当前位置:文档之家› 了解振动试验的目的和振动台技术参数

了解振动试验的目的和振动台技术参数

了解振动试验的目的和振动台技术参数
了解振动试验的目的和振动台技术参数

了解振动试验的目的和必要性

现今世界经济潮流,已从过去地域性的经济模式而走向全球性的经济贸易。无论是地域性市场或进军全球市场,高质量的表现是不容讳言的。而振动测试更是协助您产品跃入高质量行列中不可缺乏的利器。

产品达到用户手中,在此过程中将有不同状态之振动产生,造成产品不同程度的损坏。而对于产品有任何损坏都不是厂商及客户所愿意见到的,然而运送过程所发生的振动却是难以避免,若一味的提高包装成本,必将带来严重而不必要的浪费,反之脆弱的包装却造成产品的高成本,并丧失了产品形象及市场,这些都不是我们所愿见到的。

振动测试约在四、五十年前开始萌芽,理论建立时,并无助于人们相信它的重要性,直到二次大战时,许多的飞行器、舰艇、车辆及器材在使用后,意外的发现机件失零的比例相当高,经研究的结果发现,大都由于其结构无法承受其本身所产生的长时间共振,或搭载物品承受运送共振所引起之,组件松脱、崩裂,而致机件失零甚而造成巨大损失。当这项结果公布后,振动测试才受到各界重视,纷纷投入大笔经费、人力去研究。尔后,对于振动量测分析以至模拟分析的近代理论建立后,对振动测试的方法及逻辑亦不断改进。尤其现今货物的流通频繁,使振动测试更显重要。

然而振动测试的目的,是在于实验中作一连串可控制的振动模拟,测试产品在寿命周期中,是否能承受运送或振动环境因素的考验,也能确定产品设计及功能的要求标准。据统计的数据显示提升3%的设计水平,将增加20%的回收及减少18%的各项不必要支出。振动模拟依据不同的目的也有不同的方法如共振搜寻、共振驻留、循环扫描、随机振动及应力筛检等,而振动的效应计有:一、结构的强度。二、结合物的松脱。三、保护材料的磨损。四、零组件的破损。五、电子组件之接触不良。六、电路短路及断续不稳。七、各件之标准值偏移。

八、提早将不良件筛检出。九、找寻零件、结构、包装与运送过程间之共振关系,改良其共振因素。而振动测试的程序,须评估订定试验规格,夹具设计之真实性,测试过程中之功能检查及最后试件之评估、检讨和建议。

振动测试的要义在于确认产品的可靠度以及提前将不良品在出厂前筛检出,并评估其不良品的失效分析以期成为一个高水平、高信赖度的产品。

欢迎您与我们连络,我们提供给予您的不只是一部高质量的振动测试机,更是提升贵公司产品水平及形象的最佳利器,拥有它您的产品将无往不利。

一、产品用途:

振动试验机模拟产品在制造,组装运输及使用过程中所遭遇的各种环境,用以鉴定产品是否忍受环境振动的能力,适用于电子、机电、光电、汽机车、玩具……等各行各业的研究、开发、品管、制造。振动试验机能让我们提早知道产品或产品中的部件的耐振寿命,从而确定产品设计及功能的要求标准。

二、检测范围:

1、产品结构的强度。

2、结合物的松脱。

3、保护材料的磨损。

4、零部件的破损。

5、电子组件的接触不良。

6、电路短路及断续不稳。

7、各零件之标准值偏移。

8、提早将不良件筛检。

9、找寻零件、结构、包装与运送过程间之共振关系。

三、使用振动试验机的优点:

1、设计时,可分析破坏点、易不良点,

2、质量时,可分析每一批产品所产生的不同点和不良点,

3、生产时,可完全一边振动一边测量,使产品不良率早发现,

4、耐久测量,让产品耐久使用、使不耐久的组件提早改进,公司品牌口碑即会更好。

四、台体规格:

1.垂直台体:L×W×H:(长×宽×高mm)用户可任选。

1)350×350×200

2)500×500×200

3)750×750×200

4)1000×1000×200

5)1500×1500×200

2.水平台体:L×W×H:(长×宽×高mm)用户可任选。

1)350×350×250

2)500×500×250

3)750×750×250

4)1000×1000×250

5)1500×1500×250

五、型号:

1.型号:HT-L

振动方向:垂直(上下振动)

频率范围:定频50HZ

2.型号:HT-HL

振动方向:水平(左右或前后振动)

频率范围:定频50HZ

3.型号:HT-TL

振动方向:垂直+水平(上下+左右或前后振动)

频率范围:定频50HZ

三、技术参数:

1.振动台体尺寸:

2.振动方向:

3.振动试验机最大试验负载:100 kg。

4.频率范围:定频50HZ。

5.振动试验机功率:2.2 KW。

6.振幅(可调范围mmp-p):0~5.2mm。

7.最大加速度:22g ,最大加速度=0.002×f2(频率HZ)×D(振幅p-pmm)。

举例:10HZ最大加速度=0.002×102×5=1g。

8.振动波形:正弦波。

9.时间控制:任何时间可设(秒为单位)。

10.电源电压(V):220

11.最大电流:10(A)。

12.精密度:频率可显示到0.01Hz。

13.显示振幅加速度(另购):如需看出振幅、加速度、最大加速度、准确数字需另购测量仪。

14.最大振幅5.2mm,最大振幅=20/(0.002×f2)

