当前位置:文档之家› 数字基带传输系统仿真实验

数字基带传输系统仿真实验

数字基带传输系统仿真实验
数字基带传输系统仿真实验

数字基带传输系统仿真实验

一、系统框图

一个数字通信系统的模型可由下图表示:

信源信道数字信源编码器调制器编码器

数字信源噪声信道

信道数字信源信宿译码器解调器译码器

数字信宿编码信道

数字通信系统模型

从消息传输角度看,该系统包括两个重要的变换,即消息与数字基带信号之间的变换;数字基带信号与信道传输信号之间的变换。

在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传输。称为基带传输系统。与之对应,把包括了载波调制和解调过程的传输系统称为频带传输系统。无论是基带传输还是频带传输,基带信号处理是必须的组成部分。因此掌握数字基带传输的基本理论十分重要,它在数字通信系统中具有普遍意义。

二、编程原理

1. 带限信道的基带系统模型(连续域分析)

X(t) y(t)

{}a, 输入符号序列―― l

L,1

dtatlT()(),,,T, 发送信号―― ――比特周期,二进制,lbbl,0

码元周期

,jft2,, 发送滤波器―― G(),或Gf()或gtGfedf()(), TT,TT,,

, 发送滤波器输出――

L,1

xtdtgtatlTgt()()*()()*(),,,,,TlbTl,0 L,1

=()agtlT,,lTsl,0

, 信道输出信号或接收滤波器输入信号

(信道特性为1) ytxtnt()()(),,

,jft2,G(),Gf()gtGfedf()(),, 接收滤波器―― 或或 RR,RR,,

, 接收滤波器的输出信号

rtytgtdtgtgtntgt()()*()()*()*()()*(),,,RTRR

,1L ()(),,,agtlTnt,lbR,0l

,jft2,gtGfCfGfedf()()()(), 其中 ,TR,,

(画出眼图)

lTlL,,, 01, 如果位同步理想,则抽样时刻为 b

rlTlL() 01,,,, 抽样点数值为 (画出星座图) b

,{}a, 判决为 l

2. 升余弦滚降滤波器

(1),,,Tf,||,s,T2s,

,TT1(1)(1),,,,,,,,,ss Hfff()1cos(||),||,,,,,,,,TTT2222,,,ss,

,(1),,f0,||,,T2s,

1式中,称为滚降系数,取值为, 是常数。时,带宽为Hz;T,,0,,10,,,1s2Ts 111,时,带宽为Hz。此频率特性在内可以叠加成一条直线,故系统无

(,)TTT22sss码间干扰传输的最小符号间隔为s,或无码间干扰传输的最大符号速率为Ts

1Baud。 Ts

相应的时域波形为 ht()

sin/cos/,,,tTtTss,, ht() 222tT/,,14/tT,ss

此信号满足

1,0n,,hnT(), ,s0,0n,,

在理想信道中,,上述信号波形在抽样时刻上无码间干扰。 C(,),1

R1smax如果传输码元速率满足 ,, 1,2,3.......n,则通过此基带系统后无码nnTs

间干扰。

3. 最佳基带系统

将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。

要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。

设信道特性理想,则有

HfGfGf()()(),,TR

*GfGf()(), (延时为0) RT

1/2有 GfGfHf()()(),,TR

可选择滤波器长度使其具有线性相位。

如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。

4(由模拟滤波器设计数字滤波器的时域冲激响应

1升余弦滤波器(或平方根升余弦滤波器)的带宽为,故其时域抽样速率Ts 214F,,至少为,取,其中T为时域抽样间隔,归一化为1。 00TTTss0

抽样后,系统的频率特性是以F为周期的,折叠频率为FT22,。故在一00s ,,fFN/Hkf() ,个周期内以间隔抽样,N为抽样个数。频率抽样为,0

N,1。 k,,,0,1,,2

相应的离散系统的冲激响应为

hnThtIFTHf()()|[()]|,,,,0tnTtnT,,00

(1)/2N,jkfnT2,,,jft20,,,,,,HfedfHkfef()|() ,,,,tnT,0kN,,,(1)/2

F2,0(1)/2(1)/2NN,,jknTjkn2,0F10NN,,,,,,HkfeHkfe()(),,NNkNkN,,,,,,(1) /2(1)/2

N,1 n,,,0,1,,2

将上述信号移位,可得因果系统的冲激响应。 5(基带传输系统(离散域分析) {}a, 输入符号序列―― l

TAT,, 发送信号―― ――比特周期,二进制码元周期 b0

L,1

dnTanTlAT()(),,,, ,000ll,0

, 发送滤波器――

2,N,(1)/2jkn1NGkf(), 或 gnTGkfe,,,()(),TTT0NkN,,,(1)/2

, 发送滤波器输出――

L,1

xnTdnTgnTanTlATgnT()()*()()*(),,,,,,000000TlTl,0 L,1

=()agnTlAT,,,lT00l,0, 信道输出信号或接收滤波器输入信号

ynTxnTnnT()()(),, (信道特性为1) 000

, 接收滤波器――

2,N,(1)/2jkn1NGkf(), 或 gnTGkfe,,,()(),RRR0NkN,,,(1)/2

, 接收滤波器的输出信号

rnTynTgnTdnTgnTgnTnnTgnT()()*()()*()*()()*(),,,00000000RTRR

,L1 ()(),,,,agnTlATnnT,lR000,l0

gnTgnTgnT()()*(), 000TT

(画出眼图)

lATlL,,, 01, 如果位同步理想,则抽样时刻为 0

rlATlL() 01,,,, 抽样点数值为 (画出星座图) 0

,{}a判决为 l,

三、实验内容

1(最佳基带系统

1)最佳基带系统发送滤波器子函数:

function [H,f,h,t]=r_cosine(N,T,r) W=2*pi/N;

k=-(N-1)/2:1:(N-1)/2;

k1=-(N-1)/2:1:floor(-(1+r)/4*pi/W); H1=zeros(1,length(k1));

k2=ceil(-(1+r)/4*pi/W)+1-ceil((ceil(-(1+r)/4*pi/W)-floor(-

(1+r)/4*pi/W))):1:floor(-(1-r

)/4*pi/W)-fix(r);%floor就近取整,ceil取整

H2=T/2*(1+cos(pi*T/r*(abs(k2*W/2/pi/(T/4))-(1-r)/2/T));%书p128页升余弦滚降滤

波器公式 k3=ceil(-(1-r)/4*pi/W):1:-1;

