当前位置:文档之家› 感温包温度电压阻值对照表表

感温包温度电压阻值对照表表

感温包温度电压阻值对照表表
感温包温度电压阻值对照表表

5K、10K、15K、20K、50K阻值电压表(1)5K

(2)10K

备注:以上数据为电源电压5V,分压电阻为8.1K和8.4K (3)15K

(4)20K

(5)50K

温度传感器主要形式和温度探头类型

温度传感器主要形式和温度探头类型 温度传感器三种主要形式 热电偶由两种不同的金属丝焊接而成,例如:NiCr-Ni(K型),利用热电效应来工作的,两种不同的金属丝,构成一个闭合回路,不同的两种导体存在着温差,两者产生电动热。因而在回路中形成一个大小的电流,此现象称之为热电现象。 铂电阻测量原理不同于热电偶测量方法。铂电阻传感器本质上来讲属于PTC热敏电阻的一种。金属的电阻率会随着温度的升高而增大,因此这种特性被用来测量温度。薄膜式铂电阻,由于结构超薄,因此在电阻不被影响的前提下,配置了一个玻璃套管,用以保护。目前通用的铂电阻的电阻值为100Ohm(0℃时),这是目前国际通用的铂电阻。另外一种PT100传感器采用绕线陶瓷式,此种方法将铂丝攻成螺旋状,再装入陶瓷基体内,此传感器结构十分紧密,在所有铂电阻传感器中,这种结构精度最高,使用时间持久并且无老化现象,但是相较于热电偶的测量原理,反应时间较缓,因此在应用时经常运用于食品科技,特别是实验室研发环节。 NTC热敏电阻使用较为广泛且较经济的一款温度传感器。由于混合的氧化物陶瓷材料构成,具有负的温度系数,这是称之为NTC的原因(negative temperature coefficient缩写)。随着温度的升高,阻值降低,这与PT100传感器的测量特性完全相反。

温度探头三种主要类型 刺入/浸入式探头 用于测量液体及固体的温度,探头的前端设计为针状刺入式。使用时如果测量探头的温度比被测物体低,根据能量守恒原理,热能会从被测物体热导至探头上;如果测量探头的温度比被测物体较高,同理热能则从探头传导至被测物体。这就意味着被测物体被加热升温,所测得的温度是加温之后的物体温度,在此测量情况,探头与介质的比值必须考虑,因为探头与介质的比值越好,越能更精准的测得物体获取的能量,由于能量转移的原因会导致测量时产生误差。我们一定要注意仪器测量的不是介质的温度,而是传感器的温度,此测量误差可以通过以下方式减小:刺入或浸入的深度10或15倍于探头的直径;当测量液体时,尽量何持液体的流动可以有效减少误差。 空气温度探头 用来测量空气温度,例如冷库、冷柜、空调室(调温)、通风场所(通风/排风)等,空气探头的传感器裸露,因此示值很容易受气流所影响,最好的解决方法是在气流为2-3m/s时,顺流轻移探头,使温度达成平衡稳定。 表面探头 用来测量物体的表面温度。空气温度探头和表面探头使用进行表面温度测量时,探头的前端必须垂直于被测物体,与被测物体充分完全的接触。必须注意的是探头与被测物的接触面必须平坦,否则在测量时则会影响测量结果。

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

温度传感器工作原理与类型

温度传感器工作原理与类型 前言:温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 一、温度传感器热电偶的应用原理 温度传感器热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因温度传感器热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的温度传感器热电偶从-50~+1600℃均可边续测量,某些特殊温度传感器热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。温度传感器热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.温度传感器热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。温度传感器热电偶就是利用这一效应来工作的。 2.温度传感器热电偶的种类及结构形成 (1)温度传感器热电偶的种类 常用温度传感器热电偶可分为标准温度传感器热电偶和非标准温度传感器热电偶两大类。所谓标准温度传感器热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的温度传感器热电偶,它有与其配套的显示仪表可供选用。非标准化温度传感器热电偶在使用范围或数量级上均不及标准化温度传感器热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化温度传感器热电偶我国从1988年1月1日起,温度传感器热电偶