举例:100Hz最大振幅=20/(0.002×1002)=1mm。

15.加速度与振幅换算1g=9.8m/s2。

16.频率越大振幅越小。

电子组件振动试验法

电磁振动试验台作为振动试验台的一种,主要用于测试电子产品(如电路板、电子芯片等)在运输、组装或生产过程中是否存在漏焊、虚焊、共振等问题,恒泰丰科生产的电磁振动试验台质量精良,性能稳定,操作方便,收到了广大新老客户的信赖和支持!以下是电磁振动试验台正确安装方法和简易操作步骤,欢迎转载和阅览!(转载请注明出处)

电磁振动试验台安装操作方法

一、振动试验台的安装

1、先把台体四个脚底座固定好要放置的位置。

2、如要固定在工作台上,最好用角钢做成工作桌,桌面要求水平。

3、把振动台体的输入线接到控制箱的输出孔里。

①台体高15㎝接垂直②台体高25㎝接水平

4、接控制箱电源220∨/50HZ

5、打开电源开关、选波形为全波、选振动方向(垂直)。

6、按照“二、设定步骤”可进入参数设定。

7、按“三、频率操作说明”调整好单组或扫频等功能。

8、微调调幅固定在中间位置。按“六、调幅控制说明”调振幅大小。

9、按RUN开始作振动试验。

二、振动试验台设定CD000~CDNNN的步骤

当进入第三项第5条时仪表功能启动(显示T00.00闪动)

1、按PROG键出现CD000(可按方向键进行闪标修改)

2、再按ENTER键进入CD000需要修改的值

3、修改完后按ENTER键出现END(CD000的值已修改成功)

4、仪表会反回到CD000画面,按向上键出现CD001再按上面的步骤修改CD001的值,不用修改的就不用进去。依次操作即可。

三、振动试验台频率操作说明

1、调频参数说明

以下均按“四、设定步骤”修改参数:

①CD065=0,CD041=1,CD012=CD013=0.1(设定调频前的引导值)

②CD000=所要设定的频率(1~600HZ)

③CD087=执行一次的时间(0~65000秒)

④CD064=运行的次数(那么总时间=执行一次的时间×运行的次数)

⑤CD020到CD027=0,CD080到CD086=0,CD088到CD094=0,CD098到CD105=0

⑥按“六、调幅控制说明”调振幅大小

⑦按RUN键做振动试验,按红色键停止做试验。

振动台常用公式

振动台在使用中经常运用的公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

振动试验机的基本操作方法

振动试验机的基本操作方法 1 范围 本标准规定了振动试验机的一般要求、基本参数、技术要求、检验方法和检验规则等。 本标准适用于额定正弦激振力或随机激振力不大于200 kN试验用振动试验机。 激振力大于200 kN的振动试验机宜由用户和制造者或供应商参照本标准协商达成协议。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用的这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2298机械振动与冲击术语(GB/T 2298—1991,neq ISO 2041:1990) GB/T 2611 2007试验机通用技术要求 JB/T 6147—2007试验机包装、包装标志、储运技术要求 3 术语和定义 GB/T 2298确立的以及下列术语和定义适用于本标准。 3.1 额定负载 rated mass 有关技术文件规定的最大试验负载。 3.2 额定正弦激振力 rated excitation force under sinnsoidal conditions 不同试验负载下所有最大正弦激振力的最小值。 3.3 额定正弦加速度 rated sinusoidal acceleration 正常工作时,台面允许达到的最大加速度。 3.4 极限特性 limit characteristic 在不同的试验负载下随频率变化的位移速度一加速度的极限值,一般用极限曲线表示。3.5 额定频率范围 rated frequency range 极限特性曲线的最低频率至最高频率的范围。 3.6 额定随机激振力 rated random excitation force 任一试验负载下随机激振力的最小值。该力与频率上、下限之间的均匀加速度功率谱密度对应。 4 振动试验机的组成 振动试验机由以下部分组成: a)振动试验机台体; b)功率放大器; c)振动控制仪(可按照用户要求配置); d)冷却风机或热交换器等辅助设备。 5 基本参数与参数系列 5.1 振动试验机应给出下列基本参数: a)额定正弦激振力; b)额定随机激振力; c)额定频率范围; d)额定加速度; e)额定速度; f)额定位移; g)额定负载。 5.2振动试验机参数系列见表l,并优先选用表1的参数。