H3=ones(1,length(k3))*T;

H=sqrt([H1,H2,H3,[T],H3,fliplr(H2),H1]); h=idft(H,N);

f=k*W/2/pi/(T/4);

t=k*T/4;

其中,为滚降系数

2)接收滤波器子函数:

function [h,t]=r_cosine_r(xn,t,T,r)

N=31;

W=2*pi/N;

k=-(N-1)/2:1:(N-1)/2;

k1=-(N-1)/2:1:floor(-(1+r)/4*pi/W);

H1=zeros(1,length(k1));

k2=ceil(-(1+r)/4*pi/W)+1-ceil((ceil(-(1+r)/4*pi/W)-floor(-(1+r)/4*pi/W))):1:floor(-(

1-r)/4*pi/W)-fix(r);

H2=T/2*(1+cos(pi*T/r*(abs(k2*W/2/pi/(T/4))-(1-r)/2/T)));

k3=ceil(-(1-r)/4*pi/W):1:-1;

H3=ones(1,length(k3))*T;

H=sqrt([H1,H2,H3,[T],H3,fliplr(H2),H1]);

h1=real(idft(H,N));

[h,n]=conv_m(h1,k,xn,t/T*4);

t=n*T/4;

3)调用两子函数画时域波形和频域特性程序如下:

N=31;

T=1;

[H_t,f_t,h_t,t_t]=r_cosine(N,T,r); subplot(2,2,1);

plot(f_t,H_t);

axis([-2,2,-0.5,1.5]);

title('The square root rising_cosine transmitter H_t(f)');

xlabel('f');ylabel('H_t(f)'); GTEXT('滚降系数为1');

subplot(2,2,2);

plot(t_t,real(h_t));

title('h_t(n)');

xlabel('n');ylabel('h_t(n)'); m=4+(N-1)/2+1:1:8+(N-1)/2+1;

peak1=max(abs(h_t(m)));

decibel_t=20*log10(max(h_t)/peak1)%发送滤波器的第一旁瓣衰减

[h,t]=r_cosine_r(h_t,t_t,T,r); H=H_t.*H_t;

decibel=20*log10(max(real(h))/peak1)%接收滤波器输出波形的第一旁瓣衰减 subplot(2,2,3);

plot(f_t,H);

axis([-2,2,-0.5,1.5]);

title('The rising_cosine H(f)'); xlabel('f');ylabel('H(f)'); subplot(2,2,4);

plot(t,real(h));

axis([-4,4,-0.1,0.4]);

title('h(n)');

xlabel('n');ylabel('h(n)');

4)发送滤波器时域波形和频域特性

接收滤波器的输出波形及整个系统的频域特性

decibel_t =23.5823

decibel = 21.4818

因为第一零点带宽为(1,α)/(2*T),而T设为1,所以 B=2/(1,α). α=1 时,B=1.

decibel_t =17.1197

decibel =16.0209

B=2/1.5=1.33

decibel_t = 14.9488 decibel =14.3894 B=2/1.1=1.82

2.根据基带模型,编写程序,设计无码间干扰的二进制数字基带

传输系统

1)随机信源:

function [x]=source(N) x1=rand(1,N);

x=round(x1);

3)产生一定方差的高斯分布的随机数的子函数: function [gsrv1,gsrv2]=gnguass(m,sgma)

%m为均值,sgma为均方差

if nargin==0

m=0;

sgma=1;

elseif nargin==1

sgma=m;

m=0;

end

u=rand;

z=sgma*sqrt(2*log10(1/(1-u))); u=rand;

gsrv1=m+z*cos(2*pi*u);

gsrv2=m+z*sin(2*pi*u);

加高斯白噪声子函数:

function [x]=addnoise(x,m,sgma) N=length(x);

for i=1:N

[gsrv1,gsrv2]=gnguass(m,sgma);

x(i)=x(i)+gsrv1;

end

传输时采用双极性,故判决电平设为零,判决子函数如下: function [sn,t]=decision(x,xt,T,Tb,L)

m=find(xt==0);

d=Tb/T*4;

n=0:d:(L-1)*d;

sn=zeros(1,L);

for i=1:L

sn(i)=x(m+(i-1)*d);

if sn(i)>=0

sn(i)=1;

else sn(i)=-1;

end

end

t=n/d*Tb;

3(假设加性噪声不存在,传输64个特定的二进制比特,基带系统不采用匹配滤波器

程序如下:

N=31;

sn=64;

T=1;

Tb=T;

K=Tb/T; %决定发送速率

s=source(sn);

s=(-1).^(s+ones(1,length(s))); sn_t=-(N-1)/2:1:(N-1)/2+sn; s_t=0;

r=1; %r为滚降系数

[H,f,h,t]=r_cosine_1(N,T,r);

t=t/T*4;

[h,t]=sigshift(h,t,-4*K);

for i=1:sn

[h,t]=sigshift(h,t,4*K);

[s_t,sn_t]=sigadd(s_t,sn_t,h*s(i),t); end

sn_t=sn_t*T/4;

subplot(4,1,1);

stem((0:1:sn-1)*Tb,s);

axis([-Tb,sn*Tb,-2,2]);

GTEXT('The signal sequence');

xlabel('n');ylabel('s(n)');

%接收部分

subplot(4,1,2);

plot(sn_t,real(s_t));

GTEXT('The received signal');

xlabel('t');ylabel('s(t)');

subplot(4,1,3);

eyelike_grah(real(s_t),sn_t,Tb,T,sn,8) GTEXT('The eye_like graph of the received signal');

xlabel('t');ylabel('s_r(t)');

