当前位置:文档之家› 第十章_电力传输的基本概念

第十章_电力传输的基本概念

第十章_电力传输的基本概念
第十章_电力传输的基本概念

电力系统基本概念

一、电力工业发展概况及前景 几个需要记住的知识点 1、电力工业是将一次能源转换成二次能源的工业,其发展水平是反映国家经济发展程度的重要标志。 2、1882年在上海建立第一个火电厂。 3、1912年在昆明滇池石龙坝建立第一座水电站。 4、2001年,针对我国能源结构的实际情况,我国的电源发展实施了“优先开发水电、大力发展火电、适当发展核电、积极发展新能源发电”的方针,使电源发展呈现多种 能源互补的格局。 5、在水电方面我取得了骄人成绩,有许多世界之最 ①1994年12月开工建设世界上最大的水电站→三峡 ②界上最大的抽水蓄能电站→广州抽水蓄能电站 ③世界上海拔最高的电站→西藏羊卓雍湖水电站等。 6、我国电力已经开始进入“大机组‘’、“大电网”、“超高压”、“高自动化” 的发展新阶段。 二、电力系统基本概念 (一)、电力系统 1、电力系统概念 由发电厂、升压变电站、输电线路、降压变电站及电力用户所组成的统一整体称为电 力系。 2、动力系统概念 电力系统加上带动发电机转动的动力装置构成的整体称为动力系统。 3、电力网概念 由各类升压变电站、输电线路、降压变电站、组成的电能传输和分配的网络称为电力网。 (二)、发电厂 1、定义 发电厂是电力系统的中心环节,它是把其他形式的一次能源转换成二次能源的一种特 殊工程。 2、分类 ⑴a、按其所用能源分为 火力发电厂、水力发电厂、核能发电厂、风力发电厂、潮汐发电厂、地热发电、太阳 能发电、垃圾发电、沼气发电等等。 b、按发电厂的规模和供电范围划分为:区域性发电厂、地方发电厂、自备专用发电厂等。 ⑵、火力发电厂

①定义 利用煤、石油、天然气、油页岩等燃料的化学能生产电能的工厂。热能→机械能机→ 电能。 ②凝汽式火力发电厂 火力发电厂中的原动机可以是凝汽式汽轮机、燃气式汽轮机或内燃机。我国大部分火 力发电厂采用凝汽式汽轮发电机组,所以称为凝汽式火力发电厂。汽式火力发电厂热 效率较低只有30~40%。适宜建在燃料产地。 ③热电厂 既发电又供热的火力发电厂称为热电厂。热效率可以上升到60~70%。一般建在大城 市及工业附近。 ⑶水力发电厂 定义 通常称水电厂。利用江河水流的水能生产电能的工厂。水能→机械能→电能。 ⑷核电厂 定义 核能→热能→机械能→电能。 特点 能取得较大的经济效益,所需原料极少。 (三)、变电站 1、定义 变电站是汇集电源、升降电压和分配电力的场所,是联系发电厂和用户的中间环节。 2、分类 ⑴按升降电压划分为 ①、升压变电站→通常是发电厂升压部分,紧靠发电厂。 ②、降压变电站→通常运离发电厂而靠近负荷中心。 ⑵按变电站在电力系统中所处的地位和作用划分为 ①、枢纽变电站:枢纽变电站位于电力系统的枢纽点,电压等级一般为330kV以上, 连接多个电源,出现回路多,变电容量大;全站停电后将造成大面积停电或系统瓦解。 ②、中间变电站:中间变电站位于系统主干环行线或系统主干线的接口处,电压等级 一般为330——220kV,汇集2~3个电源和若干线路。 ③、地区变电站:地区变电站是某个地区和某个城市的主要变电站,电压等级一般为220kV。 ④、企业变电站:企业变电站是大、中型企业的专用变电站,电压等级35——220kV,1~2回进线。 ⑤、终端变电站:终端变电站位于配电线路的终端,接近负荷处,高压侧10——35kV 引入线,经降压后向用户供电。

