当前位置:文档之家› 矿用风速传感器设计方案

矿用风速传感器设计方案

矿用风速传感器设计方案
矿用风速传感器设计方案

矿用风速传感器设计方案

第1章矿用风速传感器概述

1.1矿用风速传感器的作用

矿用风速传感器用于检测煤矿井下各坑道、风口、主风扇等处的风速。在煤炭开采的过程中,总有瓦斯涌出。为稀释矿井空气中的瓦斯,需不断地向井下输送新鲜空气。风量是通风系统的重要参数之一。因此,对矿井风速的监测是矿井监控的主要内容之一。

1.2矿用风速传感器的安装位置

安装:风速传感器可安装在主要测风站和进回风巷等地。安装地应在距顶板较好无明显淋水,不妨碍运输和行人安全的地方,传感头指向应与风流方向一致。安装前应首先测量通道平均风速,任选一点安装,遥控器对准传感器按动上、下键,使就地显示为平均风速即可。注意:传感器安装一定要牢固,不得摆动,传感器测风面一定要垂直风流方向。

1.3矿用风速传感器的技术指标

测量范围:0.4 ~15m/s

测量误差:≤±0.3m/s

输出信号:频率型200Hz~1000Hz或电流型1mA~5mA

工作电压:12V~21V(DC)

工作电流:≤90 mA

传输距离:≤2Km

1.4矿用风速传感器的分类

(1)按传感器用途可分为环境参数传感器与生产参数传感器。

(2)按供电方式可分为自带电源式传感器与外接电源式传感器两种。

(3)按其输出信号形式可分为模拟量、开关量、累计脉冲量等。模拟信号应符合

下列信号制式:电流模拟信号为1~5mA或4~20mA,频率模拟信号为200~1000Hz

或5~15Hz。

(4)按作用原理不同可分为:机械翼式风速传感器、电子翼式风速传感器、热效应式风速传感器超声波风速传感器。

(5)按风速的测量范围可分为高速风速传感器(V>10m/s)、中速风速传感器

(V=0.5m/s ~10m/s )、低速风速传感器(V =0.3m/s ~0.5m/s)

1.5测风方法

测量井巷的风量一般要在测风站内进行,在没有测风站的巷道中测风时,要选一段巷道没有漏风、支架齐全、断面规整的直线段进行测风。

空气在井巷中流动时,由于受到内外摩擦的影响,风速在巷道断面内的分布是不均匀的,如图1-1所示。在巷道轴心部分风速最大,而靠近巷道周壁风速最小,通常所说的风速是指平均风速而言,故用风速传感器测风必须测出平均风速。为了测得巷道断面上的平均风速,测风时可采用路线法,即将风速传感器按图1-2所示的路线均匀移动测出断面上的风速;或者采用分格定点法,如图1-3所示,即将巷道断面分为若干方格,使风表在每格内停留相等的时问,进行移动测定,然后计算出平均风速。根据断面大小,常用的有9点法、12点法等。

图1-1 风速流动状态 图1-2 线路法测风 图1-3 定点法测风

测风时,根据测风员的站立姿势不同又分为迎面法和侧身法两种。

迎面法是测风员面向风流方向,手持风速传感器,将手臂向正前方伸直进行测风。此时因测风人员立于巷道中间,阻挡了风流前进,降低了风速传感器测得的风速。为了消除测风时人体对风流的影响,须将测算的真实风速乘以校正系数(1.14)才能得出实际风速。

侧身法是测风人员背向巷道壁站立,手持风速传感器,将手臂向风流垂直方向伸直,然后测风。用侧身法测风时,测风人员立于巷道内减少了通风断面,从而增大了风速,需对测风结果进行校正,其校正系数按下式计算:

S

S K 4.0-= 式中 K —--测风校正系数,

S ——测风站的断面积(m 2),

0.4--- 测风人员阻挡风流的断面积(m 2)。

1.6测风注意事项

(1)风速传感器度盘一侧背向风流,即测风员能看到度盘;否则,风速传感器指针会发生倒转。

(2)风速传感器不能距人体太近,否则会引起较大的误差。

(3)风速传感器在测量路线上移动时,速度一定要均匀。在实际工作中,这点常不被重视,由此引起的误差是很大的。如果风速传感器在巷道中心部分停留的时间长,则测量结果较实际风速偏高;反之,测量结果较实际值偏低。