%判决

[s_d,sn_d]=decision(real(s_t),sn_t,T,Tb,sn); subplot(4,1,4); stem(sn_d,s_d);

axis([-Tb,sn*Tb,-2,2]);

GTEXT('The sequence after decision'); xlabel('t');ylabel('s(n)'); n=BER(s,s_d) %误比特率的计算

1)比特速率Rb为1/T,接收滤波器的输出信号波形和眼图

可得出:无码间干扰。

2)比特速率Rb为4/3T,接收滤波器的输出信号波形和眼图

误比特率n=0

由眼图可看出存在码间干扰,但误比特率为零。 3) 比特速率Rb为4/5T,接收滤波器的输出信号波形和眼图

误比特率n=0

由眼图可看出存在码间干扰,但判决无误码。 4(系统性能

1)滚降系数为0.3

匹配滤波程序:

N=31;

sn=100;

T=1;

Tb=T;

K=Tb/T; %决定发送速率

s=source(sn);

s=(-1).^(s+ones(1,length(s))); sn_t=-(N-1)/2:1:(N-1)/2+sn;

s_t=0;

r=0.3; %r为滚降系数

[H,f,h,t]=r_cosine(N,T,r); t=t/T*4;

[h,t]=sigshift(h,t,-4*K); for i=1:sn

[h,t]=sigshift(h,t,4*K);

[s_t,sn_t]=sigadd(s_t,sn_t,h*s(i),t);

end

sn_t=sn_t*T/4;

%加高斯白噪声

Eb=s_t*s_t'/sn/4;

SNR=1;

sgma=sqrt(Eb/10^(SNR/10)/2); s_t_n=addnoise(s_t,0,sgma);

subplot(2,1,1);

star_graph(real(s_t),sn_t,T,Tb,sn); GTEXT('SNR=1dB,发送信号星座图');

%接收部分

[s_r,sn_r]=r_cosine_r(s_t_n,sn_t,T,r);

subplot(2,1,2);

star_graph(real(s_r),sn_r,T,Tb,sn); GTEXT('接收信号星座图');

[s_d,sn_d]=decision(real(s_r),sn_r,T,Tb,sn);

n=BER(s,s_d)

非匹配滤波程序:

N=31;

sn=100;

T=1;

Tb=T;

K=Tb/T; %决定发送速率

s=source(sn);

s=(-1).^(s+ones(1,length(s))); sn_t=-(N-1)/2:1:(N-1)/2+sn; s_t=0;

r=0.3; %r为滚降系数

[H,f,h,t]=r_cosine_1(N,T,r); t=t/T*4;

[h,t]=sigshift(h,t,-4*K); for i=1:sn

[h,t]=sigshift(h,t,4*K);

[s_t,sn_t]=sigadd(s_t,sn_t,h*s(i),t);

end

sn_t=sn_t*T/4;

%加高斯白噪声

Eb=s_t*s_t'/sn/4;

SNR=1;

sgma=sqrt(Eb/10^(SNR/10)/2); s_t_n=addnoise(s_t,0,sgma);

subplot(2,1,1);

star_graph(real(s_t),sn_t,T,Tb,sn); GTEXT('SNR=1dB,发送信号星座图');

%接收部分

subplot(2,1,2);

star_graph(real(s_t_n),sn_t,T,Tb,sn); GTEXT('接收信号星座图'); [s_d,sn_d]=decision(real(s_t_n),sn_t,T,Tb,sn);

n=BER(s,s_d)

SNR=1dB

SNR=5dB

SNR=10dB

由于点数过多时计算机仿真速度慢,所以以上画星座图时采用的传输比特数为100。

由以上星座图可看出:

1、非匹配滤波的发送信号星座图好于匹配滤波,但就接收信

号而言,匹配滤波要优于非匹配滤波。

2、随着信噪比的提高,系统性能有很大改善。下面是传输比特数为1000时的误比特率情况(程序运行五次,即相当于五个样本):

误比 SNR=1dB SNR=5dB SNR=10dB 特数

匹配0,0,0,0,0 0,0,0,0,0 0,0,0,0,0,滤波

非匹8,6,11,7,4 0,0,0,0,0 0,0,0,0,0 配滤

由此也可见匹配滤波比非匹配滤波性能好,信噪比越低越明显。 2)滚降系数为0.8

SNR=10dB

通信原理实验--数字基带传输仿真实验

数字基带传输实验 实验报告

一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、系统框图及编程原理 1.带限信道的基带系统模型(连续域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器―― 或或 ?发送滤波器输出――

?信道输出信号或接收滤波器输入信号 (信道特性为1) ?接收滤波器―― 或或 ?接收滤波器的输出信号 其中 (画出眼图) ?如果位同步理想,则抽样时刻为 ?抽样点数值为(画出星座图) ?判决为 2.升余弦滚降滤波器 式中称为滚降系数,取值为, 是常数。时,带宽为Hz;时,带宽为Hz。此频率特性在内可以叠加成一条直线,故系统无码间干扰传输的最小符号间隔为s,或无码间干扰传输的最大符号速率为Baud。

相应的时域波形为 此信号满足 在理想信道中,,上述信号波形在抽样时刻上无码间干扰。 如果传输码元速率满足,则通过此基带系统后无码间干扰。 3.最佳基带系统 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。 要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。 设信道特性理想,则有

(延时为0) 有 可选择滤波器长度使其具有线性相位。 如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。 由模拟滤波器设计数字滤波器的时域冲激响应 升余弦滤波器(或平方根升余弦滤波器)的带宽为,故其时域抽样速率至少为,取,其中为时域抽样间隔,归一化为1。 抽样后,系统的频率特性是以为周期的,折叠频率为。故在一个周期内 以间隔抽样,N为抽样个数。频率抽样为,。 相应的离散系统的冲激响应为 将上述信号移位,可得因果系统的冲激响应。 5.基带传输系统(离散域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器――

