30]Yang S T,Chen S,Chang Y L,Cao A N,Liu Y F,Wang H F.J. Colloid Interface

Sci.2011,359:24-29.

[31]Liu M C,Chen C L,Hu J,et al. Synthesis of magnetite/graphene oxide compositeand application for cobalt(Ⅱ)removal [J]. J Phys Chem C,2011,115(51):25234-25240. [32]Lee Y C,Yang J W,et al. Self-assembled flower-likeTiO2 on exfoliated graphite oxide for heavy metal Removal [J]. J Ind Eng Chem,2012,18(3):1178-1185. [33]Peng,F.et al.An easy method to synthesize grapheneoxide-FeOOH composites and their potential application in water purification[J]. Materials Research Bulletin,2013 ,48(6):2180-2185.

[34]胡忠良等.石墨烯材料在水处理方面的研究进展[J]. 功能材料,2016(S1):1-6.

石墨烯及其复合材料在水处理中的研究

石墨烯及其复合材料在水处理中的研究 摘要:石墨烯作为一种新型碳纳米材料,具有巨大的比表面积、较高的机械强度和稳定的化学性质等优点,在诸多领域有广泛的应用。石墨烯因具有巨大的比表面积和高的反应活性,作为一种优异的吸附材料在水处理方向具有较好的应用前景。本文概述了石墨烯及其复合材料在水处理方面的研究进展。石墨烯及其复合材料对于处理重金属离子和有机污染物质的吸附效果好,吸附容量高。最后对其在水处理中的应用前景做了展望。关键词:石墨烯;复合材料;吸附;水处理 引言 石墨烯(graphene,GN)自2004年发现以来,由于具有独特的结构与性能,很快成为新材料研究领域的热点。石墨烯是一种sp2杂化的碳原子以六边形排列的周期性蜂窝状二维碳质新材料[1]。石墨烯具有独特的物理化学性质[2],除强度较高外,其理论比表面积竟高达2630m2/g,孔隙结构较丰富,这一点使其成为良好吸附材料的基础[3]。除此之外,还具有良好热导率和电导率[4]~[5],可在传感器、电极材料、储氢材料等应用[6]。 石墨烯作为水处理材料,在环保领域拥有广阔的应用前景。这主要是因为,它具有二维的平面结构、开放的孔结构、良好的柔韧性、稳定的化学特性、巨大的比表面积等优点;石墨烯的比表面积比碳纳米管更大,吸附能力更强。从而应用石墨烯的优异性能,可将其加工成催化材料、吸附材料和过滤材料等,可以有效吸附水中的多种污染物。同时,由于制造石墨烯的石墨来源比较广泛,且石墨烯相比碳纳米管价格比较低廉,制备过程简单,许多学者开始研究石墨烯在水处理中的应用[7]~[8]。 本文介绍了石墨烯与水处理相关的主要性能,综述了石墨烯及其复合材料在水处理中的研究进展,并对当今石墨烯材料在水处理研究中遇到的挑战和问题做了进一步分析,对今后这一领域的研究作了展望。 1石墨烯及其复合材料在水处理中的研究 1.1石墨烯 石墨烯因其吸附原理简单、费用低及处理效果好等优点广泛应用在水环境治理中。巨大的比表面积使石墨烯成为良好的吸附材料。作为吸附剂在水处中的相关研究主要集中在吸附两类污染物:有机物与无机阴离子[9]。水中的有机污染物易与石墨烯表面发生相互作用,形成稳定的复合物,进一步得到去除。因而许多学者主要研究了石墨烯吸附去除水中的有机染料。 Liu 等人研究了石墨烯在不同温度、pH值、接触时间和浓度下对亚甲基蓝的吸附,研究发现石墨烯最大吸附量高达到153.85mg/g,吸附等温线符合Langmu模型[10]。Wu 等人研究了石墨烯对丙烯腈、甲苯磺酸及甲基蓝的吸附,与其他碳纳米材料相比,石墨烯表现出较强的吸附能力,甲基蓝因为有苯环和大分子,从而使石墨烯的吸附速度更快,吸附容量更大[11]。Li等人研究了石墨烯在不同温度、pH值、反应时间下对氟化物的吸附性能,结果发现在298K下,当氟化物的初始浓度为25mg/L时,石墨烯的吸附量可达17.65 mg/g[12]。石墨烯对无机污染物的吸附研究使其在水处理领域的研究进一步扩大。