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

馈线基本概念

馈线(传输线)的基本概念 a) 传输线(天馈线)的基本概念 连接天线和基站输出(或输入)端的导线称为传输线或馈线。传输线的主要任务是有效地传输信号能量。因此它应能将天线接收的信号以最小的损耗传送到接收机输入端,或将发射机发出的信号以最小的损耗传送到发射天线的输入端,同时它本身不应拾取或产生杂散干扰信号。这样,就要求传输线必须屏蔽或平衡。当传输线的几何长度等于或大于所传送信号的波长时就叫做长传输线,简称长线。 b) 传输线的种类、阻抗和馈线衰减常数 超短波段的传输线一般有两种:平行线传输线和同轴电缆传输线(微波传输线有波导和微带等)。平行线传输线通常由两根平行的导线组成。它是对称式或平衡式的传输线。这种馈线损耗大,不能用于UHF频段。同轴电缆传输线的两根导线为芯线和屏蔽铜网,因铜网接地,两根导体对地不对称,因此叫做不对称式或不平衡式传输线。同轴电缆工作频率范围宽,损耗小,对静电耦合有一定的屏蔽作用,但对磁场的干扰却无能为力。使用时切忌与有强电流的线路并行走向,也不能靠近低频信号线路。GSM系统所用天馈为同轴电缆。无限长传输线上各点电压与电流的比值等于特性阻抗,用符号Z。表示。同轴电缆的特 性阻抗Z。=〔138/√εr〕×log(D/d)欧姆。 通常Z。=50欧姆/或75欧姆; D为同轴电缆外导体铜网内径;d为其芯线外径;εr为导体间绝缘介质的相对介电常数。 由上式不难看出,馈线特性阻抗与导体直径、导体间距和导体间介质的介电常数有关,与馈线长短、工作频率以及馈线终端所接负载阻抗大小无关。一般GSM 工程上采用的馈线为口径为7/8 inch;在Alcatl系统的双频小区中DCS1800使用13/8 inch口径的馈线。 信号在馈线里传输,除有导体的电阻损耗外,还有绝缘材料的介质损耗。这两种

第三章传输线理论

第三章传输线理论 本章的目的是概述由集总电路向分布电路表示法过度的物理前提。在此过程中,推导出一个最有用的公式:一般的射频传输线结构的空间相关阻抗表示公式。正如我们知道的,频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。本章重点介绍传输线理论,首先介绍传输线理论的实质,再介绍常用的几种传输线,其中重点介绍微带传输线,以及一般的传输线方程及阻抗的一般定义公式。 3.1传输线的基本知识 传输微波能量和信号的线路称为微波传输线。本节主要介绍传输线理论的实质以及理论基础 3.1.1传输线理论的实质 传输线理论是分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。随着工作频率的升高,波长不断减小,当波长可以与电路的几何尺寸相比拟时,传输线上的电压和电流将随着空间位置而变化,使电压和电流呈现波动性,这一点与低频电路完全不同。传输线理论用来分析传输线上电压和电流的分布,以及传输线上阻抗的变化规律。在射频阶段,基尔霍夫定律不再成立,因而必须使用传输线理论取代低频电路理论。 现在举例说明:分析一个简单的电路,该电路由内阻为R1的正弦电压源V1通过1.6cm的铜导线与负载电阻R2组成。电路图如下: 图3.1 简单电路

并且我们假设导线的方向与z轴方向一致,且它们的电阻可以忽略。我们假设振荡器的频率是1MHz,由公式 (3.1) 10m/s, rε=10, rμ=1 因此可以得到波长其中是相速度,=9.49×7 λ=94.86m.连接源和负载的1.6cm长的导线,在如此小的尺度内感受的电压空间变化是不明显的。 但是当频率提高到10GHz时情况就明显的不同了,此时波长降低到λ=p v/10 10=0.949cm,近似为导线长度的2/3,如果沿着1.6cm的导线测量电压,确定信号的相位参考点所在的位置是十分重要的。经过测量得知电压随着相位参考点的不同而发生很大的不同。 现在我们面临着不同的选择,在上图所示的电路中,假设导线的电阻可以忽略,当连接源和负载的导线不存在电压的空间变化时,如低频电路情况,才能有基尔霍夫电压定律进行分析。但是当频率高到必须考虑电压和电流的空间特性时,基尔霍夫电路定律将不能直接用。但是这种情况可以补救,假如该线能再细分为小的线元,在数学上称为无限小长度在该小线元上假定电压和电流保持恒定值。对于每一段小的长度的等效电路为: 图3.2 微带线的等效电路 但是具体到什么时候导线或者分立元件作为传输线处理,这个问题不能用简单的数字还给以确切的回答。从满足基尔霍夫要求的集总电路分析到包含有电压和电流的分布电路理论的过度与波长有关。此过度是在波长变得越来越与电路的平均尺寸可比拟的过程中,逐渐发生。根据一般的科研经验,当分立的电路元件平均尺寸长度大于波长的1/10时,就应该用传输线理论。例如在本例中1.6cm的导线我们能估算出频率为:

光纤通信的基本概念

摘要 光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。 关键词:通信系统光导纤维 Abstract Optical fiber communication system is based on the carrier, the use of high purity glass drawn into very fine optical fiber as a transmission medium by photoelectric conversion, light to transmit information in communication systems. With the Internet business and communications industry, the rapid development of information technology to the world's productive forces and the development of human society has brought great promotion. Optical fiber communication technology as the main pillars of information, one will become the 21st century's most important strategic industry. Keywords: optical fiber communication system