(4)叶轮式风速传感器一定要与风流方向垂直,在倾斜巷道测风时,更应注意。如表1-1传感器偏角对测量结果的影响。由表1-1可知偏角10°以内时所产生的误差可忽略不计。

表1-1传感器偏角对测量结果的影响

风度偏角/(°) 风表平均读数误差/%

O 141.O O.35

5 140.5 1.42

10 139.O 2.50

15 137.5 6.50

20 132.O

(5)在同一断面测风次数不应小于3,三次测量结果的最大误差不应超过5%。

(6)传感器的量程应和测定的风速相适应,否则将造成风速传感器损坏或量程不准确。

(7)为了减小测量误差,一般要求在1min时间内,使传感器从移动路线的起点到达终点。

(8)使用前还应注意传感器的校正有效期。

1.7 各类传感器性能比较

表1-2各类传感器性能的比较

矿用风速传感器的种类优点缺点

机械翼式风速传感器

体积小,质量轻,可测平

均速度。精度低,不能直接指示风速,不能自动遥测,不能

测微风。

电子翼式风速传感器接近开关式

(感应式)

电容式

光电式

能发展遥测,精确度比机

械翼式高,能直接指示瞬

时风速。

叶片有惯性运动,所以测

量值偏大,体积和质量比

机械翼式大,构造复杂,

风速过高不能测、风速过

低也不能测。

热效应式风速传感器

热线式

热球式

热敏电阻式

没有惯性影响,高低风速

均可测,能发展遥测。

热敏电阻和热球的测值

呈非线性,受湿度和气体

成份的影响。

超声波风速传感器

结构简单,寿命长,性能稳定,不受风流的影响,精

度高,风速测量范围大。

通过表中的比较,可以明显的看到,设计传感器最好的选择就是超声波风速传感器。不仅结构简单,性能稳定,不受风流影响而且精度高,测量范围大。

1.8超声波风速传感器的主要特点

矿井的风速传感器主要有超声波时差式和超声波旋涡式两种。

1. 超声波时差式风速传感器:它是应用超声波的时差来测定风速的,当超声波以速度

v 从甲地传到距离L 的乙地时,所需的时间为t.如图1-4;

图 1-4 顺风的条件下

如果空气以速度V 运动时,超声波从甲地到乙地所需时间为:

V L

V L

t +=

V L 是V 在v 方向的分量。

在顺风和逆风的条件下,如果超声波传播距离相同,如图1-5 所示。

图1-5 顺风和逆风的条件下

所需的传播时间分列为t +.和t -,即:

顺风时: 逆风时:

V

L t =V t L

V L

-=

-L

L V L V V V V t t L

L L 211=--+=--+V t L

V L

+=+

)11(_

t t -+

不难看出,通过测量顺风逆风超声波时差关系, 就可以测定风速大小。 2.超声波旋涡式风速传感器具有如下特点(1)采用超声波涡街原理具有可动部件,可靠性高介质适应性强等特点。 (2)采用高集成数字化电路,电路结构简单,性能可靠,便于维修与调试(3)外壳采用全不锈钢材料-设计,增强了传感器的抗冲击和抗腐蚀能力,通过两者的比较最终选择超声波旋涡式风速传感器电路进行设计。

3.超声波旋涡式风速传感器具有如下优点:

(1)无可动部件,无机械磨损,性能稳定,使用寿命长;

(2)输出本身就是与风速成线性关系的脉冲频率信号,没有零点漂移,且敏感元件灵敏度变化不会直接影响输出,测量精度高;

(3)输出信号不受流体特性(温度、湿度、压力、成份、密度、粘度、矿尘等)影响;