了解振动试验的目的和振动台技术参数

了解振动试验的目的和必要性 现今世界经济潮流,已从过去地域性的经济模式而走向全球性的经济贸易。无论是地域性市场或进军全球市场,高质量的表现是不容讳言的。而振动测试更是协助您产品跃入高质量行列中不可缺乏的利器。 产品达到用户手中,在此过程中将有不同状态之振动产生,造成产品不同程度的损坏。而对于产品有任何损坏都不是厂商及客户所愿意见到的,然而运送过程所发生的振动却是难以避免,若一味的提高包装成本,必将带来严重而不必要的浪费,反之脆弱的包装却造成产品的高成本,并丧失了产品形象及市场,这些都不是我们所愿见到的。 振动测试约在四、五十年前开始萌芽,理论建立时,并无助于人们相信它的重要性,直到二次大战时,许多的飞行器、舰艇、车辆及器材在使用后,意外的发现机件失零的比例相当高,经研究的结果发现,大都由于其结构无法承受其本身所产生的长时间共振,或搭载物品承受运送共振所引起之,组件松脱、崩裂,而致机件失零甚而造成巨大损失。当这项结果公布后,振动测试才受到各界重视,纷纷投入大笔经费、人力去研究。尔后,对于振动量测分析以至模拟分析的近代理论建立后,对振动测试的方法及逻辑亦不断改进。尤其现今货物的流通频繁,使振动测试更显重要。 然而振动测试的目的,是在于实验中作一连串可控制的振动模拟,测试产品在寿命周期中,是否能承受运送或振动环境因素的考验,也能确定产品设计及功能的要求标准。据统计的数据显示提升3%的设计水平,将增加20%的回收及减少18%的各项不必要支出。振动模拟依据不同的目的也有不同的方法如共振搜寻、共振驻留、循环扫描、随机振动及应力筛检等,而振动的效应计有:一、结构的强度。二、结合物的松脱。三、保护材料的磨损。四、零组件的破损。五、电子组件之接触不良。六、电路短路及断续不稳。七、各件之标准值偏移。 八、提早将不良件筛检出。九、找寻零件、结构、包装与运送过程间之共振关系,改良其共振因素。而振动测试的程序,须评估订定试验规格,夹具设计之真实性,测试过程中之功能检查及最后试件之评估、检讨和建议。 振动测试的要义在于确认产品的可靠度以及提前将不良品在出厂前筛检出,并评估其不良品的失效分析以期成为一个高水平、高信赖度的产品。 欢迎您与我们连络,我们提供给予您的不只是一部高质量的振动测试机,更是提升贵公司产品水平及形象的最佳利器,拥有它您的产品将无往不利。 一、产品用途: 振动试验机模拟产品在制造,组装运输及使用过程中所遭遇的各种环境,用以鉴定产品是否忍受环境振动的能力,适用于电子、机电、光电、汽机车、玩具……等各行各业的研究、开发、品管、制造。振动试验机能让我们提早知道产品或产品中的部件的耐振寿命,从而确定产品设计及功能的要求标准。 二、检测范围: 1、产品结构的强度。 2、结合物的松脱。 3、保护材料的磨损。 4、零部件的破损。 5、电子组件的接触不良。 6、电路短路及断续不稳。 7、各零件之标准值偏移。 8、提早将不良件筛检。 9、找寻零件、结构、包装与运送过程间之共振关系。

振动试验基本知识

专业知识 1、振动试验基本知识 1.1 振动试验方法 试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。 正弦振动试验 正弦振动试验控制的参数主要是两个,即频率和幅值。依照频率变和不变分为定频和扫频两种。 定频试验主要用于: a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。 b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。 扫频试验主要用于: ●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。 ●耐扫频处理:当产品在使用频率范围内无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。 ●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点 有无改变,以确定产品通过耐振处理后的可靠程度。 随机振动试验 随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。前两种是随机试验,后两种是混合型也可以归入随机试验。 电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。 1.2 机械环境试验方法标准 电工电子产品环境试验国家标准汇编(第二版)2001年4月 汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,内容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。 其中常用的机械环境试验方法标准: (1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法 试验Ea和导则:冲击 (2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法 试验Eb和导则:碰撞 (3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法 试验Ec和导则:倾跌与翻倒(主要用于设备型产品) (4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法 试验Ed和导则:自由跌落 (5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法 试验Fc和导则:振动(正弦) (6)GB/T 2423.11-1997 电工电子产品环境试验第2部分:试验方法