电力系统的基本概念

电力系统的基本概念: 电力系统是由发电机、变压器、电力线路及用电设备组成的发电、输电、配电和用电的整体。 电力网是由变电所、电力线路等变换、输送和分配电能的设备连接在一起所组成的网络。它将发电厂与用户连接在一起。是电能产生与消费的纽带。 目前我国有5个跨省的电力系统,即华北、华东、华中、东北、西北电力系统,其中华东电力系统总装机容量和年发电量都占据首位 电力系统的特点及运行应满足的基本要求: 电能作为一种商品,它的生产、输送、分配和使用与其他工业产品相比有明显不同的特点,主要表现在以下几个方面: 电能的生产、传输及消费几乎同时进行,因为发电设备任何时刻生产的电能必须与消耗的电能相平衡。 电能与国民经济各部门之间的关系密切。电能的中断或减少直接影响国民经济生产各部门及人们的生活。 电力系统的暂态过程非常短暂。电能以电磁波的形式传输,传输速度为30万KM/S,电力系统的发电机、变压器、电力线路以及用电设备的投入和退出,都在一瞬间完成。故障的产生及发展非常短促,电力系统的暂态过程非常迅速。 对电能质量的要求颇为严格。电能的质量的好坏由电压的大小、频率和波形质量能否满足要求来衡量。任一个参数不满足要求都将造成不良的影响,甚至造成产品不合格,损坏设备或大面积停电等。

为适应上述特点,对电力系统的运行提出如下基本要求: 一、保证供电的可靠性。 间断供电,将会使生产停顿,生活混乱甚至危及人身和设备的安全,给国民经济造成极大损失,这种损失远远超出对电力系统本身的损失。造成对用户中断供电的原因主要有: 电力系统的设备发生故障; 1、电力系统的误操作; 2、电力系统继电保护的误动作; 3、运行管理水平低,维修质量不合格等。 提高电力系统运行的可靠性,应改善设备质量,提高运行管理水平和技术水平及运行检修人员的责任心。另一方面要完善电力系统的结构,提高抗干扰能力,充分发挥计算机进行监视和控制的优势,不断提高电力系统的自动化水平。 二、保证良好的电能质量。电压质量和频率质量一般以偏离额定值的大小来衡量,实际用电设备均按额定电压设计,电压偏高或偏低都将影响用电设备运行的技术指标和经济指标,甚至不能正常工作。一般规定,电压偏移不应超过额定电压的±5%;频率偏差不超过±0.2~0.5HZ等。正弦交流电的波形质量一般以波形的畸变率衡量。所谓波形的畸变率指的是各次谐波有效值的平方和的方根值与基波有效值的百分比。10KV允许为4%。 三、保证系统运行的经济性。 合理发展电网,优化电网结构和运行方式,降低电能传输过程中的损

三相交流电的基本概念和三相负载的连接方式

课题:4-1三相交流电的基本概念 4-2三相负载的连接方式 班级:1323级 时间:3-4周 课时:2节 课型:新授 教具:挂图及三角板 教法:灵活授课法 教学重点:了解三相交流电的产生,掌握三相负载的连接方法. 教学难点:掌握三相负载的连接方法及计算. 教学目的: 了解三相交流电的产生,掌握三相负载的连接及特点 授课过程: 组织教学:清点人数整顿教学秩序(1分钟) 复习相关内容;(5分钟) 三相发电机的绕组主要是星形接法,三相负载有星形连接和三角形连接法, 进行提问: 1.纯电感电路电压与电流的相位关系 2.纯电感电路电压与电流的相位关系 本节授课内容(170 分钟):

3-4三相交流电的基本概念 一、交流发电机简介 发电机的基本组成部分是磁极和线圈(线圈匝数很多,嵌在硅钢片制成的铁心上,通常叫电枢)。电枢转动、而磁极不动的发电机,叫做旋转电枢式发电机。磁极转动、而电枢不动,线圈依然切割磁感线,电枢中同样会产生感应电动势,这种发电机叫做旋转磁极式发电机。不论哪种发电机,转动的部分都叫转子,不动的部分都叫定子。 旋转电枢式发电机,转子产生的电流必须经过裸露着的滑环和电刷引到外电路,如果电压很高,就容易发生火花放电,有可能烧毁电机。这种发电机提供的电压一般不超过500 V。旋转磁极式发电机克服了上述缺点,能够提供几千伏到几十千伏的电压,输出功率可达几十万千瓦。所以,大型发电机都是旋转磁极式的。 发电机的转子是由蒸汽机、水轮机或其它动力机带动的。动力机将机械能传递给发电机,发电机把机械能转化为电能传送给外电路。 二.交流电的产生及正弦交流电的概念 1.对称三相电动势 振幅相等、频率相同,在相位上彼此相差120的三个电动势称为对称三相电动势。对称三相电动势瞬时值的数学表达式为