实验一数字基带信号

20090401310074 实验一数字基带信号 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB3码的编码规则。 3、掌握从HDB3码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB3(AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI 码及整流后的HDB3 码。 2、用示波器观察从HDB3 码中和从AMI 码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB3、AMI 译码输出波形。 三、基本原理 本实验使用数字信源模块和HDB3 编译码模块。 1、数字信源 本模块是整个实验系统的发终端,模块内部只使用+5V 电压,其原理方框图如图1-1 所示,电原理图见附录一。本单元产生NRZ 信号,信号码速率约为170.5KB,帧结构如图1-2 所示。帧长为24 位,其中首位无定义,第2 位到第8 位是帧同步码(7 位巴克码1110010),另外16 位为2 路数据信号,每路8位。此NRZ 信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。发光二极管亮状态表示1 码,熄状态表示0 码。 图 1-1 数字信源方框图 图 2-2 帧结构

本模块有以下测试点及输入输出点: ?CLK 晶振信号测试点 ?BS-OUT 信源位同步信号输出点/测试点(2个) ?FS 信源帧同步信号输出点/测试点 ?NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图1-1中各单元与电路板上元器件对应关系如下: ?晶振 CRY 晶体;U1:反相器7404 ?分频器 U2 计数器74161;U3:计数器74193;U4:计数器40160 并行码产生器 K1、K2、K3:8位手动开关,从左到右依次 与帧同步码、数据1、数据2相对应;发光二极管:左起分 别与一帧中的24位代码相对应 ?八选一 U5、U6、U7:8位数据选择器4512 ?三选一 U8:8位数据选择器4512 ?倒相器 U20:非门74HC04 ?抽样 U9:D触发器74HC74 下面对分频器,八选一及三选一等单元作进一步说明。 (1)分频器 4161进行13分频,输出信号频率为341kHz。74161是一个4位二进制加计数器,预置在3状态。 74193完成÷2、÷4、÷8、÷16运算,输出BS、S1、S2、S3等4个信号。BS 为位同步信号,频率为170.5kHz。S1、S2、S3为3个选通信号,频率分别为BS信号频率的1/2、1/4和1/8。74193是一个4位二进制加/减计数器,当CPD= PL =1、MR=0时,可在Q0、Q1、Q2及Q3端分别输出上述4个信号。 40160是一个二一十进制加计数器,预置在7状态,完成÷3运算,在Q0和Q1端分别输出选通信号S4、S5,这两个信号的频率相等、等于S3信号频率的1/3。 分频器输出的S1、S2、S3、S4、S5等5个信号的波形如图1-4(a)和1-4(b)所示。 图 1-4 分频器输出信号波形 (2)八选一 采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,其真值表如表1-1所示。U5、U6和U7的地址信号输入端A、B、C并连在一起并分别接S1、S2、S3信号,它们的8个数据信号输入端x0 ~ x7分别K1、K2、K3输出的8个并行信号连接。由表1-1可以分析出U5、U6、U7输出信号都是码速率为

数字基带传输系统仿真实验

数字基带传输系统仿真实验 一、系统框图 一个数字通信系统的模型可由下图表示: 信源信道数字信源编码器调制器编码器 数字信源噪声信道 信道数字信源信宿译码器解调器译码器 数字信宿编码信道 数字通信系统模型 从消息传输角度看,该系统包括两个重要的变换,即消息与数字基带信号之间的变换;数字基带信号与信道传输信号之间的变换。 在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传输。称为基带传输系统。与之对应,把包括了载波调制和解调过程的传输系统称为频带传输系统。无论是基带传输还是频带传输,基带信号处理是必须的组成部分。因此掌握数字基带传输的基本理论十分重要,它在数字通信系统中具有普遍意义。 二、编程原理 1. 带限信道的基带系统模型(连续域分析) X(t) y(t) {}a, 输入符号序列―― l L,1

dtatlT()(),,,T, 发送信号―― ――比特周期,二进制,lbbl,0 码元周期 ,jft2,, 发送滤波器―― G(),或Gf()或gtGfedf()(), TT,TT,, , 发送滤波器输出―― L,1 xtdtgtatlTgt()()*()()*(),,,,,TlbTl,0 L,1 =()agtlT,,lTsl,0 , 信道输出信号或接收滤波器输入信号 (信道特性为1) ytxtnt()()(),, ,jft2,G(),Gf()gtGfedf()(),, 接收滤波器―― 或或 RR,RR,, , 接收滤波器的输出信号 rtytgtdtgtgtntgt()()*()()*()*()()*(),,,RTRR ,1L ()(),,,agtlTnt,lbR,0l ,jft2,gtGfCfGfedf()()()(), 其中 ,TR,, (画出眼图) lTlL,,, 01, 如果位同步理想,则抽样时刻为 b rlTlL() 01,,,, 抽样点数值为 (画出星座图) b ,{}a, 判决为 l 2. 升余弦滚降滤波器 (1),,,Tf,||,s,T2s, ,TT1(1)(1),,,,,,,,,ss Hfff()1cos(||),||,,,,,,,,TTT2222,,,ss,

通信原理 数字基带传输实验报告

基带传输系统实验报告 一、 实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、 实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带脉冲输入 噪声 基带传输系统模型如下: 信道信号 形成器 信道 接收 滤波器 抽样 判决器 同步 提取 基带脉冲

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率错误!未找到引用源。o为4 /Ts,滚降系数分别取为0.1、0.5、1, (1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (2)如果采用匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (1)非匹配滤波器 窗函数法: 子函数程序: function[Hf,hn,Hw,w]=umfw(N,Ts,a)

实验6.数字基带信号的眼图实验

实验六 数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATLAB 语言编程。 二、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 图3-1 基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过 基带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1()()2j t h t H e d ωωωπ +∞ -∞ = ? (3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 (3-2) 频域应满足: ()0,s s T T H πωωω? ≤ ?=? ?? ,其他 (3-3)