国内外振动台与振动试验的研究现状

1.国内外振动台与振动试验的研究现状 1.1国内外振动台研究现状 一、各类振动台的优缺点 用于振动试验的振动台系统从其激振方式上可分为三类:机械式振动台、电液式振动台和电动式振动台。从振动台的激振方向,即工作台面的运动轨迹来分,可分为单向(单自由度)和多向(多自由度)振动台系统。从振动台的功能来分,可分为单一的正弦振动试验台和可以完成正弦、随机、正弦加随机等振动试验和冲击试验的振动台系统。 1.机械式振动台 机械式振动台可分为不平衡重块式和凸轮式两类。不平衡重块式是以不平衡重块旋转时产生的离心力来激振振动台台面,激振力与不平衡力矩和转速的平方成正比。这种振动台可以产生正弦振动,其结构简单,成本低、但只能在约50Hz~100Hz的频率范围工作,最大位移为6mm峰一峰值,最大加速度约10g,不能进行随机振动。 凸轮式振动台运动部分的位移取决于凸轮的偏心量和曲轴的臂长,激振力随运动部分的质量而变化。这种振动台在低领域内,激振力大时,可以实现很大的位移(如100mm)。但这种振动台工作频率仅限于低频,上限额率为20Hz左右。最大加速度为3g左右,加速度波形失真很大。 对于所应用的机械式振动试验台具有几个共同的优点:结构简单、容易安装、造价较低、运用及维修简单可以、可以进行较长时间的试验。但也有共同的缺点:试验范围小、波形失真度大、不能采用反馈控制、很难实现随机振动及几个机械式振动台同步运行。 2.电液式振动台 电液式振动台的工作方式是用小的电动振动台驱动可控制的伺服阀,通过油压使传动装置产生振动。在实际应用中主要有力马达滑阀式电液振动台和喷嘴一挡板式电液振动台。这类振动台的主要优点是:能产生很大的激振力和位移(如激振力可以达104N,位移可达2.5m)、工作频率下限可以达到零赫兹、可以采用反馈控制、能实现随机振动及几个电液振动台进行同步运行。同时电液振动台的缺点是:难于在高频区工作,适用于在低频区及中频区进行振动试验。液压系统的性能容易受温度的影响,对油液要求高、造价贵、维修复杂。由于油泵的压力脉动,油液压缩性引起的共振、液压密封件的摩擦等,使得波形失真比电动振动台大。 这种振动台因其大推力、大位移可以弥补电动振动台的不足,在未来的振动试验中仍将发挥作用,尤其是在船舶和汽车行业会有一定市场。 3.电动式振动台 电动式振动台是根据电磁感应原理设计的,当通电导体处在恒定磁场中将受到力的作用,当导体中通以交变电流时将产生振动。振动台的驱动线圈正式处在一个高磁感应强度的空隙中,当需要的振动信号从信号发生器或振动控制仪产生并经功率放大器放大后通到驱动线圈上,这时振动台就会产生需要的振动波形。 电动式振动台是振动环境试验中广泛使用的一种振动设备,与其它振动设备相比,它主要的优点具有:工作频率范围宽、波形失真度小、频率稳定、控制方便、可以采用反馈控制。特别是它的高频特性,一般能工作到3kHz。对于几公斤推力的电动式振动台工作频率上限甚至可以扩展到10kHz以上,所以被广泛应用于航空、航天、护电器、仪器仪表、建筑、水利、交通运输和家电等各个领域。电动振动台的缺点是单台的激振力及振幅不够大,台面有漏磁场的影响,价格贵,维修复杂。 二、国内外振动台发展状况 1.国内振动台的研究现状 中国航天第702所拥有完整的振动环境试验手段和丰富的振动环境经验,按照GB2423、GBJ150、MIL-STD-810等各项标准进行产品的振动环境试验,建立了推力从7.5kN、10kN、

振动加速度计算公式

1、振动方向:垂直(上下)/水平(左右) 2、最大试验负载:(50HZ、1~600HZ)100 kg. (1~5000HZ)50 kg. 3、调频功能(1~600HZ、1~5000HZ客户自定)在频率围任何频率必须在(最大加速度<20g 最大振幅<5mm); 4、扫频功能(1~600HZ、1~5000HZ客户自定):(上限频率/下限频率/时间围)可任意设定真正标准来回扫频; 5、可程式功能(1~600HZ、1~5000HZ客户自定):15段每段可任意设定(频率/时间)可循环. 6、倍频功能(1~600HZ):15段成倍数增加,①.低频到高频②.高频到低频③.低频到高频再到低频/可循环; 7、对数功能(1~600HZ、1~5000HZ客户自定):①.下频到上频②.上频到下频③.下频到上频再到下频--3种模式对数/可循环; 8、振动机功率:2.2 KW. 9、振幅可调围:0~5mm 10、最大加速度:20g (加速度与振幅换算1g=9.8m/s2) 11、振动波形:正弦波. 12、时间控制:任何时间可设(秒为单位) 13、电源电压(V):220±20% 14、最大电流:10 (A) 15、全功能电脑控制(另购):485通讯接口如要连接电脑做控制,储存,记录,打印之功能需另买介面卡程式电脑. 16、精密度:频率可显示到0.01Hz,精密度0.1Hz . 17、显示振幅加速度(另购):如需看出振幅、加速度、最大加速度、准确数字需另购测量仪. 18、最大加速度20g(单位为g). 最大加速度=0.002×f 2(频率HZ)×D(振幅p-pmm) 举例:10HZ最大加 Foxda振动仪HG-V4最小加速度=0.002×102×5=1G Foxda振动仪HG-V4最大加速度=0.002×2002×5=400G 在任何頻率下最加速度不可大于20G 19、最大振幅5mm 最大振幅=20/(0.002×f2) 举例:100Hz最大振幅=20/(0.002×1002)=1mm 在任何频率下振幅不可大于5mm 20、加速度与振幅换算1g=9.8m/s2 21、频率越大振幅越小 四.符合标准: GB/2423;IEC68-2-6(FC);JJG189-97;GB/T13309-91.

振动试验时传感器的安装

振动试验时传感器的安装 唐永革 随着改革开放政策的继续贯彻加之国产设备的不断完善,电动振动台将会在科研及应用领域发挥更大的作用。怎样正确使用电动振动台,已成为从事环境试的工程技术人员和操作人员不可忽视的问题。现结合实例,谈谈就怎样使用电动振动台提高振动试验再现性。 一.必须明确的概念(GB/T2423.10) 1.固定点:固定点是指试验样品和夹具或试验样品和振动台(如果振动台装有附加台面时,则指试验样品和附加台面)点接触的部分,此处在实际使用中通常定试验样品的地方,如果实际安装结构的一部分作夹具使用(诸如减震架、托架等届试验样品本身所带)则应取其和振动台点接触的那部分作固定点,而不能用试验样品和安装结构点接触那部分作固定点。 2.测量点:在GB/T2423.10中附录中规定了两种类型的测量点,主要点就是检查测量位于振动台、夹具或试验样品上所承受的实际振动量值,该点尽可能要接近固定点,在任何情况下,检测点上的传感器都要和固定点刚性连接,因为试验的要求就是通过许多检测点来保证的。 3.检测点:在振动试验中,所选择的用以监视和测量台面振动量值和试验样品(或试验样品某一薄弱环节)响应的传感器的安装点。 4.基准点:是从检测点中选定的点,为了满足GB/T2423要求,该点的信号是用来作控制试验用的. 5.控制点:在振动试验中用以控制振动量值(该量值是试验样品标准所规定的值)的传感器的安装点,该点也必须是固定点中具有代表性的点。 控制点可分单点控制和多点控制. 二.如何选择控制点、检测点、监测点的位置 1.控制点的位置:控制点必须选择在与试验样品安装点直接点接触的固定点的最近处。 (1)由于电动振动台的台面较小,加之原台面不易直接安装试验样品,一般使用者都安装了附加台面,并且在安装时充分利用了原台面上的所有安装孔,都和附加台面进行了刚性固定连结,把它看成与原台面合成了一个新的整体,这是