NTC10K_热敏电阻温度阻值对应表

NTC热敏电阻R/T对照表 型号: mfh103-3950 T(℃) R(KΩ) T(℃) R(KΩ) T(℃) R(KΩ) -20.0 95.3370 20.5 12.2138 61.0 2.3820 -19.5 92.6559 21.0 11.9425 61.5 2.3394 -19.0 90.0580 21.5 11.6778 62.0 2.2977 -18.5 87.5406 22.0 11.4198 62.5 2.2568 -18.0 85.1009 22.5 11.1681 63.0 2.2167 -17.5 82.7364 23.0 10.9227 63.5 2.1775 -17.0 80.4445 23.5 10.6834 64.0 2.1390 -16.5 78.2227 24.0 10.4499 64.5 2.1013 -16.0 76.0689 24.5 10.2222 65.0 2.0644 -15.5 73.9806 25.0 10.0000 65.5 2.0282 -15.0 71.9558 25.5 9.7833 66.0 1.9928 -14.5 69.9923 26.0 9.5718 66.5 1.9580 -14.0 68.0881 26.5 9.3655 67.0 1.9240 -13.5 66.2412 27.0 9.1642 67.5 1.8906 -13.0 64.4499 27.5 8.9677 68.0 1.8579 -12.5 62.7122 28.0 8.7760 68.5 1.8258 -12.0 61.0264 28.5 8.5889 69.0

传感器种类的介绍

传感器种类介绍 传感器凡是利用一定的物性(物理、化学、生物)法则、定理、定律、效应等进行能量转换与信息转换,并且输出与输入严格一一对应的器件和装置均可称为传感器;传感器又被称为变换器、转换器、检测器、敏感元件、换能器和一次仪表等。 传感器具有以下作用与功能:1、测量与数据采集;2、检测与控制作用;3、诊断与监测作用;4、辅助观测仪器;5、资源探测与环境保护;6、医疗卫生和家用电器; 传感器的基本组成:传感器一般由敏感元件、转换元件和测量电路三部分组成,有时还加上辅助电源。 1、力学量传感器:光电式位移、位置传感器; 光纤陀螺是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。 2、热学量传感器:光纤温度传感器; 一类是利用光导纤维本身具有的敏感功能而使光纤起温度测量作用,同时利用光纤的特性将温度信号以光的形式传输,该类型属于功能型光纤温度传感器;另一类是光导纤维仅起传输光波的作用,感温功能必须由在光纤端面加装其他敏感元件来完成,属于传输型光纤温度传感器。 光纤温度传感器具有测量精度高、抗电磁干扰、安全防爆、可绕性好等特点。

目前光纤温度传感器具体可分为晶体光纤温度传感器、半导体吸收光纤温度传感器、双折射光纤温度传感器、光路遮断式光纤温度传感器、荧光光纤温度传感器、Fabry-Rerot标准器光纤温度传感器、辐射式光纤温度传感器和分布参数式光纤温度传感器等。 3、流体量传感器: 光纤传感器流量计:光纤传感器涡轮流量计; 液位传感器: 一:浮力式液位传感器(恒浮力式、变浮力式;) 二:吹气式液位传感器; 三:电容式液位传感器; 四:压力传感器式液位计; 五:超声波式液位传感器; 六:放射线式液位传感器; 七:雷达式液位计; 光纤液位传感器: 图1为光纤液位传感器的原理示意图。 4、光学量传感器:光纤传感器;近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。 光纤传感器凭借着其大量的优点已经成为传感器家族的后起之

常用温度传感器比较(2)

常用温度传感器比较 一.接触式温度传感器 1. 热电偶: (1)测温原理: 两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测 量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。 (2)测温范围: 常用的热电偶从-50~+1600C均可连续测量,某些特殊热电偶最低可测到- 269C(如金铁镍铬),最高可达+28000(如钨-铼)。 (3)常用热电偶型号: (4)实例: T型热电偶,测温范围-40~350C,详细信息见T型热电偶实例。 2. 热电阻: (1)测温原理: 热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化 而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。 目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即: R=R o [1+ a(t-t 0)] 式中,R为温度t时的阻值;R o为温度t o (通常10=00 )时对应电阻值;a为温度系数。半导体热敏电阻的阻值和温度关系为: R =Ae B/t 式中R为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 (2)测温范围:

金属热电阻一般适用于-200~5000范围内的温度测量,其特点是测量准确、 稳定性好、性能可靠。 半导体热敏电阻测温范围只有-50~300C左右,且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上) 。 (3)常用热电阻: 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150C 易被氧化。 中国最常用的有R°=10Q、R°=100Q和R°=1000Q等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R o=50Q和R o=100Q两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 (4)实例: Pt100为正温度系数热敏电阻传感器,测量范围-200 C ~850C,允许温度偏差值0.15+0.002|t| ,最小置入深度200mm最大允许电流5mA详细信息见Pt100 实例。 3. 集成温度传感器: <1>模拟式温度传感器: (1)原理: 将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具 有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等优点。 (2)常见模拟式温度传感器: 电压输出型: LM3911、LM335 LM45 AD22103 电流输出型: AD590。 (3)实例: LM135\235\335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。该系列器件灵敏度为10mV/K,具有小于1Q的动态阻抗,工作电流范围从400^A 到5mA,精度为1C,LM135的温度范围为-55 C?+150C,LM235的温度范围为-40 C ?+125C,LM335 为-40C ~+100°C。封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。详细信息见 LM135,235,335.pdf。 AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,可以承受44V正向电压和20V反向电压,测温范围为-55 C?+150C,输出电流为223卩 A~423卩A,输出电流变化1卩A相当于温度变化1 C,最大非线性误差为土03C,响应时间仅为20卩s,重复性误差低至土0.05C,功耗约为2mW, 输出电流信号的传输距离可达到1km以上,作为一种高阻电流源,最高可达 20血,所以它不必考虑选择开关或CMO多路转换器所引入的附加电阻造成的误差,适用于多点温度测量和远距离温度测量的控制。详细信息见AD590.pdf。 <2>数字式温度传感器: (1)原理: 将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被测温度的

常用温度传感器比较

一.主题:温度传感器 二.内容 接触式温度传感器 1.热电偶: (1)测温原理: 两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。 (2)测温范围: 常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 (3)常用热电偶型号: (4)实例: T型热电偶,测温范围-40~350℃。 2.热电阻: (1)测温原理: 热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。 目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即: Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为: Rt =AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 (2)测温范围: 金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。 半导体热敏电阻测温范围只有-50~300℃左右, 且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。 (3)常用热电阻: 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150℃易被氧化。 中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 (4)实例: Pt100为正温度系数热敏电阻传感器,测量范围-200℃~850℃,允许温度偏差值

几种常用温度传感器的原理及发展

1 引言 科学技术离不开测量。测量的目的就是要获得被测对象的有关物理或化学性质的信息,以便根据这些信息对被测对象进行评价或控制,完成这一功能的器件就我们称之为传感器。传感器是信息技术的前沿尖端产品,被广泛用于工农业生产、科学研究和生等领域,尤其是温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段; (1) 传统的分立式温度传感器(含敏感元件);主要是能够进行非电量和电量之间转换。 (2) 模拟集成温度传感器/控制器; (3) 智能温度传感器。目前,国际上新型温度传感器正从模拟式向数字式、由集成化向智能化、网络化的方向发展。 2 传感器的分类 传感器分类方法很多,常用的有2种:一种是按被测的参数分,另一种是按变换原理来分。通常按被测的参数来分类,可分为热工参数:温度、比热、压力、流量、液位等;机械量参数:位移、力、加速度、重量等;物性参数:比重、浓度、算监度等;状态量参数:颜色、裂纹、磨损等。温度传感器属于热工参数。 温度传感器按传感器于被测介质的接触方式可分为2大类:一类是接触式温度传感器,一类是非接触式温度传感器,接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这时的示值即为被测对象的温度。这种测温方法精度比较高,并在一定程度上还可测量物体内部的温度分布,但对于运动的、热容量比较小的、或对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。非接触测温的测温元件与被测对象互不接触。目前最常用的是辐射热交换原理。此种测温方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测温度场的温度分布,但受环境的影响比较大。 3 传感器的原理及发展 3.1 传统的分立式温度传感器—热电偶传感器 热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精确度;测量范围广,可从-50℃-1600℃进行连续测量,特殊的热电偶如金铁-镍铬,最低可测到-269℃,钨-铼最高可达2800℃。 热电偶传感器主要按照热电效应来工作。将两种不同的导体A和B 连接起来,组成一个闭合回路,即构成感温元件,如图1所示。当导体A和B的两个接点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象即称为热电效应,也叫温差电效应。热电偶就是利用这一效应进行工作的。热电偶的一端是将A、B两种导体焊接在一起,称为工作端,置于温度为t的被测介质中。另一端称为参比端或自由端,放于温度为t0的恒定温度下。当工作端的被测介质温度发生变化时,热电势随之发生变化,将热电势送入计算机进行处理,即可得到温度值。 热电偶两端的热电势差可以用下式表示: Et=E(t)-E(t0) 式中:Et—热电偶的热电势 E(t)—温度为t时的热电势