石墨烯及其复合材料在水处理中的研

石墨烯及其复合材料在水处理中的研 石墨烯及其复合材料在水处理中的研究 摘要:石墨烯作为一种新型碳纳米材料,具有巨大的比表面积、较高的机械强度和稳定的化学性质等优点,在诸多领域有广泛的应用。石墨烯因具有巨大的比表面积和高的反应活性,作为一种优异的吸附材料在水处理方向具有较好的应用前景。本文概述了石墨烯及其复合材料在水处理方面的研究进展。石墨烯及其复合材料对于处理重金属离子和有机污染物质的吸附效果好,吸附容量高。最后对其在水处理中的应用前景做了展望。关键词:石墨烯;复合材料;吸附;水处理 引言 石墨烯( graphene, GN )自 2004 年发现以来 ,由于具有独特的结构与性能,很快成为新材料研究领域的热点。石墨烯是一种 sp2 杂化的碳原子以六边形排列的周期性蜂窝状二维碳质新材料 [1] 。石墨烯具有独特的物理化学性质 [2] ,除强度较高外,其理论比表面积竟高达2630m2/g,孔隙结构较丰富,这一点使其成为良好吸附材料的基础[3]。除此之外,还 具有良好热导率和电导率[4]?[5],可在传感器、电极材料、储氢材料等应用⑹。 石墨烯作为水处理材料,在环保领域拥有广阔的应用前景。这主要是因为,它具有二维的平面结构、开放的孔结构、良好的柔韧性、稳定的化学特性、巨大的比表面积等优点;石墨烯的比表面积比碳纳米管更大,吸附能力更强。从而应用石墨烯的优异性能,可将其加工成催化材料、吸附材料和过滤材料等,可以有效吸附水中的多种污染物。同时,由于制造石墨烯的石墨来源比较广泛,且石墨烯相比碳纳米管价格比较低廉,制备过程简单,许多学者开始研究石墨烯在水处理中的应用 [7] ? [8] 。 本文介绍了石墨烯与水处理相关的主要性能,综述了石墨烯及其复合材料在水处理中的研究进展,并对当今石墨烯材料在水处理研究中遇到的挑战和问题做了进一步分析,对今后这一领域的研究作了展望。 1石墨烯及其复合材料在水处理中的研究 1.1石墨烯 石墨烯因其吸附原理简单、费用低及处理效果好等优点广泛应用在水环境治理中。巨大的比表面积使石墨烯成为良好的吸附材料。作为吸附剂在水处中的相关研究主要集中在吸附两类污染物:有机物与无机阴离子 [9] 。水中的有机污染物易与石墨烯表面发生相互作用,