振动试验常用公式

振动台在使用中经常运用的公式 1、求推力(F )的公式 F=(m 0+m 1+m 2+……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 =ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) =ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“”中同义 D —位移(mm 0-p )单峰值 =ω2D ×10-3………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 和D 与“”中同义,但A 的单位为g 1g=s 2 所以:A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6………………………………………公式(5)

式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=-…………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??23 )2(10π……………………………………公式(7) 式中:f A-D —加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、扫描时间和扫描速率的计算公式 线性扫描比较简单: S 1= 1 1 V f f H -……………………………………公式(8) 式中:S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 对数扫频: 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 扫描速率计算公式 R= T Lg f f Lg L H 2/……………………………公式(10)

标准振动试验介绍

标准振动试验介绍 简介 振动试验是评定元器件、零部件及整机在预期的运输及使用环境中的抵抗能力. 物体或质点相对于平衡位置所作的往复运动叫振动。振动又分为正弦振动、随机振动、复合振动、扫描振动、定频振动。描述振动的主要参数有 动频率为f时D 振动试验标准GJB 150.25-86 GB-T 4857.23-2003 GBT4857.10-2005 目前可以进行该试验的试验室有测量控制设备及系统实验室、环境可靠性与电磁兼容试验中心、苏州电器科学研究所。在现场或实验室对振动系统的实物或模型进行的试验。振动系统是受振动源激励的质量弹性系统 现在已被推广到动力机械、交通运输、建筑等各个工业部门及环境保护、劳动保护方面 及振动环境试验等内容。响应测量主要是振级的测量。为了检验机器、结构或其零部件的运行品质、安全可靠性以及确定环境振动条件各种实际工况下 ;对平稳随机振动, 级的度量。选定 动态特性参量的测定 动态特性参量的简易测定方法 ①固有频率测定用敲击或突然卸载 使系统产生自由振动,记录其衰减波形并与仪器中的时标信号比较,或将信号发生器产生的 ②振型测定手持木质或铝质探针接触被测 致判断振型。③阻尼测定可采用衰减振动法、共振法和相位法。衰减振动法是用记录仪 出阻尼值。机械导纳方法机械导纳是系统频域的特征参量(见机械阻抗)。大型复杂结构的固有频率多而密集, 图 时域识别方法直接利用振动的时间 (系统的时域特性参量之一,其傅里叶变换即机械导纳)的关系直接计算模态参量。对受迫振动,可以用数字

载荷识别指分析和确定振源的 谱分析或相关分析方法得出。振动环境试验为了了解产品的耐振寿命和性能指标的稳定 环境的振动、冲击条件下进行 法分两大类:①标准试验,包括耐预定频率试验、耐共振试验、正弦扫描试验、宽带随机振动 机振动试验、随机波再现试验、正弦波和随机波混合试验等。(见振动环境试验) 振动试验数据处理和分析 理法。振动试验意义和使用在运输 运输 振动摆放方位会影响到货 运箱、它的内包装、封装和内在产品。测试允许分析这些部件的相互作用。更改其中一个或 方法 A1重复振动(垂直运动) 测试 A2重复振动(旋转运动)测试 B单个货运箱共振(垂直运动)测试 C水平负载、复合负载、垂直负载共振测试 用性。这些方法符合ISO8318和ISO2247。方法A1和方法A2 在运输车里没有受到任何限制的单个货运箱及因单个负载或堆放负载的放大振动而受到重复振动的货运箱。备注1A1和方法A2产生不同 导致不同的损坏类型和强度。两种测试方法的测试结果不能相互关联。 B方法B 备注2 用方法C来测试。方法C 放。 4.8(包括测试强度、频率范围、测试周期) 这些测试的结果是相互不同的。振动试验设备使用方法仪器测试方法A1-重复振动 测试(垂直运动) 面的运动曲线类似垂直正弦输入(平面旋转振动是不接受的)的设备支撑。振动的双幅位移应

电动振动试验说明书

DLS-3000-40-07 电动振动试验系统 使 用 说 明 书 SM 苏 州 苏 试 试 验 仪 器 有 限 公 司

S T I目录 目 录 1. 安全须知 2. DLS-3000-40-07 电动振动试验系统概述 3. DLS-3000-40-07 电动振动试验系统构成 4. DLS-3000-40-07电动振动试验系统方框图 5. DLS-3000-40-07振动试验系统技术参数 6. 系统各组成部分详细说明 6.1 SA-40开关功率放大器 6.2 DLS-3000-40-07电动振动试验系统台体 6.3 振动系统的地基和安装 7. 系统运行 7.1 电动振动台部分的备 7.2 SL-0707水平滑台运行前的准备 7.3 传感器的安装 7.4 运行操作 7.5 停机 8. 注意事项 9. 保护动作和复位方法 10. 试验样品 11. 附图