三相交流电的基本概念和三相负载的连接方式

课题:4-1三相交流电的基本概念4-2三相负载的连接方式班级:08级 时间:3-4周 课时:2节 课型:新授 教具:挂图及三角板 教法:灵活授课法 教学重点:了解三相交流电的产生,掌握三相负载的连接方法. 教学难点:掌握三相负载的连接方法及计算. 教学目的: 了解三相交流电的产生,掌握三相负载的连接及特点 授课过程: 组织教学:清点人数整顿教学秩序(1分钟) 复习相关内容;(5分钟) 三相发电机的绕组主要是星形接法,三相负载有星形连接和三角形连接法, 进行提问: 1.纯电感电路电压与电流的相位关系 2.纯电感电路电压与电流的相位关系 本节授课内容(170 分钟): 3-4三相交流电的基本概念

一、交流发电机简介 发电机的基本组成部分是磁极和线圈(线圈匝数很多,嵌在硅钢片制成的铁心上,通常叫电枢)。电枢转动、而磁极不动的发电机,叫做旋转电枢式发电机。磁极转动、而电枢不动,线圈依然切割磁感线,电枢中同样会产生感应电动势,这种发电机叫做旋转磁极式发电机。不论哪种发电机,转动的部分都叫转子,不动的部分都叫定子。 旋转电枢式发电机,转子产生的电流必须经过裸露着的滑环和电刷引到外电路,如果电压很高,就容易发生火花放电,有可能烧毁电机。这种发电机提供的电压一般不超过500 V。旋转磁极式发电机克服了上述缺点,能够提供几千伏到几十千伏的电压,输出功率可达几十万千瓦。所以,大型发电机都是旋转磁极式的。 发电机的转子是由蒸汽机、水轮机或其它动力机带动的。动力机将机械能传递给发电机,发电机把机械能转化为电能传送给外电路。 二.交流电的产生及正弦交流电的概念 1.对称三相电动势 振幅相等、频率相同,在相位上彼此相差120?的三个电动势称为对称三相电动势。对称三相电动势瞬时值的数学表达式为 第一相(U相)电动势:e1=E m sin(ωt)

a三相交流电路基本概念及三相电源的联接

西安工程技术(技师)学院 陕西省明德职业中等专业学校 理论课教案 2009至2010学年第二学期第4周授课班级:09机电1-4班 课程名称电工电子技术 课 次 内容名称审批签字 11 三相交流电路的基本概念 三相电源和负载的联接年月日 授课方法讲授授课时数2节教 学 目的和要求1、使学生掌握三相交流电的产生及三相电源的联接特点; 2、使学生了解三相四线制中线的作用; 3、使学生掌握三相负载星形联接和三角形的电路特点与分析方法; 教学 重点 三相电源的联接、三相负载的联接特点 教学 难点 三相负载的星形联接和三角形联接的特点 复习提问正弦交流电的表示方法 课外 作业 题号 P92 3.3 3.5 3.6 教学过程 任课教师:景永新

三 相 交 流 电 路 一、三相交流电路的基本概念: 1、教学引入: ① 三相交流发电机比单相发电机体积小、成本低; ② 同样条件输送同样功率,尤其远距离送电,三相输电比单相输电节省约25%线材; ③ 三相交流电动机的结构更简单、使用和维修方便,性能好、运行平稳; 2、特点: ① 三相交流电路由三个独立的单相交流电路以一定的联接方式组成; ② 三相发电机感生的三个对称交流电动势同时作用于电路; ③ 每个电动势的大小相等(Em 相同),频率(ω、T 、f)相同,初相不同,相位差120° ④ 每个电动势的正方向:由绕组的末端指向始端,即如果i 从始端流出则i 为正; 二、三相交流电动势的表示方法: 1、解析式:以e A 为参考量:(相序:到达最大值的先后顺序。正序——ABC —黄绿红) e A = Em sin ωt e B = Em sin(ωt – 120°) e C = Em sin(ωt + 120°) 2、波形图:P77 图3.2 3、相量图: 0∠=E E A 120-∠=E E B 120∠=E E C 三、三相电源的联接: 1、三相电源的星形连接:三相四线制,一般用于低压供电系统。 ① 联接图:P78 图3.3 N — 中性点或零点(三个线圈末端连接点) 中线 — 由中性点N 引出的导线,也称零线; 相线 — 由三相绕组首端引出的三根导线,俗称火线; ② 相电压:相线与中线间的电压。正方向:相线指向中线(绕组始端指向末端) 有效值:U P = U A = U B = U C 相互对称: ∠=P A U U , 120-∠=P B U U , 120∠=P C U U ③ 线电压:任两根相线间的电压。双下标表示方向。 有效值:U L = U AB = U BC = U CA 相互对称 ④ 相电压与线电压的关系: 根据相量图:B A AB U U U -= ? U AB = 2U P cos30°= 3Up, AB U 超前A U 30° 2、三相电源的三角形连接:很少采用