石墨烯聚乳酸复合材料

Preparation of Polylactide/Graphene Composites From Liquid-Phase Exfoliated Graphite Sheets Xianye Li,1Yinghong Xiao,2Anne Bergeret,3Marc Longerey,3Jianfei Che1 1Key Laboratory of Soft Chemistry and Functional Materials,Nanjing University of Science and Technology, Nanjing210094,China 2Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,Jiangsu Key Laboratory of Biomedical Materials,College of Chemistry and Materials Science,Nanjing Normal University, Nanjing210046,China 3Materials Center,Ales School of Mines,30319Ales Cedex,France Polylactide(PLA)/graphene nanocomposites were pre-pared by a facile and low-cost method of solution-blending of PLA with liquid-phase exfoliated graphene using chloroform as a mutual solvent.Transmission electron microscopy(TEM)was used to observe the structure and morphology of the exfoliated graphene. The dispersion of graphene in PLA matrix was exam-ined by scanning electron microscope,X-ray diffrac-tion,and TEM.FTIR spectrum and the relatively low I D/I G ratio in Raman spectroscopy indicate that the structure of graphene sheets(GSs)is intact and can act as good reinforcement fillers in PLA matrix.Ther-mogravimetric analysis and dynamic mechanical analy-sis reveal that the addition of GSs greatly improves the thermal stability of PLA/GSs nanocomposites.More-over,tensile strength of PLA/GSs nanocomposites is much higher than that of PLA homopolymer,increasing from36.64(pure PLA)up to51.14MPa(PLA/GSs-1.0). https://www.doczj.com/doc/006402074.html,POS.,35:396–403,2014.V C2013Society of Plastics Engineers INTRODUCTION Polylactide(PLA),a renewable,sustainable,biode-gradable,and eco-friendly thermoplastic polyester,has balanced properties of mechanical strength[1],thermal plasticity[2],and compostibility for short-term commod-ity applications[3,4].It is currently considered as a promising polymer for various end-use applications for disposable and degradable plastic products[5–8].Never-theless,improvement in thermal and mechanical proper-ties of PLA is still needed to pursue commercial success. To achieve high performance of PLA,many studies on PLA-based nanocomposites have been performed by incorporating nanoparticles,such as clays[9,10],carbon nanotubes[11–13],and hydroxyapatite[14].However, research on PLA-based nanocomposites containing gra-phene sheets(GSs)or graphite nanoplatelets has just started[15–17].GSs exhibit unique structural features and physical properties.It has been known that GSs have excellent mechanical strength(Young’s modulus of1,060 GPa)[18],electrical conductivity of104S/cm[19],high specific surface area of2,630m2/g[20],and thermal sta-bility[21].Polymer nanocomposites based on graphene show substantial property enhancement at much lower fil-ler loadings than polymer composites with conventional micron-scale fillers,such as glass[22]or carbon fibers [23],which ultimately results in lower filler ratio and simple processing.Moreover,the multifunctional property enhancement of nanocomposites may create new applica-tions of polymers. However,the incorporation of graphene into PLA matrix is restricted by cost and yield.Although the weak interactions that hold GSs together in graphite allow them to slide readily over each other,the numerous weak bonds make it difficult to separate GSs homogeneously in sol-vents and polymer matrices[24].Many methods have been reported for exfoliation of graphite,such as interca-lation with alkali metals[25]or oxidation in strong acidic conditions[26–29].Recently,exfoliation of graphite in liquid-phase was found to be able to give oxide-free GSs with high quality and yield at relatively low cost[30–35]. Correspondence to:Y.H.Xiao;e-mail:yhxiao@https://www.doczj.com/doc/006402074.html, or J.F.Che; e-mail:xiaoche@https://www.doczj.com/doc/006402074.html, Contract grant sponsor:Specialized Research Fund for the Doctoral Program of Higher Education of China;contract grant number: 20123219110010;contract grant sponsor:Natural Science Foundation of Jiangsu Province of China;contract grant number:BK2012845;contract grant sponsors:Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),contract grant sponsor:Financial support for short visit from Ales School of Mines,France. DOI10.1002/pc.22673 Published online in Wiley Online Library(https://www.doczj.com/doc/006402074.html,). V C2013Society of Plastics Engineers POLYMER COMPOSITES—2014