1. 安全须知 为安全起见,请注意下述事项(由于是作一般性的说明,可能有些项目本装置中没有)。 1.1 占有区域 为安全起见,在振动试验装置及电缆的四周设置一个设备占有区域(可能的话在5 m2以上)。 保持占有区域清洁,不需要物品不可放在占有区域内。占有区域以外也可能因噪音等对人体构成伤害。除设备专门操作者,他人不可进入占有区域。 1.2 培训 对本装置的操作者必须详细阅读使用说明书,有条件的进行专门培训。 1.3 检查 为了您的使用安全,请做定期检查。 1.4 设置 振动试验装置的主操作面板应该设置在能看到振动台、功率放大器的位置。 1.5 设备电源 变更电源的场合,风机、马达等可能会产生倒转现象。请确认旋转方向,用箭头表示正确的旋转方向。 1.6 其它注意事项 a. 噪声 振动试验装置会产生较大的噪声,故对周围的工作人员应采取保护措施(耳塞等)。我公司推荐隔音室作为防噪对策。

航空电子设备振动试验与分析

航空电子设备振动试验与分析 【摘要】本文就航空电子设备振动试验,包括试验夹具设计、设备安装、控制点选择及几个关键结构问题的试验分析与结论等方面作一些阐述。 【关键词】振动试验;试验分析 0概述 飞机上航空电子设备所处的机械环境比较恶劣,据国外统计,航空电子设备故障29%~41%由机械负荷的作用引起,元件的失效频度比在实验室条件下(无振动、冲击时的失效频度)大120~160倍,振动引起的元件或材料的疲劳损坏,造成电子产品的失效。航空电子设备防振设计的主要方法有减弱和消除振源、小型化及刚性化、去谐、去耦、增加阻尼,主要手段可以进行有限元建模来分析设备的模态振型,掌握电路板组件和机箱的模态频率和振型,并进行动力响应分析(PSD),在规定的外力载荷或试验的环境载荷条件下分析机箱和电路板组件的各关心部位的响应情况,为合理的元器件布局设计、电路板组件结构设计和机箱结构设计提供依据。振动试验是结构设计分析及验证的重要环节,振动试验的方法关系到试验的正确性与准确性,必须加以重视,研究振动试验方法是进行振动试验的最重要的组成部分。 1振动试验的几个关键问题 1.1夹具 夹具是振动试验的最重要的准备工作,夹具的好坏关系到试验的成功与否,夹具设计与验收遵照以下原则进行。 1.1.1夹具结构要求 材料采用铝合金,对于三维尺寸小于200mm的小型夹具,应为整体机加工结构形式;对于坯料供应困难的较大夹具,优先考虑铸造或焊接,允许螺装和局部焊接,螺装时螺栓间距小于8cm;经常拆卸的夹具,要嵌钢螺套或插销螺套;螺纹连接部位,用高强度厌氧胶粘接;夹具要留有传感器安装位置。 1.1.2夹具性能要求 对电子产品而言,通常夹具和产品的总重小于30kg,要求: a)一阶共振频率 垂直向>700Hz,水平向>450Hz;

振动试验台安全技术操作规程示范文本

振动试验台安全技术操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

振动试验台安全技术操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 ?物品放置:将振动试验的物品放入试验台上的夹具 中,用扳手将固定螺丝拧紧,防止振动中物品脱落损坏; ?开机:打开启动按钮,此时听到“嗒”的一声,表示 振动台电源接通,如果没有声音,则先按停止按钮再重新 按启动按钮; ?振动频率调节:根据实际情况,把频率调节旋钮旋到 合适位置,在调整频率过程中,需缓慢调节,以防瞬间频 率过高,将物品振坏; ?关机:振动实验结束后.先把频率按钮调至0Hz, 然后按下停止按钮,取下试验物品,关闭振动台电源; ?振动台要固定位置,防止滑动; ?振动台所放物品一定要保持平衡,以防物品不平衡而

在振动过程中损坏; ?插拔电源插头时,要小心操作,以防被电击伤; ?振动过程中,切忌用手触摸被振物品,以防振动中的物品将手击伤; ?试验台经常保持清洁,长期不用应套好塑料防尘罩,放置在干燥的环境内。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

振动试验理论基础与方法培训

奥 申 检 测 振动试验理论基础与方法培训 主讲人:洪城明 上海奥申检测科技有限公司 培训目的: (1)基本了解振动试验相关的基础理论(2)掌握理解振动试验相关的核心理论 (3)了解振动试验设备结构、功能,掌握其主要参数范围 (4)了解振动试验传感器关键参数、掌握核查方法与使用注意点(5)理解并掌握正弦振动、随机振动的试验方法(6)理解并掌握冲击试验方法 (7)了解夹具要求、开发验证过程,掌握共振搜寻确认方法(8)掌握GMW17010对零件振动试验的要求、流程和方法