温度传感器分类及工作原理介绍

《广州兰瑟电子》介绍:温度传感器定义温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。温度传感器对于环境温度的测量非常准确,广泛应用于农业、工业、车间、库房等领域。 温度传感器分类按测量方式可分为接触式和非接触式两大类。 1、接触式接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。 2、非接触式它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 温度传感器按照传感器材料及电子元件特性分为热电阻和热电偶两类。 1、热电阻热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。 温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。 2、热电偶热电偶是温度测量中最常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是最便宜的。电偶是最简单和最通用的温度传感器,但热电偶并不适合高精度的的测量和应用。 按照温度传感器输出信号的模式,可大致划分为三大类:数字式温度传感器、逻辑输出温度传感器、模拟式温度传感器。 1、数字式温度传感器它采用硅工艺生产的数字式温度传感器,其采用PTAT结构,这种半导体结构具有精确的,与温度相关的良好输出特性。 2、逻辑输出温度传感器在许多应用中,我们并不需要严格测量温度值,只关心温度是否超出了一个设定范围,一旦温度超出所规定的范围,则发出报警信号,启动或关闭风扇、空调、加热器或其它控制设备,此时可选用逻辑输出式温度传感器 3、模拟式温度传感器模拟温度传感器,如热电偶、热敏电阻和RTDS对温度的监控,在一些温度范围内线性不好,需要进行冷端补偿或引线补偿;热惯性大,响应时间慢。

常用传感器种类

常用传感器种类 传感器类型名称简介备注 温度传感器数字信号输出 传感器 DS18B20,18B20数 字温度传感器,可 应于各种狭小空间 设备数字测温与控 制领域 热敏电阻传感 器 热敏电阻5K10K\ 温度传感器\温度 探头 MTS102温度 传感器 -40~+150℃ 超声波传感 器超声波传感器 TCT40-16F/S( 收/发) 超声波传感器 TCT40-16F/S( 收发一体) 超声波测距模 块 最大检测距离5m 超声波测距模 块 可以直接装在机器 人上,作为寻物、避 障探测等应用

加速度传感器MMA7660 MMA7660FC 超 小低功耗三轴加速度传感 器 三轴加速度感应,可应于小车、机器人 等的倾角控制 气体烟雾传感器 烟雾传感器MQ-2可用于检测CO、CH4等可燃性气体 酒精传感器MQ-3半导体酒精传感器MQ-3 湿度传感器湿敏电阻湿度敏感元器件,具有感湿范围宽、灵敏度高、湿滞洄差小、响应速度快 振动传感器/位移传感器CLA-3振动传感器

15 : 24GHz 雷达传感器 它就是一种可以将微波回波信号转换为一种电信号的装换装置,就是雷达测速仪,水位计,汽车ACC 辅助巡航系统,自动门感应器等的核心芯片。 16: 光电式传感器photoelectric transducer,基于光电效应的传感器,在受到可见光照射后即产生光电效应,将光信号转换成电信号输出。它除能测量光强之外,还能利用光线的透射、遮挡、反射、干涉等测量多种物理量,如尺寸、位移、速度、温度等,因而就是一种应用极广泛的重要敏感器件。光电测量时不与被测对象直接接触,光束的质量又近似为零,在测量中不存在摩擦与对被测对象几乎不施加压力。因此在许多应用场合,光电式传感器比其她传感器有明显的优越性。其缺点就是在某些应用方面,光学器件与电子器件价格较贵,并且对测量的环境条件要求较高。 霍尔开关传感器 霍尔开关传感器/电机测速/位置检测 可用于电机测速/位置检测等场 无线遥控组件 315M 常用于报警器设防、车库门遥控、摩托车、汽车的防盗报警等

温度传感器

所属分类:[温度传感器系列]产品名称:铂铑热电偶产品简介:品牌:昆仑中大 规格:1000mm,无固定,刚玉管 功能:测温 型号:KZW/S-130 尺寸:可根据客户需求定做 材质:铂铑丝,保护管刚玉 颜色:见图片 铂铑热电偶产品特点: 测温范围0-1600℃、0-1800℃ 测温元件材质为S、B 保护材质为99钢玉 工作原理: 是由两种不同成分的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电流。如果热电偶的工作端与参比端存在有温差时,显示仪表将会批示出热电偶产生的热电势所对应的温度值。铂铑热电偶的热电动热将随着测量端温度升高而增长,它的大小只与热电偶材料和两端的温度有关、与热电极的长度、直径无关。各种铂铑热电偶的外形常因现场实际需要而外形不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要成分组成。 应用领域: 铂铑热电偶应用于粉末冶金、真空炉、冶炼炉、炼钢炉、工业盐浴炉、烧结光亮炉等工业生产中,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中的温度测量。