图3-2 理想基带传输特性 此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 222(),s i s s s s i H H H H T T T T T ππ π π ωωωωω?????? +=-+++=≤ ? ? ??????? ∑ (3-4) 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。 (1)(1)1sin (),2(1)()1,0(1) 0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω???-+--≤≤??? ??? ?-? =≤≤?? ?+>? ?? (3-5) 这里α称为滚降系数,01α≤≤。 所对应的其冲激响应为: ()222sin cos()()14s s s s t T t T h t t t T T παππα= - (3-6) 此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最 高频率利用率。换言之,若输入码元速率' 1/s s R T >,则该基带传输系统输出码元会产生码

通信原理第四章(数字基带传输系统)习题及其答案

第四章(数字基带传输系统)习题及其答案 【题4-1】设二进制符号序列为110010001110,试以矩形脉冲为例,分别画出相应的单极性码型,双极性码波形,单极性归零码波形,双极性归零码波形,二进制差分码波形。 【答案4-1】 【题4-2】设随机二机制序列中的0和1分别由()g t 和()g t -组成,其出现概率分别为p 和(1)p -: 1)求其功率谱密度及功率; 2)若()g t 为图(a )所示的波形,s T 为码元宽度,问该序列存在离散分量 1 s f T =否? 3)若()g t 改为图(b )所示的波形,问该序列存在离散分量 1 s f T =否?

【答案4-2】 1)随机二进制序列的双边功率谱密度为 2 2 1212()(1)()()[()(1)()]() s s s s s s m P f P P G f G f f PG mf P G mf f mf ωδ∞ -∞=--++--∑ 由于 12()()()g t g t g t =-= 可得: 2 2 22 ()4(1)()(12) ()() s s s s s m P f P P G f f P G mf f mf ωδ∞ =-∞ =-+--∑ 式中:()G f 是()g t 的频谱函数。在功率谱密度()s P ω中,第一部分是其连续谱成分,第二部分是其离散谱成分。 随机二进制序列的功率为 2 2 2 2 2 2 22 1()2 [4(1)()(12)()()] 4(1)()(12)() () 4(1)()(12)() s s s s s m s s s s m s s s m S P d f P P G f f P G mf f mf df f P P G f df f P G mf f mf df f P P G f df f P G mf ωω π δδ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ ∞∞ =-∞∞ ∞ ∞ =-∞ = =-+ --=-+ --=-+-? ∑ ?∑ ?? ∑ ?----- 2)当基带脉冲波形()g t 为 1 (){2 0 else s T t g t t ≤= ()g t 的付式变换()G f 为

通信原理------数字基带传输实验报告

基带传输系统实验报告 一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习matlab的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观察眼图和星座图判断信号的传输质量。 二、实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带传输系统模型如下:

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率Fo为 4 /Ts,滚降系数分别取为、、1,

通信原理课程设计 基于MATLAB的数字基带传输系统的研究和分析讲解

塔里木大学信息工程学院通信原理课程设计 2016届课程设计 《基于MATLAB的数字基带传输系统的研究与分 析》 课程设计说明书 学生姓名 学号 所属学院信息工程学院 专业通信工程 班级通信16-1 指导教师蒋霎

塔里木大学教务处制 摘要 本论文主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB软件仿真设计数字基带传输系统。本文首先介绍了本课题的理论依据,包括数字通信,数字基带传输系统的组成及数字基带信号的传输过程。接着介绍了数字基带传输系统的特性包括数字PAM信号功率普密度及常用线路码型,并通过比较最终选择双极性不归零码。然后介绍了MATLAB仿真软件。之后介绍了数字基带信号的最佳接收的条件以及如何通过示波器观察基带信号的波形。最后按照仿真过程基本步骤用MATLAB的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 关键字:数字基带传输系统MATLAB 计算机仿真;

目录 1.前言 0 2.正文 0 2.1数字基带传输系统 0 2.2 数字基带信号 (1) 2.2.1基本的基带信号波形 (1) 2.2.2基带传输的常用码型 (2) 2.3实验原理 (5) 2.3.1数字通信系统模型 (5) 2.3.2数字基带传输系统模型 (5) 3.1MATLAB软件简介 (6) 3.1.1软件介绍 (6) 3.1.2 Matlab语言的特点 (7) 4.1实验内容 (7) 4.1.1理想低通特性 (8) 4.1.2余弦滚降特性 (8) 4.1.3 Matlab设计流程图 (9) 4.1.4余弦滚降系基于matlab的程序及仿真结果 (9) 致谢 (12) 参考文献 (13) 附录 (14)

数字基带信号实验

数字基带信号实验 一、实验目的: 学会利用MATLAB软件对数字基带信号的仿真。通过实验提高学生实际动手 能力和编程能力,为日后从事通信工作奠定良好的基础。 二、实验内容:利用MATLAB软件编写数字基带信号程序,进一步加强对数字基 带信号的理解。 (1)单极性不归零数字基带信号 (2)双极性不归零数字基带信号 (3)单极性归零数字基带信号 (4)双极性归零数字基带信号 三、程序 (1) 单极性不归零数字基带信号程序 function y=zhou(x) t0=200; t=0:1/t0:length(x); for i=1:length(x) if(x(i)==1) for j=1:t0 y((i-1)*t0+j)=1; end else for j=1:t0 y((i-1)*t0+j)=0; end end end y=[y,x(i)]; M=max(y); m=min(y); subplot(1,1,1) plot(t,y);grid on; axis([0,i,m-0.1,M+0.1]); title('1 0 0 1 1 0 0 0 0 1 0 1'); (2) 双极性不归零数字基带信号 function y=zhou(x) t0=200; t=0:1/t0:length(x); for i=1:length(x) if(x(i)==1) for j=1:t0

y((i-1)*t0+j)=1; end else for j=1:t0 y((i-1)*t0+j)=-1; end end end y=[y,x(i)]; M=max(y); m=min(y); subplot(1,1,1) plot(t,y);grid on; axis([0,i,m-0.1,M+0.1]); title('1 0 0 1 1 0 0 0 0 1 0 1'); (3)单极性归零数字基带信号 function y=zhou(x) t0=200; t=0:1/t0:length(x); for i=1:length(x) if(x(i)==1) for j=1:t0/2 y((2*i-2)*t0/2+j)=1; y((2*i-1)*t0/2+j)=0; end else for j=1:t0 y((i-1)*t0+j)=0; end end end y=[y,x(i)]; M=max(y); m=min(y); subplot(1,1,1) plot(t,y);grid on; axis([0,i,m-0.1,M+0.1]); title('1 0 0 1 1 0 0 0 0 1 0 1') (4)双极性归零数字基带信号 function y=zhou(x) t0=200; t=0:1/t0:length(x);