奥 申 检 测 1.1振动试验目的 在实验室内模拟一连串实际的振动现象,测试产品在寿命周期中,是否能承受运输、储存或使用过程的振动环境的考验。 1.2应用 (1)耐久测试——获得临界使用条件,确定产品设计和功能的使用边界、制定要求标准。 (2)质控测试——考核产品耐振动性能是否达标、提前筛检出不良品,确认质量和提升产品的可靠性。 (3)失效分析——模拟失效环境,分析失效模式,助力改进。 1.3测试原理 通过振动硬件(振动台、夹具、控制器、传感器),按照目标振动条件输入振动参数,对目标施加外部振动激励,目标产生振动响应,通过采集和分析响应信号,分析目标振动状态和耐振性。 2测试硬件 2.1振动试验台 2.1.1分类 振动试验设备分机械振动试验台、电液振动试验台、电动振动试验台、模拟汽车运输试验台。 (1) 机械式振动试验台:适宜于低频定振试验或低频定位移扫频试验。 (2) 电液式振动试验台:适宜于低频定振试验或中低频扫频试验及随机试验和冲击实验。 (3) 电动式振动试验台:适宜于任何形式的给定信号的振动及冲击试验。 (4) 模拟汽车运输试验台:可代替实际跑车试验 2.1.2电动振动台结构(振动台-振动发生器、控制器、功放、冷却器) 2.1.3电动振动台原理 励磁线圈如图示2-2在振动台台体内建立磁场,励磁线圈与直流电源相连,在环行气隙里产生一个高磁通量。动圈部件,包括台面、骨架和驱动线圈,悬挂在振动台的环行气隙里,当交流电流通过驱动线圈时,电磁力会在驱动线圈的绕组上产生,使得台面产生向上和向下的往复移动,如图示2-2中双向箭头处显示。台面的移动量取决于振动控制器输出的驱动信号的大小和频率以及扩展台面(如果有的话)的质量、所加的负载质量和台面悬挂系统的刚度。

振动台试验方案设计实例

一、振动台试验方案 1试验方案 1.1工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒”结构体系,主要由4个核心筒、钢骨混凝土(SRC)外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑(UBB)构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4。 本工程的自振周期约为 6.44秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据Buckingham的π定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1)弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1(S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在Sa=Sg=1的条件下,要满足Sa=S E/S l Sρ=1,即S l=S E/Sρ,必须使模型材料的弹模

SW系列电磁振动台操作要点

SW型电磁吸式振动试验台 使用说明书 若能明确了解振动试验的目的就必能了解振动试验的必要性. 现今世界经济潮流,已从过去地域性的经济模式而走向全球性的经济贸易。无论是地域性市场或进军全球市场,高品质的表现是不容讳言的。而振动测试更是协助您产品跃入高品质行列中不可缺乏的利器。 产品达到用户手中,在此过程中将有不同状态之振动产生,造成产品不同程度的损坏。而对于产品有任何损坏都不是厂商及客户所愿意见到的,然而运送过程所发生的振动却是难以避免,若一味的提高包装成本,必将带来严重而不必要的浪费,反之脆弱的包装却造成产品的高成本,并丧失了产品形象及市场,这些都不是我们所愿见到的。 振动测试约在四、五十年前开始萌芽,理论建立时,并无助于人们相信它的重要性,直到二次大战时,许多的飞行器、舰艇、车辆及器材在使用后,意外的发现机件失零的比例相当高,经研究的结果发现,大都由于其结构无法承受其本身所产生的长时间共振,或搭载物品承受运送共振所引起之,元件松脱、崩裂,而致机件失零甚而造成巨大损失。当这项结果公布后,振动测试才受到各界重视,纷纷投入大笔经费、人力去研究。尔后,对于振动量测分析以至模拟分析的近代理论建立后,对振动测试的方法及逻辑亦不断改进。尤其现今货物的流通频繁,使振动测试更显重要。 然而振动测试的目的,是在于实验中作一连串可控制的振动模拟,测试产品在寿命周期中,是否能承受运送或振动环境因素的考验,也能确定产品设计及功能的要求标准。据统计的数据显示提升3%的设计水准,将增加20%的回收及减少18%的各项不必要支出。振动模拟依据不同的目的也有不同的方法如共振搜寻、共振驻留、循环扫描、随机振动及应力筛检等,而振动的效应计有:一、结构的强度。 二、结合物的松脱。三、保护材料的磨损。四、零组件的破损。五、电子组件之接触不良。六、电路短路及断续不稳。七、各件之标准值