实验报告-传输线基本概念实验

传输线基本概念实验 当频率高到射频以后,电路元器件的性能发生了变化。甚至于一段线也要用传输线公式来表示,比如说λ/ 4线末端短路时始端等于开路,而末端开路时始端等于短路。这种概念一开始是很难接受的,但是有了PNA362X就可以进行实验验证了。 一实验目的 通过无耗短线的输入阻抗测试,加深对传输线公式与史密斯圆图的理解。 二仪器准备 PNA3620~3623的任一款及其成套附件,另加配保护接头一只。 仪器开机时所显示的主菜单第一项应为《频域》,若为《时域》,则按〖↓〗键使光标移到《时域》下,然后按〖→〗键选择想要的《频域》。 ? ?⑴? 扫频方案设置 ????1.选最小频距, 按〖↓〗键使光标移到《频域》旁边的数值下,按〖→〗在两种最小频距间作出选择(0.1MHz或0.025MHz,通常选0.1 MHz,有特殊要求时才用0.025MHz); 2.BF=30MHz, 按〖↓〗键, 使光标移到《BF》下面, 可按〖→〗〖←〗键对始频进行改动到所需数值为止, 仪器最低频与型号有关; 3.⊿F =30MHz, 按〖↓〗键, 使光标移到《⊿F》下面, 按〖→〗〖←〗键可对频距进行改动, 时域中⊿F不受控; 4.EF =1590MHz。 按〖↓〗键, 使光标移到《EF》下面, 按〖→〗〖←〗键可改变终止频率, 改EF时, 点数N随着变动, 点数N最小为1, 最大为81; EF = BF+(N - 1)⊿F。 注:一次性扫频方案可在主菜单下设置,若常用并需要保留的扫频方案,应按菜单键在扫频方案菜单下设置,应用时选定即可。 M:模式分为《常规》和《精

测》,应选《常规》,《精测》太费时间。 ⑵连接 1.按上图连接, 此时电桥测试端口应接上保护接头,保护接头末端开路作为新的测试端口(注); ??? 2.在主菜单下按〖↓〗键将光标移到《测:A B》下, 按〖→〗或〖←〗键使A下空白,B下为《回损》。 双通道仪器,A口与B口可以互换,连接应与选择相符。单通道机只有A口,所有测试皆由A口完成。 此时屏幕显示如下: 频域0.1 BF:0030.0 MHz ⊿F: 0030.0 MHz EF: 1590.0 MHz N: 053 M:常规 测:A B 回损 ?**************

电网基本概念

系统数据流程图 一、定义 1、变电站: 在电力部门将电能传输到用户的过程中,要经过降压后才能输送到用户处,而降压和控制电能量输送大都在变电站内完成。目前变电站按电压等级分为:500 千伏变电站、220 千伏变电站、110 千伏变电站、35 千伏变电站、10 千伏变电站。电压等级表示该变电站变压器的等级,变电站所属计量点的最高电压为电压等级所标示的电压。 2 、线路 电能量传输的硬件线路,电能量通过线路供给用户或下一级变电站,线路按电压等级分为500 千伏线路、220 千伏线路、110 千伏线路、35 千伏线路、10 千伏线路6 千伏线路。 硬件线路中电能量的走向在两个方向上都有可能,计量这种线路的电度表有可能为多块机械表或一块多功能数字表(能够计量正反向电量),这样在一条线路上挂不定个数的电度表在计算上不好处理,那么本系统中将实际线路中计量正反向电量和反向电量的表计分开处理,即:一条线路中最多挂两块机械表(多功能数字表一块当四块处理),这样实际中的一条线路在本系统中成为两条线路分别计量正反向电量。 3 、电度表 用于计量用户用电量的计量设备。分为机械表和多功能数字表,机械表一块表只能计量一种电量,要计量正反向有无功电量需四块电度表,数字表可同时计量正向有功、正向无功、反向有功、反向无功四种电量,故在本系统中只要电力部门计量反向电量数字表即当成四块电度表处理,不计量反向电量则当量两块表处理。 4 、CT 变比 变电站线路上电流互感器的变比值,一般为某一数值比 5 (互感器输出端额定电流为5 安培),CT 变比针对于计量点而言,同一计量点上所属的电度表拥有相同的CT 变比。 5 、PT 变比 变电站线路上电压互感器的变比值,一般为母线电压比100 (互感器输出端额定电压为100 伏),PT 变比针对于计量点而言,同一计量点上所属的电度表拥有相同的PT 变比。 6 倍率 倍率=CT 变比*PT 变比,倍率同CT 变比、PT 变比一样也是针对计量点而言的。 7 、线损 电能通过线路传输过程中,由于线路发热、电磁场干扰等原因造成的电能量损失称为线损,损失的电量称为线损电量。线损电量= 线路输入电量- 线路输出电量