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

石墨烯对废水中重金属处理

石墨烯对水中重金属的处理技术 摘要:石墨烯作为目前自然界最薄、强度最高的材料,具有极大的比表面积、良好的化学稳定性以及表面活性,是一种高效的去除水中重金属的吸附材料。本文介绍了石墨烯材料的种类、特征,分析了去除废水中重金属离子的机理,应用情况,影响因素。指出了石墨烯作为吸附剂的潜在劣势,以及在水处理过程中的应用前景。 Abstract: As the thinnest and strongest material, graphene has huge surface area, excellent chemical stability and suface activity, which is an efficient absorption material for removing heavy metals from water. This paper introduces the types and characteristics of graphenematerials; analyzes the mechanism of graphenen materials removing heavy metal ion from waste water, the applications and influencing factors; points out the disadvantages and prospects of the graphene as an absorbent. 关键词:重金属污染石墨烯吸附水处理 前言 水乃生命之源,不管是对于人类,动植物,还是微生物,但是随着工业的发 展,各种各样的重金属离子被排入水体,随后被动植物吸收,又随着食物链浓缩, 进入人体,在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性, 也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急 性中毒、亚急性中毒、慢性中毒等,严重危害人类的健康。如日本发生的水俣病 和骨痛病等公害病,都是由重金属污染引起的。 面对亟待解决的重金属污染问题,寻求一种高效便捷的处理技术极其重要, 常见的重金属处理方法有化学沉淀法、混凝沉淀法、电解法、离子交换法、吸附 法和生物处理法等,其中吸附法操作简单,成本低廉,备受青睐,而吸附剂的选 择是吸附法的关键。

石墨烯复合材料

石墨烯复合材料 石墨烯是单层碳原子通过sp2杂化形成的蜂窝点阵结构,属于二维原子晶体,此独特的空间结构,给石墨烯带来了优异的电学、力学、热学和比表面积大等性质。但是二维石墨烯由于片层之间具有较强的π-π作用和范德华力,使得石墨烯容易聚集形成石墨,限制了石墨烯在各个领域中的应用。因此,为了防止石墨烯的聚集和拓展石墨烯的应用,科研工作者将石墨烯与高分子或者无机纳米粒子进行复合,从而得到具有优异性能的复合材料。石墨烯的复合材料具有化学稳定性高、比表面积大,易回收等特点,在环境治理方面受到了科学家的青睐。 一、石墨烯复合材料的分类和制备 1、石墨烯-高分子复合材料 石墨烯-高分子复合材料,石墨烯的独特的结构和性能,对于改善高分子的导电性、热性能和吸附能力等方面有非常大的应用价值。制备石墨烯-高分复合材料最直接的方法是将高分子溶液与石墨烯的溶液混合,其中高分子和填充物在溶剂中的溶解能力是保证最佳分散度的重要因素。因此,在溶液混合时,可以将石墨基质表面功能化来提高它在多种溶剂中的溶解度。例如,异氰酸

苯酯修饰的GO在在聚苯乙烯的DMF溶液中表现出了较好的溶解度。 2、石墨烯-无机纳米粒子复合材料 无机纳米粒子存在着易于团簇的问题,并且选择合适的载体也是其广泛应用需要解决的问题。石墨烯具有多种优异的性能,并且具有较大的比表面积,可以成为无机纳米材料的载体。无机纳米粒子可以将易于团簇的石墨烯片层分开,防止团簇,从而两者形成石墨烯-无机纳米粒子新型的复合材料,这些材料广泛的应用于检测、催化和气体存储等方面。目前已报道的有负载的金属纳米粒子Ag、Au、氧化物纳米粒子ZnO和Fe3O4等。 3、其它石墨烯复合材料 石墨烯不仅仅可以和高分子、无机纳米材料复合,还可以同时结合高分子、纳米粒子和碳基材料中的一种或者两种,形成多元的含有石墨烯的复合材料。这类材料具有多功能性,用于超级电容器或者传感器等。 二、石墨烯复合材料在水治理的应用 1、吸附作用 碳材料中活性碳和碳纳米管被广泛的应用于水净化领域,将石墨烯与其它化合物进行复合,这些复合材料在吸附污染物上有非常高的效率,可以应用于染料、多芳香环烃和汽油的吸附。比如利用磁性-壳聚糖-石墨烯的复合材料可以大大提高去除溶液中的亚甲基蓝的效率,吸附能力达到