振动试验机使用说明书

随机振动控制系统使用说明书 (WINDOWS界面) 2002年10月

随机振动控制系统使用说明书(WINDOWS界面) 1. 引言 本振动控制系统主要是用作振动和冲击试验控制。从振动试验的历史来看,试验是从定频正弦→正弦扫频→随机振动发展的。正弦定频试验可以对选定的一个或数个频率(通常选为试件的共振频率)下对试件进行振动试验,由于不可能测出试件所有的共振频率,再由于非线性因素和结构损伤的影响,共振频率本身在试验过程中也是变化的,于是就发展了正弦扫频试验,试验过程中对试件所有的共振频率都能考核到。为什么又要进行(宽带)随机振动试验呢?一是实际飞机、火箭、船舶、车辆上测得的振动环境接近于宽带随机,二是计算机技术飞速发展和快速数字谱分析算法(FFT)的发明使得技术上有了实现的可能;从对试件损伤和工作可靠性的影响来看,正弦扫频与宽带随机也有很大的差别,举例来说,正弦扫频时试件各共振频率依次发生共振,而宽带随机试验时,试件各共振频率同时发生共振,若有一继电器常开触点的两弹簧片有不同的共振频率,可能它们依次共振时不相碰,但同时共振时就相碰,而造成仪器工作的不正常。这个例子可以形象地说明正弦扫频与随机振动试验的差别。一句话,随机振动试验更接近于实际振动环境,对试件的考核也较严格,从而更容易保证您的产品的质量。美军标MIL-STD-810F更推荐随机试验时频率分辨率采用800谱线,本系统能满足此要求。 对于涡轮螺桨式飞机,直升机,和机载炮击振动,主要振动环境为宽带随机加窄带随机或宽带随机加多频正弦振动,美军标MIL-STD-810D~F规定要作这两种模拟,窄带及正弦频率一般不变。本系统能完成宽带加窄带随机和正弦加随机试验,窄带及正弦频率可以扫频。 关于冲击试验,早先多半采用跌落式,凸轮式等机械冲击试验装置,这些装置结构简单,但对冲击参数(冲击加速度、波形、冲击时间等)的调整较麻烦,波形不准确。在实际冲击环境中有两种理想的加速度冲击波形:半正弦波模拟了完全弹性碰撞;后峰锯齿波模拟了完全塑性碰撞,冲击时间常取11ms和6ms。本系统能够很方便地在振动台上模拟这两种波形和不同时间不同加速度的冲击试验,且有较高的精度。 从美军标MIL-STD-810D冲击试验规范开始,要求首先满足规定的冲击响应谱而对波形却不作规定,它认为这种模拟方式最能准确地模拟冲击环境对产品不同自振频率的部件产生同样严格的冲击效果。为适应这种冲击试验要求发展的趋势,本系统开发了冲击谱合成的功能,圆满地解决了此问题,这是任何机械式系统所不可能完成的。 2 系统性能 2.1 正弦扫频 控制和测量通道 1~8 频率范围 5~5000Hz 扫频包线等幅、等速度、等加速度 分析方式 RMS、跟踪滤波 扫频方式线性—对数、正反扫、定频 2.2 随机振动(包括宽带加窄带和宽带加正弦) 控制和测量通道 1~8 频率范围 5000Hz 宽带谱线数 100~800线 控制谱动态范围 >55dB(自闭环) 窄带谱或正弦谱线数 0~10 2.3 冲击试验控制 脉冲时间 1~30ms 波形半正弦、三角、锯齿、方波 冲击谱合成频谱范围 5~2000Hz

振动计算力学公式

振动台力学公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A= D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

振动试验台技术方案

注:一下内容仅供参考。如有雷同,纯属巧合。 振动试验台技术方案 本技术方案是依据要求方提出的振动试验台主要技术参数和标准GB/T8419-2007、GB/T18707.1-2002编制,用于对工程机械座椅、工程机械车灯以及其它零部件进行振动试验的液压振动台系统。详细介绍如下: 一、液压振动台系统的构成和原理方框图 液压振动台系统由液压振动台(含振动台体、台面、电液伺服阀等)、液压油源和管路系统、油源电控、模拟和数字控制系统等几部分构成。 液压振动台系统原理方框图如下。 图 1 液压振动台系统原理方框图

二、液压振动台的设计 液压振动台包括振动台体、台面、伺服阀、传感器及连接过渡等部分,作为执行元件直接带动控制对象动作。 1、要求的主要技术参数 1.1 频率范围:0.5~200Hz 1.2 加速度:0~ 2.5g 1.3 振幅:0~±160 mm 1.4 有效负载:0~400 kg, 1.5 台面大小:1米x 1米 2、最大功能曲线的设计估算 2.1 按规范的PSD设计 可以认为是窄带随机,且是多个试验曲线,我们可以取它们的包络作为评估依据。 表1: EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8 EM9 Freq 2 2.25 2.25 2.25 3.25 8.5 3.25 3.75 4.5 1.33 RMS 1.39 1.75 1.48 0.82 1.42 1.39 1.82 0.87

图2 根据表1和图2,最大速度发生在EM2,按3∑准则,此处的速度为:0.372m/Sec。但按振幅160mm(O-P),则等速度与等位移段交越频率为:0.37Hz。而主要技术指标中指定下限频率为0.5Hz,这样一来,160mm(o-P)的行程则浪费。 2.2 按行程、速度和加速度设计 依据标准GB/T8419-2007中5.1条《注:在EM1和EM2的情况下,振动器能够产生振幅最少为±7.5cm,频率为2Hz的模拟正弦振动(见5.4.1)》。此时的速度要达到0.94m/s。 按振幅160mm(O-P),则等速度与等位移段交越频率为:0.94Hz;按最大加速度2.5g,则等速度与等加速度段交越频率为:4.18Hz。均在要求的工作频率范围内。 2.3 最大功能曲线 综上所述,按照最大行程±160mm,最大速度0.94m/s,最大加速度2.5g和要求的工作频率,最大功能曲线如图3。 频率(Hz) 0.5 0.94 2 4.19 150 200 位移(mm) 160 160 75 35 0.028 0.0038 速度(m/s) 0.5 0.94 0.94 0.94 0.026 0.0048 加速度(g) 0.32 0.56 1.2 2.5 2.5 0.62

相关主题
文本预览
相关文档 最新文档