电力系统的基本概念

<<电力系统分析自学指导书>> 第一章电力系统的基本概念 (一)课程容 1,l 电力系统概述。 1.2 电力系统的接线方式和电压等级。 1.3 电力系统分析的容与工具。 (二)学习目的与要求 本章为电力系统概述。本章主要介绍电力系统的构成、电力系统的近况、电力系统的额定电压等级及接线方式、电力系统运行的基本要求、电力系统分析课程的研究容及研究工具。 本章重点是电力系统的构成、电能生产特点、电力系统运行的基本要求、接线方式及 特点、电压等级及电压分布、中性点运行方式及特点。 要求考生领会掌握本章的重点容。 (三)考核知识点与考核要求 1.地理接线图与电气接线图,要求达到领会层次 1.1 地理接线图、电气接线图。 1,2 电气接线图中符号意义。 1.3 电力系统的构成。 2.电能生产特点,要求达到领会层次。 2.1 电能不能大量储存。 2,2 电能生产、输送、消费同时完成。 2.3 运行状态改变瞬间完成。 2.4 电能质量要求严格。 2.5 电能与国民经济各部门间关系密切。 3.供电可靠性与负荷分类,要求达到领会层次。 3.1 供电可靠性的重要性。 3.2 负荷的分类。 4 电能质量,要求达到领会层次。 4.1 电压偏移。 4.2 频率要求。 4.3 电压波动与闪变。 4.4 波形畸变。 4.5 电能质量恶化原因。 5 电力系统运行经济性,要求达到领会层次。 5.1 煤耗率。 5.2 网损率。 5.3 水电厂、火电厂互补性。 5.4 联合系统提高经济性与可靠性。 6.接线方式及特点,要求达到领会层次。 6.1 接线方式的种类。 6.2 各类接线方式的优缺点。

7.电压等级的划分及适用围,要求达到识记层次 7.1 额定电压、电压等级及电压分布。 7.2 我国规定的电压等级。 7.3 电压等级与供电围。 8.中性点运行方式,要求达到领会层次。 8.1 中性点运行方式种类。 8,2 确定中性点运行方式的根据。 8,3中性点运行方式的确定及供电可靠性。 第二章电力系统各元件的特性参数及等值电路 (一)课程容 2.1 发电机的参数及数学模型。 2.2 电力线路的参数及等值电路。 2.3 变压器的参数及等值电路。 2.4 负荷的数学模型。 2.5 电力网的等值电路。 (二)学习目的与要求 本章主要向考生介绍发电机的稳态参数模型、发电机的运行极限、据变压器的试验数据计算变压器的参数、变压器的两种等值电路、线路参数的计算公式及线路的等值电路、负荷的数学模型、标幺制、电网的等值电路图。 本章的重点是发电机的运行极限图、线路参数计算公式的应用、变压器参数计算公式、变压器n型等值电路图、标幺制、电网等值电路图。 要求考生对本章重点领会掌握。 (三)考核知识点与考核要求 1.发电机稳态运行相量图、运行极限图及功角特性,要求达到识记层次。 1,1 隐极机稳态相量图。 1.2 隐极机稳态运行极限图。 1.3 隐极机稳态运行功角特性。 2.变压器参数计算及等值电路,要求达到识记层次。 2.1 参数计算公式。 2,2 H型等值图。 2,3 H型图存在的条件。 2,4 H型图的优点。 2.5 理想变压器三种变比取值的意义。 3.线路参数及等值电路,要求达到识记层次 3.1 线路参数计算公式。 3.2 架空线路换位。 3.3 线路电纳等值含义。 3.4 长线路任意点的电压、电流计算公式。 4.负荷的数学模型,要求达到识记层次。 4.1 常用负荷的函数表达式。 5.电力网等值电路,要求达到识记层次。 5,1 标幺制。

传输线理论

实验一:传输线理论 * (Transmission Line Theory ) 一. 实验目的: 1. 了解基本传输线、微带线的特性。 2. 利用实验模组实际测量以了解微带线的特性。 3. 利用MICROWA VE 软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R 、L 、G 、C 等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z 轴的方向,则由基尔霍夫电压及电流定律可得下列 二个传输线方程式: 此两个方程式的解可写成: 0)()()()() (22 2=+---z V LG RC j z V LC RG dz z V d ωω0)()()()()(2 2 2=+---z I LG RC j z I LC RG dz z I d ωω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I - 分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

电力电子技术基本概念和基础知识练习带答案(大工复习)