(4)响应迅速。

第2章工作原理及设计方案

2.1工作原理

矿用风速传感器是利用卡曼涡街原理和超声波旋涡式风速传感器工作原理,下面分)11(2t t V

L L -+-=

别介绍卡曼涡街效应和旋涡式风速传感器工作原理。

2.1.1卡曼涡街原理

超声波旋涡式风速传感器是利用卡曼涡街效应设计的。在流体中设置旋涡发生体(阻流体),从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡曼涡街,如图2-1所示。旋涡列在旋涡发生体下游非对称地排列。

图2-1 卡曼涡街效应

d v s f ?=

式中:f -漩涡频率;

s -常数;圆柱形挡体的s 值为0.21;

v -未扰动流体的速度;

d-阻挡体宽度(或直径)

首先将风速转换成与风速成正比的旋涡频率,然后通过超声波将旋涡频率转换成超声波脉冲,后将超声波脉冲转换成电脉冲,从而测得风速。由于超声波旋涡式风速传感器具有寿命长,易维护,成本低等优点。因此,在矿井监控系统中获得了广泛应用。

我们知道,在流动的水中,垂直于流向插人一阻挡体,在阻挡体的下游会产生两列内旋的互相交替的旋涡。可以证明:在无限界流场中,垂直流向插入一根无限长非流线形阻挡体,阻挡体的下游将产生两列内旋、互相交替的旋涡,若对流速、阻挡体截面面积和形状作适当的限制,则旋涡频率与流速成正比:其旋涡的发生频率为 f ,被测介质来流的平均速度为 V ,旋涡发生体迎面宽度为d ,交替产生的漩涡数通过压电元件检测出频率 f ,经电子线路检测后送给定时控制器、锁定寄存器进行运算处理给显示电路进行显示。

2.1.2超声波旋涡式风速传感器工作原理:

如图2-2 所示。在风洞中设置确定旋涡发生杆(即阻挡体),在阻挡体下方安装一对超声波发射器和接收器,当流动空气经过旋涡发生杆时,在其下方产生两列内旋相互

交替的旋涡。由于旋涡对超声波的阻挡作用,超声波接收器将会收到强度随旋涡频率变化的超声波,即旋涡没有阻挡超声波时,接收到的超声波强度最大,旋涡正好阻挡超声波时,接收到的超声波强度最小。超声波接收器将接收到的幅度变化的超声波转换成电信号,所经过放大、解调、整形等就可获得与风速成正比的脉冲频率。

图2-2 超声波旋涡式风速传感器工作原理

当发生杆一定时,风速越大,形成的卡曼旋涡就越强,对超声波束调制度越大。当风速很低时,会形不成旋涡。为检测较低的风速,可以增大发生杆直径或提高超声波接收器的灵敏度。能产生旋涡的发生杆直径与风速关系如图2-3所示。

图2-3 产生旋涡的发生杆直径与风速关系

为了解决低风速的测量问题,首先要设法提高调制度,方法一是选择合理的漩涡发生体;方法二是用灵敏度高的超声波换能器,超声波发射与接收器的形状、断面尺寸、相对位置及安装紧固程度和偏移角等都会影响灵敏度。超声波发射与接收器应设置在其轴线距发生杆的距离为发生杆直径 6 倍的地方,以保证线性度。超声波的工作频率应为140~150kHz,即高于风速旋涡频率两个数量级,但不要过高,过高会造成超声波在空气中传播时的严重衰减。

2.2设计方案

矿用风速传感器主要由:电源电路,发射电路,接收电路,整形电路,频流转换,就地显示组成。超声波旋涡风速传感器是利用卡曼涡街对超声波调制原理来实现对风速

的测量的。传感器输出1~5mA的直流模拟信号,其值对应0.4~15m/s的风速值。并有就地数字显示功能,直读风速值。可对煤矿井下的风速进行遥测。其测量范围0.4~15m/s。

1.电源电路:由三端固定集成稳压器W和由闸流管SCR、稳压管D4组成的保护电路构成。由电源箱供给21V 450mA直流电源,经本电路稳压后输出12V直流电压作为传感器的工作电路,当W由于某种原因损坏,使输出电压大于13V时,稳压管D4被击穿,闸流管SCR导通电流经SCR流入地,从而实现就地保护。