基于MATLAB的数字基带传输系统的仿真-课程设计报告书

通信工程专业《通信仿真综合实践》研究报告 基于MATLAB的数字基带传输系统的仿真设计 学生:*** 学生学号:20***** 指导教师:** 所在学院:信息技术学院 专业班级:通信工程 中国 2016 年 5月

信息技术学院 课程设计任务书 信息技术院通信工程专业 20** 级,学号 201***** **** 一、课程设计课题: 基于MATLAB的数字基带传输系统的仿真设计 二、课程设计工作日自 2016 年 5 月 12 日至 2016 年 5 月 24 日 三、课程设计进行地点:图书馆 四、程设计任务要求: 1.课题来源: 指导教师指定题目 2.目的意义:. 1)综合应用《掌握和精通MATLAB》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念 2)培养学生系统设计与系统开发的思想 3)培养学生独立动手完成课程设计项目的能力 3.基本要求: 1) 数字基带信号直接送往信道: 2)传输信道中的噪声可以看作加性高斯白噪声 3)可用滤波法提取定是信号 4)对传输系统要有清楚的理论分析 5)把整个系统中的各个子系统自行构造,并对其性能进行测试 6)最终给出信号的仿真结果(信号输出图形) 课程设计评审表

基于MATLAB 的数字基带传输系统的仿真 概述 :本课程设计主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB 软件仿真设计数字基带传输系统。首先介绍了本课题的理论依据及相关的基础知识,包括数字基带信号的概念,数字基带传输系统的组成及各子系统的作用,及数字基带信号的传输过程。最后按照仿真过程基本步骤用MATLAB 的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 第一部分 原理介绍 一、数字基带传输系统 1)数字基带传输系统的介绍 未经调制的数字信号所占的频谱是从零频或很低频率开始,称为数字基带信号。在某些具有低通特性的有线信道中,特别是在传输距离不太远的情况下,基带信号可以不经载波调制而直接传输。这种不经载波调制直接传输数字基带信号的系统,称为数字基带传输系统。 数字基带系统的基本结构可以由图1 的模型表示.其中包括发送滤波器、传输信道、接收滤波器、抽样判决等效为传输函数为H (w) 基带形成网络,对于无码间干扰的基带传输系统来说, H (w) 应满足奈奎斯特第一准则, 在实验中一般取H (w) 为升余弦滚降特性.在最佳系统下, 取C(w) = 1,GT (w) 和GR(w) 均为升余弦平方根特性.传输信道中的噪声可看作加性高斯白噪声, 用产生高斯随机信号的噪声源表示. 位定时提取电路,在定时精度要求不高的场合, 可以用滤波法提取定时信号,滤波法提取位定时的原理可用图2表示。 图1 基带传输系统模型 设发送滤波器的传输特性 , 则 ω ωπ d e H t g jwt R ? ∞ ∞ -= )(21 )()(ωT G

通信原理实验报告systemview-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性;

(3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1)数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器 是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波 器。 升余弦滤波器满足的传递函数为: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=???=+0 1)(0t kT h b 00≠=k k

通信原理实验一 数字基带传输

通信原理实验一 数字基带传输 一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、实验原理 1.匹配滤波器和非匹配滤波器: 升余弦滚降滤波器频域特性:

将频域转化为时域 2. 最佳基带系统 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。 要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。 设信道特性理想,则有 (延时为0) 有 可选择滤波器长度使其具有线性相位。 如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。 3.基带传输系统(离散域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器―― 或 ?发送滤波器输出――

?信道输出信号或接收滤波器输入信号 (信道特性为1) ?接收滤波器―― 或 ?接收滤波器的输出信号 (画出眼图) ?如果位同步理想,则抽样时刻为 ?抽样点数值为(画出星座图) ?判决为 其中若为最佳基带传输系统,则发送滤波器和接收滤波器都为根升余弦滤波器,当采用非匹配滤波器时,发送滤波器由升余弦滤波器基带特性实现,接收滤波器为直通。 三、实验内容 1.通过匹配滤波和非匹配滤波方式,得到不同的滚降系数下发送滤波器的时域波形和频率特性。 实验程序: (1)非匹配情况下: 升余弦滚降滤波器的模块函数(频域到时域的转换) function [Hf,ht]=f_unmatch(alpha,Ts,N,F0) k=[-(N-1)/2:(N-1)/2]; f=F0/N*k; for i=1:N; if (abs(f(i))<=(1-alpha)/(2*Ts)) Hf(i)=Ts; elseif(abs(f(i))<=(1+alpha)/(2*Ts)) Hf(i)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(i))-(1-alpha)/(2*Ts)))); else Hf(i)=0; end; end; 主函数 alpha=input('alpha=');%输入不同的滚降系数值 N=31;%序列长度 Ts=4; F0=1;%抽样频率

实验二(数字基带传输技术仿真实验)