石墨烯基复合材料的制备及吸波性能研究进展

石墨烯基复合材料的制备及吸波性能研究 进展 摘要随着吉赫兹(GHz)频率范围的电磁波在无线通信领域的广泛应用,诸如电磁干扰、信息泄露等问题亟待解决。此外,军事领域中的电磁隐身技术与导弹的微波制导需要,使得电磁波吸收材料受到持续而广泛的关注。因此,迫切需要发展一种厚度薄、频带宽、强吸收的吸波材料。 石墨烯作为世界上最薄硬度最强的纳米材料,优点很多,例如石墨烯制成的片状材料中,厚度最薄,比表面积较大,具有超过金刚石的强度等,这些优点满足吸波材料的需求。石墨烯基复合材料在满足吸波材料基本要求的基础上又提升了材料吸收波的能力。 本文简单地介绍了吸波材料及石墨烯,综述概况了石墨烯基复合材料的研究现状,包括石墨烯复合材料制备方法、微观形貌以及复合材料的吸波性能,提出了石墨烯基复合吸波材料未来的发展方向。 关键词石墨烯基;吸波材料;纳米材料

Progress in Preparation and absorbing properties of graphene-based composites Abstract With the gigahertz (GHz) frequency range of the electromagnetic waves are widely used in wireless communications, such as electromagnetic interference, information leaks and other problems to be solved. In addition, military stealth technology in the field of electromagnetic and microwave guided missiles require such electromagnetic wave absorbing material is subjected to a sustained and widespread concern. Therefore, an urgent need to develop a thin, wide frequency band, a strong absorption of absorbing materials. Graphene as the strongest of the world's thinnest hardness nanomaterials, has many advantages, such as a sheet material made of graphene, the thinnest, large specific surface area, with more than a diamond of strength, these benefits meet absorbers It needs. Graphene-based composites on the basis of absorbing materials to meet the basic requirements but also enhance the ability of the material to absorb waves. This article briefly describes the absorbing material and graphene, graphene reviewed before the status quo based composite materials research, including graphene composite material preparation, morphology and absorbing properties of composites made of graphene-based composite

石墨烯在复合材料中的应用

石墨烯在复合材料中的应用 龚欣 (东南大学机械工程学院南京211189) 摘要:介绍了石墨烯与有机高聚物、无机纳米粒子以及其它碳基材料的复合物,同时展望了这些材料在相关领域中的应用前景. 关键词:石墨烯纳米复合材料 2004年至今, 关于石墨烯的研究成果已在SCI检索期刊上发表了超过2000篇论文, 石墨烯开始超越碳纳米管成为了备受瞩目的国际前沿和热点.基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景.目前研究的石墨烯复合材料主要有石墨烯/聚合物复合材料和石墨烯/无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法.本文将对石墨烯的纳米复合材料及其性能等方面进行简要的综述. 一、基于石墨烯的复合物 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质.如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用. 1.1 石墨烯与高聚物的复合物 功能化后的石墨烯具有很好的溶液稳定性,适用于制备高性能聚合物复合材料.根据实验研究,如用异氰酸酯改性后的氧化石墨烯分散到聚苯乙烯中,还原处理后就可以得到石墨烯-聚苯乙烯高分子复合物.该复合物具有很好的导电性,添加体积分数为1%的石墨烯时,常温下该复合物的导电率可达0.1S/M,可在导电材料方面得到的应用. 添加石墨烯还可显著影响高聚物的其它性能,如玻璃化转变温度(Tg)、力学和电学性能等.例如在聚丙稀腈中添加质量分数约1%的功能化石墨烯,可使其Tg 提高40℃.在聚甲基丙烯酸甲酯(PMMA)中仅添加质量分数0.05%的石墨烯就可以将其Tg提高近30℃.添加石墨烯的PMMA比添加膨胀石墨和碳纳米管的PMMA具有更高的强度、模量以及导电率.在聚乙烯醇(PVA)和PMMA中添加质量分数0.6% 的功能化石墨烯后,其弹性模量和硬度有明显的增加.在聚苯胺中添加适量的氧化石墨烯所获得的聚苯胺-氧化石墨烯复合物的电容量(531F/g)比聚苯胺本身的电容量(约为216F/g)大1倍多,且具有较大的拉伸强度(12.6MPa).这些性能为石墨烯-聚苯胺复合物在超级电容器方面的应用创造了条件. 石墨烯在高聚物中还可形成一定的有序结构.通过还原分散在Nafition膜中