电力电子技术基本概念和基础知识练习:(王兆安、黄俊第四版) 第1章电力电子器件填空题: 1.电力电子器件一般工作在_开关_状态。 2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高时,功率损耗主要为_开关损耗__。 3.电力电子器件组成的系统,一般由_控制电路_、_驱动电路_、_电力电子器件_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_保护电路_。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型_ 、双极型、_复合型_三类。 5.电力二极管的工作特性可概括为_加正向压降导通、加反向压降关断_。 6.电力二极管的主要类型有_普通二极管_、_肖特基二极管_、_快恢复二极管_。 7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为_阳极和阴极_ 正向有触发则导通、反向截止_关断_ 。 9.对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL_>_IH 。 10.晶闸管断态不重复电压UDRM与转折电压Ubo数值大小上应为,UDRM_<_Ubo。 11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。 12.GTO的_多元集成_结构是为了便于实现门极控制关断而设计的。 13.功率晶体管GTR从高电压小电流向低电压大电流跃变的现象称为_开通_ 。 14.MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截至区_、前者的饱和区对应后者的_放大区_ _饱和区_。 15.电力MOSFET的通态电阻具有_正_温度系数。 16.IGBT 的开启电压UGE(th)随温度升高而_略降_,开关速度_小于_电力MOSFET 17.功率集成电路PIC分为二大类,一类是高压集成电路,另一类是_智能功率集成电路_。 18.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压型_和_电流型_两类。 19.GTR的驱动电路中抗饱和电路的主要作用是_使GTR导通时处于临界饱和状态_。 20.抑制过电压的方法之一是用_电感_吸收可能产生过电压的能量,并用电阻将其消耗。在过电流保护中,快速熔断器的全保护适用于_中、小_功率装置的保护。 21.功率晶体管缓冲保护电路中的二极管要求采用_快恢复_型二极管,以便与功率晶体管的开关时间相配合。 22.晶闸管串联时,给每只管子并联相同阻值的电阻R是_电阻均压_措施,给每只管子并联RC支路是_动态均压_措施,当需同时串联和并联晶闸管时,应采用_先串后并_的方法。 23.IGBT的通态压降在1/2或1/3额定电流以下区段具有_负_温度系数,在1/2或1/3额定电流以上区段具有_正_温度系数。 24.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于不可控器件的是_P.Diode_,属于半控型器件的是_SCR_,属于全控型器件的是_GTO、GTR、IGBT、P.MOSFET_;属于单极型电力电子器件的有_P.Diode、P.MOSFET_,属于双极型器件的有_SCR、GTR、GTO_,属于复合型电力电子器件得有_IGBT_;在可控的器件中,容量最大的是_SCR_,工作频率最高的是_P.MOSFET_,属于电压驱动的是_P.MOSFET、IGBT_,属于电流驱动的是_SCR、GTR、GTO_。 第2章整流电路填空题: 1.电阻负载的特点是_输出电流与输出电压波形相同_,在单相半波可控整流电阻性负载电路中,晶闸管控制角α的最大移相范围是_0~180°_。 2.阻感负载的特点是_电流无法突变_,在单相半波可控整流带阻感负载并联续流二极管的电路中,晶闸管控制角α的最大移相范围是_0~180°_ ,其承受的最大正反向电压均为_√2U2_,续流二极管承受的最大反

电路的基本概念与基本定律

《电工与电子技术》 上册 电工技术部分共8章 第1章 电路的基本概念与基本定律 第2章 电路的分析方法 第3章 电路的暂态分析 第4章 正弦交流电路 第5章 三相电路 第6章 磁路与铁心线圈电路 第7章 交流电动机 第10章 继电接触器控制系统 下册 电子技术部分共6章 第14章 半导体二极管和三极管 第15章 基本放大电路 第16章 集成运算放大器 第18章 直流稳压电源 第20章 门电路和组合逻辑电路 第21章 触发器和时序逻辑电路 各章节基本要求和重点内容: 第1章 电路的基本概念与基本定律 基本要求: 1.了解电路模型及理想电路元件的意义; 2.理解电路变量(电压、电流及电动势)参考方向(及参考极性)的意义 ; 3.理解电路的基本定律(“Ω”、KCL 及KVL )并能正确地应用; 4.了解电源的不同工作状态(有载、开路 及短路)及其特征; 5.理解电气设备(或元件)额定值的意义; 6.能分析计算简单的直流电路及电路中各点的电位。 重点内容: ? 电路变量参考方向(及参考极性) ? 基本定律(“Ω”、KCL 及KVL )的正确应用。 “Ω”:RI U ±= KCL :∑=0I , 或 ∑∑=出入 I I KVL : ∑=0U 或∑∑=降升 U U 【例1.1】在 图 示 电 路 中 ,U S ,I S 均 为 正 值,其 工 作 状 态 是 ( )。 (a) 电 压 源 发 出 功 率 (b) 电 流 源 发 出 功 率 (c) 电 压 源 和 电 流 源 都 不 发 出 功 率