实验二数字基带传输技术仿真实验 实验要求: 1、学生按照实验指导报告独立完成相关实验的内容; 2、上机实验后撰写实验报告,记录下自己的实验过程,记录实验心得。 3、以电子形式在规定日期提交实验报告。 实验指导 1、单极性不归零码 单极性不归零码是一种最简单最常用的基带信号形式。这种信号脉冲的零电平和正电平分别对应着二进制代码0和1,即,在一个码元时间内用脉冲的有或者无来对应表示0或者1码。其特点是极性简单,有直流分量,脉冲之间无间隔。 生成单极性不归零码的MATLAB实现程序如下: function y=snrz(x) %本函数实现将输入的一段二进制代码编为相应的单极性不归零码输出 %输入x为二进制码,输出y为编号的码 t0=200; t=0:1/t0:length(x); %给出相应的时间序列 for i=1:length(x) %计算码元的值 if x(i)==1 %如果输入信息为1 for j=1:t0 %该码元对应的点值取1 y((i-1)*t0+j)=1; end else for j=1:t0 %如果输入信息为0,码元对应的点值取0 y((i-1)*t0+j)=0; end end end y=[y,x(i)]; plot(t,y);

%采用title 命令来实现标记出各码元对应的二元信息 title('1 0 1 1 0 0 1 0'); grid on; axis([0,i,-0.1,1.1]); 在命令窗口中输入x的二进制代码和函数名,就可以得到所对应的单极性不归零码输出,如输入以下指令,将出现图1所示结果。 x=[1 0 1 1 0 0 1 0]; snrz(x) 图1 单极性不归零码 2、双极性不归零码 在双极性不归零码中,脉冲的正负对应着二进制代码的1和0,由于它是幅度相等极性相反的双极性波形,故当0、1符号等可能出现时无直流分量。这样,恢复信号的判决电平为0,因而不受信道特性变化的影响,抗干扰能力较强,故双极性码较单极性码更有利于在信道中传输。 双极性不归零码的MATLAB实现程序如下: function y=dnrz(x) t0=200; t=0:1/t0:length(x); for i=1:length(x) if x(i)==1

数字基带传输实验预习报告

数字基带传输实验预习报告 一、实验目的: 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、实验原理: 1、带限信道的基带传输系统: 发送滤波器 传输信道 接受滤波器 {a n } x(t) y(t) r(t) {a n } 定时信号 2、升余弦滚降滤波器 其频率响应为: () T G ω () C ω 噪声源 R G ω() 抽样判决 位定时提 取

C T , 1|f|2c T α -≤ ()d H f = 1-[1cos (||)]22c T T f T παα+-,c 11||22c f T T αα -+≤ 0, 1+|f| 2C T α 在实验中,时间抽样间隔和抽样频率都归一化为1,得到升余弦滤波器的频率响应常数c T =4。 无码间干扰传输的最小符号间隔为c T 秒,或无码间干扰传输的最大符号速率为1/c T 。相应 的时域单位冲激响应信号h ()d t ,满足()d c h nT = 1,n=0 。在理想信道中, 0,n ≠0 h ()d t 信号波形在抽样时刻上无码间干扰。 3、最佳基带传输系统: 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能,并且,接收滤波器的频率特性与发送信号频谱共轭匹配。 实验时,具体采用两种方式,一是采用匹配滤波器,发送滤波器和接受滤波器对称的系统,发送滤波器和接受滤波器都是升余弦平方根特性;二是不采用匹配滤波器方式,升余弦滚降基带特性完全由发送滤波器实现,接受滤波器为直通。 4、用模拟升余弦滚降滤波器设计数字升余弦滚降滤波器 这种方式主要采用窗函数法和频率抽样法。 (1)窗函数法是从模拟升余弦滚降滤波器的单位冲激响应h ()d t ,先进行时间抽样,然后进行截短、加窗,最后向右移位,得到实际的因果的数字升余弦滚降滤波器的单位冲击响应。 (2)频率抽样法是从模拟升余弦滚降滤波器的频率响应 d () H f ,频率抽样后,进行离散时间 傅里叶反变换后,最后向右移位,得到实际的因果的数字升余弦滚降滤波器的单位冲激响应。

数字基带传输系统仿真与设计方案

一、课程题目 数字基带传输系统:欲传送的01比特流+码型变换(HDB3码)+基带成型网络(采用升余弦滚降系统)+信道+码型反变换+01比特流。 二、设计要求 1.完成一个题目。 2.对通信系统有整体的较深入的理解。 3.提出仿真方案。 4.完成仿真软件的编制。 5.仿真软件的演示。 6.提交详细的设计报告。 三、设计目的 1.综合应用《Matlab编程与系统仿真》、《信号与系统》、《现代通信原理》等多门课程知识,使学生建立通信系统的整体概念。 2.培养学生系统设计与系统开发的思想。 3.培养学生利用软件进行通信仿真的能力。 4.培养学生独立动手完成课题设计项目的能力。 5.培养学生查找相关资料的能力。 四、实验条件 计算机、Matlab软件、相关资料。 五﹑系统设计方案 数字基带传输系统: (1)概念:未经调制的数字信号所占据的频谱是从零频或者很低频率开始,称为数字基带信号,不经载波调制而直接传输数字基带信号的系统,称为数字基带传输系统。 (2)数字基带传输的研究的意义: 第一:在利用对称电缆构成的近程数据通信系统中广泛采用这种传输方式。 第二:数字基带传输方式迅速发展,用于低速或高速数据传输。 第三:基带传输系统的许多问题也是带通传输系统必须考虑的问题。 第四:任一个线性调制的带通传输系统,可以等效为一个基带传输系统。 (3)对传输码型的要求: ①不含直流分量且低频分量尽量少。 ②应含有丰富的定时信息,以便于从接受码流中提取定时信号。 ③功率谱的主瓣宽度窄,以节省传输频带。 ④不受信息源统计特性的影响,即能适应于信息源的变化。 ⑤具有内在的检错能力,即码型应具有一定的规律性,以便宏观监测。 ⑥编译码简单,已降低通信延时和成本。 (4)基带传输常用码型: AMI码(传号交替反转码)、HDB3码(三阶高密度双极性码)、双相码、差分双相码、密勒码、CMI码(传号反转码)、块编码等。 (5)其中本次设计采用的HDB3码。 a.HDB3码编码规则: ①1——交替变换为+1,-1