石墨烯可用于重构太赫兹光电子学

石墨烯可用于重构太赫兹光电子学 这篇文章阐述了设计重构太赫兹器件的潜力,这类太赫兹器件使用的是具有电学可调谐光学特性的石墨烯调制器和开关。 Berardi Sensale-Rodr?′guez, Student Member IEEE, Rusen Yan, Lei Liu, Member IEEE, Debdeep Jena, Member IEEE, and Huili Grace Xing, Member IEEE 翻译:蒋均 摘要:在这篇文章中,我们测试了石墨烯作为一种材料用于重构太赫兹光电学。他能在相当大的太赫兹频带中实现电控调节光学特性,联合其具有的2维特性和易集成特点,这将会导致它有独特的性能从而设计新的太赫兹器件,与此同时也可以提高现行的太赫兹技术。我们第一次回顾了从石墨烯发现至今在太赫兹光电器件上的表现,包括大面积石墨烯、等离子体的和超材料的器件。进一步的讨论先进的设计和挑战将会在后面进行。 关键词:自主优化;滤波器;石墨烯;超材料;调制器;等离子体;重构;开关;太赫兹; 介绍 有前途的运用包括很多的人们致力的领域,其中包括了医药、生物学、通信系统,安全和天文学等等,在最近几年里太赫兹技术已经转变为一个比较热门的研究领域[1]-[3]。在太赫兹常常被定义在0.1-30THz频段内,是近几十年内最少被研究的电磁频谱,主要因为缺乏在该频段与之产生作用并可以控制的材料和器件。但是由于太赫兹发射和探测技术的不断提高,太赫兹科学技术在工业和商业应用得到了更多的关注。例如,太赫兹成像技术运用在几个医学和安全运用行业(例如:牙成像[5],活体内皮肤癌探测[6],死人扫描仪[7]等),因为相比更长波长辐射源,太赫兹波更能实现高空间分辨率(比如毫米波),同时也可以比短波长(例如紫外线和X光射线)不容易电离。同样的许多很重要的光谱信息也在太赫兹频段,这使得太赫兹光谱分析对薄膜特性分析中成为一种很有效的技术[9],生物学运用[10]和非法物品的检测(比如爆炸物和毒药等)[11]。此外,因为太赫兹波相比无线电波和微波拥有较高的带宽,同时相比红外辐射也受到较少闪烁效应的影响[12],在太赫兹频段内有一些确定

石墨烯及其纳米复合材料发展.

河北工业大学 材料科学与工程学院 石墨烯及其纳米复合材料发展概况 专业金属材料 班级材料116 学号111899 姓名李浩槊 2015年01月05日

摘要 自从2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,石墨烯因其优异的力学、电学和热学性能已经成为备受瞩目的研究热点。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板,甚至是太阳能电池。 石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 但是,因为石墨烯片层之间存在很强的范德华力,导致其很容易堆积团聚,在一般溶剂中的分散性很差,所以其应用领域受到了限制。本文通过收集、查阅多篇有关石墨烯研究的论文,分析、整理了石墨烯及其纳米复合材料的制备技术发展及其应用的相关知识、理论。 关键词:石墨烯纳米材料制备复合材料

Pt-石墨烯复合材料

This article appeared in a journal published by Elsevier.The attached copy is furnished to the author for internal non-commercial research and education use,including for instruction at the authors institution and sharing with colleagues. Other uses,including reproduction and distribution,or selling or licensing copies,or posting to personal,institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article(e.g.in Word or Tex form)to their personal website or institutional repository.Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: https://www.doczj.com/doc/006402074.html,/copyright