I S 【解】功率和负载的判断。用电流、电压的实际方向判别。如果二者方向相反,电流从 “+”端流出,为电源发出功率;反之则是负载吸收功率。所以答案为(a) 电 压 源 发 出 功 率。 第2章 电路的分析方法 基本要求 1、 掌握用支路电流法、叠加原理和戴维南定理分析电路的方法; 2、 理解实际电源的两种模型及其等效变换。 重点内容: 叠加原理和戴维南定理 【例2.1】应用戴维宁定理计算图中2?电阻中的电流I 。 【解】(1)将2?电阻断开。求开路电压U ab0, V 632 612012db cd ac ab0=? -++?-=++=U U U U (2)将二端网络ab 除源,得无源二端网络,如图所示。求等效电阻R

电网基本概念

一、电网基本概念: 电力系统是由发电、输电、配电、用电等环节组成的电能生产、传输、分配和消费的系统。电网包括输电、配电和用电环节,用于联系发电厂和电力用户。 电网主要包括输电网和配电网。 输电网的功能是将发电厂发出的电力送到消费电能的地区,或进行相邻电网之间的电力互送,形成互联电网。 配电网的功能是接受输电网输送的电力,然后进行再分配,输送到城市和农村,进一步分配和供给工业、农业、商业、居民以及有特殊需要的用电部门。 就电力输送和供给方式而言,有交流输配电和直流输配电两大类方式。 交流输配电方式由升压变电站、降压变电站(包括一次设备和二次设备)及其相连的输电线路完成。输变电设备连接起来构成输电网,配变电设备连接起来构成配电网。直流输电方式由直流输电线路和换流站的各种设备实现。 变电设备有:变压器、电抗器、电容器、断路器、接地开关、隔离开关、避雷器、电压互感器、电流互感器、母线等一次设备和继电保护、监视、测控、电力通信系统等二次设备。输电设备主要有:导线、杆塔、绝缘子串、地线(含光纤)等 直流设备有:换流阀、换流变压器、平波电抗器、直流滤波器、直流隔离开关、接地开关、旁路开关、直流断路器、直流测量装置以及直流避雷器等。 电网是电力流通网络,具有物流的基本传输功能。电网将电能从发电侧传输配送到用户侧,这是电网最基本的功能。 电能是由一次能源转化而得的二次能源。日常生活中使用的电能主要来自其他形式能量的转换,包括谁能(水力发电)、热能(火力发电)、原子能(核能)、风能(风力发电)、化学能(电池)及光能(光电池、太阳能电池等)等。 电能的主要特点: 不能大规模储存,发电、输电、配电和用电在统一瞬间完成; 发电和用点之间必须时时保持供需平衡,如果不能保持实时平衡,将危及用电的安全性、连续性及电能质量。电能这种高度同步性的特点,必须通过电源、电网和用户的协调运作来共同保障电力安全和电能质量。 其中,作为传输、配送电能的网络——电网,处于枢纽地位,它连接若干分散的电源和用户。电能安全和质量必须通过电网的调度、运行和控制来完成。电网在保障电力系统安全中具有重要的、不可替代的作用,因此电网作为能源供应体系的重要组成,是现代经济发展和社会进步的重要基础和保障。

传输线的基本知识

三维工程技术培训讲义1 传输线及馈线介绍 传输线及馈线技术指标 三维工程技术培训讲义 2 传输线及馈线 三维工程技术培训讲义3 传输线及馈线三维工程技术培训讲义 4 超短波段的传输线一般有两种:平行线传输线和同轴电缆传输线(微波传输线有波导和微带等)。平行线传输线通常由两根平行的导线组成。它是对称式或平衡式的传输线。这种低频信号线路。 传输线的种类 三维工程技术培训讲义5 无限长传输线上各点电压与电流的比值等于特性阻抗,用符号Z。表示。同轴电缆的特性阻抗 传输线的特性阻抗 三维工程技术培训讲义 6 信号在馈线里传输,除有导体的电阻损耗外,还有绝缘材料的介质损耗。这两种损耗随馈线长度的增加和工作10×log(P。/P )(分贝)。 馈线衰减常数

三维工程技术培训讲义7 置。 匹配的概念三维工程技术培训讲义 8 50 ohms 匹配和失配例 三维工程技术培训讲义9当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。馈线上反射损耗三维工程技术培训讲义 10 9.5 W 50 ohms 朝前: 10W 返回: 0.5W 这里的反射损耗为10log(10/0.5) = 13dB 反射损耗示例 三维工程技术培训讲义11 在不匹配的情况下,馈线上同时存在入射波和反射波。两者叠加,在入射波和反射波相位相同的地方振幅相加最大,形成波腹;而在入射波和反射波相位相反的地方振幅相减为最小,形成波节。其它各点的振幅则介于波幅与波节之间。这种合成波称为驻波。反射波和入射波幅度之1,匹配也就越好。馈线的电压驻波比 三维工程技术培训讲义 12 驻波比、反射损耗和反射系数

相关主题
文本预览
相关文档 最新文档