1实验一 数字基带信号实验

实验一数字基带信号实验 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB 3 的编码规则。 3、掌握从HDB 3 码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB 3 (AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极 性码(HDB 3)、整流后的AMI码及整流后的HDB 3 码。 2、用示波器观察从HDB 3 码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB 3 、AMI译码输出波形。 三、基本原理 本实验使用数字信源模块、HDB 3 编译码模块和可编程逻辑器件模块。 1、数字信源 本模块是整个实验系统的发终端,其原理方框图如图1-1所示。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。发光二极管亮状态表示1码,熄状态表示0码。 本模块有以下测试点及输入输出点: ? CLK 晶振信号测试点 ? BS-OUT 信源位同步信号输出点/测试点 ? FS 信源帧同步信号输出点/测试点 ? NRZ-OUT NRZ信号输出点/测试点 图1-3为数字信源模块的电原理图。图1-1中各单元与图1-3中的元器件对应关系如下: ?晶振CRY:晶体;U1:反相器74LS04 ?分频器U2:计数器74LS161;U3:计数器74LS193; U4:计数器74LS160

数字基带传输技术实验报告

实验报告 课程名称通信原理 实验名称实验一:数字基带传输技术 班级 学号 姓名 指导教师 实验完成时间: 2014年 10 月 28 日

一、熟悉实验平台

二、数字基带传输系统实验 1. 实验目的 1.了解几种常用的数字基带信号。 2.掌握常用的数字基带出书码型的编码规则。 3.掌握CPLD实现码型变换的方法。 2.实验内容 1.观察NRZ码,RZ码,AMI码,HDB3码,CMI码,BPH码的波形。 2.观察全0码或全1码时各码型的波形。 3.观察HDB3,AMI码的正负极性波形。 4.观察AMI码,HDB3码,CMI码,BPH码经过码型反变换后的输出波形。 5.自行设计码型变换电路,下载并观察波形。 3.实验仪器 各功能模块(实验箱) 20M双踪示波器一台 频率计(可选)一台 连接线若干 2.实验原理 二进制码元的数字基带传输系统

参考使用模块:信号源模块、码型变换模块、信道模拟模块、终端模块。 该通信系统的框图如图1所示。 图1 二进制码元的数字基带传输系统 该结构由信道信号形成器、信道、接收滤波器以及抽样判决器组成。这里信道信号形成器用来产生适合于信道传输的基带信号,信道可以是允许基带信号通过的媒质(例如能够通过从直流至高频的有线线路等);接收滤波器用来接收信号和尽可能排除信道噪声和其他干扰;抽样判决器则是在噪声背景下用来判定与再生基带信号。 基带信号是代码的一种电表示形式。在实际的基带传输系统中,并不是所有的基带电波形都能在信道中传输。例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。单极性基带波形就是一个典型例子。再例如,一般基带传输系统都从接收到的基带信号流中提取定时信号,而收定时信号又依赖于代码的码型,如果代码出现长时间的连“0”符号,则基带信号可能会长时间出现0电位,而使收定时恢复系统难以保证收定时信号的准确性。归纳起来,对传输用的基带信号的主要要求有两点:( 1)对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;(2)对所选码型的电波形要求,期望电波形适宜于在信道中传输。 (二)编码规则 1、NRZ 码 NRZ 码的全称是单极性不归零码,在这种二元码中用高电平和低电 平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元 期间电平保持不变。例如:

数字基带信号实验报告文档

2020 数字基带信号实验报告文档Contract Template

数字基带信号实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 专业班级: 指导老师:李敏 姓名: 学号: 实验一数字基带信号 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB3码的编码规则。 3、掌握从HDB3码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB3(AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码

(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。 2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB3、AMI译码输出波形。 三、实验步骤 本实验使用数字信源单元和HDB3编译码单元。 1、熟悉数字信源单元和HDB3编译码单元的工作原理。接好电源线,打开电源开关。 2、用示波器观察数字信源单元上的各种信号波形。 用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄); (2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。 3、用示波器观察HDB3编译单元的各种波形。 仍用信源单元的FS信号作为示波器的外同步信号。(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开

实验三 数字基带传输系统

实验三数字基带传输系统 一、设计目的 1.利用MATLAB画出数字基带信号的波形图。 2.利用MATLAB画眼图。 3.利用MATLAB分析无码间干扰基带系统的抗噪性能。 4.掌握无码间干扰系统的频谱特性。 二、设计原理 1.数字基带信号 数字基带信号就是消息代码的电波形,它是用不同的电平或脉冲来表示相应的消息代码。数字基带信号的波形和码型很多,最常用的由矩形脉冲组成的基带信号有:单极性归零及不归零波形,双极性归零及不归零波形,差分波形和多电平波形等。 2.无码间干扰系统 满足无码间干扰时、频域条件的基带系统有3类,分别是理想LPF系统、滚降系统和部分响应系统。前两个系统的理论基础是奈奎斯特第一准则,第三个系统的理论基础是奈奎斯特第二准则。理想LPF系统可达到理论最大频带利用率,但是难以实现,且对位定时精度要求高。滚降系统可实现,且对位定时精度要求降低,但频带利用率降低。部分响应系统兼具了前两个系统的优点,即频带利用率高和低位定时精度,但其可靠性降低。 3.基带信号的眼图 眼图是指利用实验的方法估计和改善基带系统性能时,在示波器上所观察到的像人的眼睛一样的图形。 ①MATLAB函数 在MATLAB中,eyediagram函数用来绘制眼图,其调用格式如下: eyediagram(x,n,period,offset,plotstring) 其中x是信号;n是每个轨迹包括的采样点数;period是指水平轴的坐标范围,即[-period/2,period/2];offset是偏置因子,信号的第(offset+1)个采样点之后每n个值为一周期,且该周期为period的整数倍,offset必须是非负整数,其范围是[0,n-1];plotstring 是绘制眼图时采用的符号、线形和颜色,其格式与plot函数相同,如不设置,采用系统缺省值。 ②Simulink模块 在Simulink模块库中,显示眼图的模块为“Discrete-Time Eye Diagram Scope”,图形及参数设置界面如图3.3所示。

相关主题
文本预览
相关文档 最新文档