高分子石墨烯纳米复合材料的前沿与趋势

石墨烯聚合物纳米复合材料的前沿与趋势 聚合物与其他塑料结合形成混纺纤维,与滑石粉及云母混合形成填充系统,和与其他非均质加固物进行模型挤压生产复合材料和杂化材料。这种简单的“混合搭配”方法使得塑料工程师们能够利用聚合物团生产一系列能够控制极端条件的有用的材料。在这种方法中最后加入的事石墨烯------人们早就了解到它的存在但是知道2004年才被制备与鉴定出的碳单原子层。英国曼彻斯特大学的Andre K.Geim和Konstantin S.Novoselov因为分离出碳单原子层而被授予诺贝尔物理学奖。他们的成就导致了聚合物纳米材料的蓝图发生了变化。人们已经长期熟知碳基材料,像金刚石,六方碳和石墨烯。但是聚合物纳米材料研究团体重新燃起的热情主要由于石墨烯可与塑料结合的特性以及它来自于廉价的先驱体。石墨烯的性价比优势在纳米复合材料、镀膜加工、传感器和存储装置的应用上正挑战着碳纳米管。接着,这些只能被想象出来的应用将会出现。事实上,Andre Geim说过“石墨烯对于它的名字来说就是一种拥有最佳性能的非凡的物质。”这能够在目前大量发表的文献中可以看出。石墨烯为什么能够这样引起人们的兴趣呢?本篇综述尝试去处理在石墨烯纳米复合材料新兴潮流中所产生的这类问题。这个工作的范围被石墨烯聚合物纳米复合材料(GPNC)研究员提出期望的发展潜力进行了拓展。 神奇的石墨烯 石墨烯被频繁引用的性能是它的电子传输能力。这意味着一个电子可以在其中不被散射或无障碍地通行。石墨烯的电子迁移率可达到20000cm2/Vs,比硅晶体管高一个数量级。一片最近的综述表明,以改良样品制备的石墨烯,电子迁移率甚至可以超过25000cm2/Vs。石墨烯是否缺少禁带以及大量合成纯石墨烯是否可行只有将来的研究可以解释。目前,非凡的电子传导性能使得石墨烯居于各类物质之首。所以,利用石墨烯代替硅作为基质的可能性将指日可待。虽然石墨烯的电子传导能力要比铜高得多,但是其密度只有铜的1/5。文献中大量记载了石墨烯的电子传导性能极其影响方面的细节。 由于它固有的特性人们开始对它在纳米复合材料的应用产生了兴趣。据预测,一个单层无缺陷的石墨烯薄膜的抗拉强度要比其他任何物质都要大。事实上,James Hone’s小组已经用原子力显微镜研究了独立的单层石墨烯薄膜的断裂强度。他们测得的平均断裂力为1700nN。他们还发现石墨烯这种物质可以抵挡超高的应力(约25%)。这些测量值使得这个团队计算出无缺陷石墨烯薄片的内在强度为45Nm-1。这儿的内在强度被规定为无缺陷的纯物质在断裂之前所能承受的最大应力。石墨烯如此卓越的是由于它相当于1.0Tpa的杨氏模量。在其他的特性中Paul McEuen和同事们只有一个原子厚度的石墨烯薄膜即可隔绝气体,包括氦气。即石墨烯在实际应用中可作为密闭的微室。石墨烯所表现出的热传导性能要比铜高出很多倍。这就意味着石墨烯能够很容易地进行散热。最近对大块石墨烯薄膜的研究表明其热传导系数是600W/(m.K)。石墨烯另外的一个特性是其具有高的比表面积,计算值为2630m2g-1,而碳纳米管仅为1315m2g-1,这使得石墨烯在储能装置应用上成为一个候选材料。Rod Ruoff’s小组通过改性的石墨烯演示了其具有的超高电容性能。对石墨烯的新奇属性的详细描述随处可见石墨烯与碳纳米管相比有一个截然相反的属性是其不含杂质(不含金属),这对构建可靠的传感器和储能装置来说是一个重要的优势。,更进一步,由于它形状与结构,石墨烯或许有更低的毒性,这也成为目前研究的主题。 独立的纳米材料的这些性质使得物理学家,化学家,和材料学家,不论作为理论学家还是实验学家,都为石墨烯的潜力而感到振奋。然而,最重要的问题是去区分炒作还是现实。

相关主题
文本预览
相关文档 最新文档