所属分类:[温度传感器系列]产品名称:防爆温度传感器产品简介: 规格:300*150 功能:测量易燃易爆,气体、液体温度 型号:KZW/P-240 尺寸:可以根据客户需要孔做 材质:保护管304不锈钢 颜色:不锈钢 防爆温度传感器产品特点: 工业用隔爆铂电阻是一种温度传感器。在工业自控系统中应用极广,通过温度传感器,可将控制对象的温度参数变成电信号,传递给显示、记录和调节仪表,对系统实行检测、调节和控制。 在化工厂、生产现场常伴有各种易燃、易爆等化学气体、蒸气,如果使用普通的铂电阻非常不安全,极易引起环境气体爆炸。因此,在这些场合必须使用隔爆热电偶作温度传感器,本厂生产的隔爆铂电阻产品适用在dIIBT4~dIICT6温度组别区间内具有爆炸性气体危险的场所内. 通常和显示仪表,记录仪表,电子计算机的配套使用。直接测量各种生产过程中的0-1300℃范围内液体,蒸汽和气体介质及固体表面温度。 工作原理: 隔爆热电阻和装配式热电阻的结构和原理基本相同,热电阻温度传感器原理是:导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。②电阻率高,热容量小,反应速度快。③材料的复现性和工艺性好,价格低。④在测温范围内化学物理特性稳定。 隔爆热电阻和装配式热电阻的结构和原理所区别的是,隔爆型产品的接线盒(外壳)在设计上采用防爆特殊的结构,接线盒用高强度铝合金压铸而成,别且具有足够的内容空间、壁厚和机械强度,橡胶圈密封圈的热稳定性均符合国家防爆时,其内压不会破坏接线盒,而由此产生的热能不能向外扩散--传爆 由于产品采用上述防爆特殊结构,是产品完全符合使用只dIIBT4至dIICT6防爆组别区间范围内,只要用户严格遵守产品使用规则,产品就能达到可靠的防爆效果防爆原利用间隙隔爆原理,设计具有足够强度的接线盒等部件,将所有会产生火花、电弧和危险温度的零部件都密封在接线盒内,当腔内发生爆炸时,能通过接合面间隙熄火和冷却,使爆炸后的火焰和温度不传到腔外

常见温度传感器的性能优缺点

一、模块温度传感器:模块温度传感器用于测量变频模块(IGBT或IPM)的温度,目前用的感温头的型号是602F-3500F,基准电阻为25℃对应电阻 6KΩ±1%。 1、常数B值为4100K±3%,基准电阻为25℃对应电阻10KΩ±3%。温度越高,阻值越小;温度越低,阻值越大。离25℃越远,对应电阻公差范围越大;在0℃和55℃对应电阻公差约为±7%;而0℃以下及55℃以上,对于不同的供应商,电阻公差会有一定的差别。除个别老产品外,美的空调电控使用的室温管温传感器均使用这种类型的传感器。 2、常数B值为3470K±1%,基准电阻为25℃对应电阻5KΩ±1%。同样,温度越高,阻值越小;温度越低,阻值越大。离25℃越远,对应电阻公差范围越大。 二、排气温度传感器:排气温度传感器用于测量压缩机顶部的排气温度,常数B值为3950K±3%,基准电阻为90℃对应电阻5KΩ±3%。 三、室温管温传感器:室温传感器用于测量室内和室外的环境温度,管温传感器用于测量蒸发器和冷凝器的管壁温度。室温传感器和管温传感器的形状不同,但温度特性基本一致。按温度特性划分,目前常用的室温管温传感器有二种类型: 当然,除了以上三种常见的温度传感器外,还有其他类型也是经常性使用的,如热电阻:PT100、PT1000、Cu50、Cu100;热电偶:B、E、J、K、S等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/0f963640.html,。

几类常用的温度传感器

几类常用的温度传感器 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数NTC,也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。 表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。 虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下:

相关主题
文本预览
相关文档 最新文档