2.发射电路:该电路由电感三点式振荡器(哈特莱电路)和乙类推挽功率放大器组成。振荡器产生145KHz的连续等幅正弦波,由变压器输入端,经功率放大后施加到发射换能器F上。发射电压约11V,发射功率约200mW。

3.接收电路:由中频放大器、检波器、低频放大器组成。

发射换能器发出的超声波,经空气衰减后,被接收换能器接收,转换能量损失很大,接收换能器输出的信号很微弱,一般只有几毫伏,为了满足检波器的需要,实现大信号检波而采用了中频放大器专门对接收换能器输出的信号进行放大。中频放大器由两级LC选频放大器组成,放大器的中心频率为145KHz,频带宽度为3 KHz,电压放大倍数为600~800倍,输出电压有效值为1V。

检波器将中频放大器输出的调幅信号中的低频漩涡信号检出送给低频放大器,检波器输出电压幅值为5~10 mV,其值随风速增加而增大。

低频放大器采用8FC7型单电源运放构成两级放大器,每级放大约20倍,频率范围在20~1200Hz,当输入端短路时,输出端噪声电压不大于1 mV.

4.整形电路:由BG6、BG7两只硅晶体管构成,把低频放大器输出的近似正弦波信号转换成矩形波,完成波形变换,一路送给就地显示电路,另一路送给频率—电流转换电路。

5.频率—电流转换电路:由CMOS单稳态触发器IC4、单电源运算放大器IC5、场效应晶体管BG8和硅晶体管BG9构成。

单稳态触发器IC4输出脉冲TM由R42和C26确定,由施密特整形电路输入的矩形波信号,经单稳态电路再次整形后输出脉宽恒定幅值恒定的矩形脉冲,经R43、WD2、R41、R46、C27分压滤波后,输出0~1V直流电压信号,完成频率—电压转换。输出电压信号可以由WD2在小范围内调整。

由IC5、BG8、BG9、构成恒流电路,WD为模拟负载电阻。WD5为采样电阻,IC5结成同相放大工作状态,恒流电路将0~1V直流电压信号转化成1~5mA直流电流信号,经长线输送至矿井监测系统、电源箱,从而完成频率—电流转换。

6.就地数字显示电路。由CMOS定时控制器I C6,十进制数字寄存译码器IC7、IC8、IC9和数码管等构成。

定时控制器IC6由晶体振荡器SZ和R56、C30、C31构成晶体振荡器,产生32768Hz 的振荡频率,经分频后,由IC6的12脚输出32Hz,占空比为50%的方波信号作为数码管的驱动信号。IC6的2、3脚接入R54、R57构成施密特触发器,对输入的被测脉冲进行整形,被测信号由IC3的2脚输入。R55、C29决定单稳态触发器的单稳时间,其值应取得比最小输入信号周期小些,以免前一个单稳时间尚未结束,后一个输入信号又到来。

IC7、IC8、IC9的锁定寄存器选通信号是由IC6 的15脚供给。它是由定时器的窄脉冲产生器产生的间隔周期为1s,脉宽脉冲为1.5x10-5的负窄脉冲信号。IC7、IC8、IC9的清零信号由IC6的11脚供给。它是由定时控制器的窄脉冲产生器产生的间隔周期为1s,脉宽脉冲为1.5x10-5的正窄脉冲信号。被测脉冲由IC6的10脚输出送给IC7的计数输入端6脚进行计数。当计数时间到1秒钟时,选通信号到来,给IC7 ~IC9锁定寄存器解锁,所测信号进入译码器,显示器将显示这1秒钟的测量值。选通脉冲后,液晶显示器保持测量值,同时清零信号对计数器清零。清零脉冲过后,计数器开始下一秒钟的计数。当计数又到1秒钟是,选通信号又到来,锁定寄存器又解锁,液晶显示器显示新的测量值。如此循环,显示器将不断地显示新的测量值,其显示周期为1秒,如图2-4.

图2-4风速传感器原理框图

第3章各部分电路设计

3.1电源电路的设计

电源电路的作用就是为发射电路,接收电路,整形电路,频流转换电路提供+12V 电源,为就地显示电路提供+5V电源;由煤矿电源箱KDW6B提供+21V电压;为了得到+12V电压和+5V电压可以利用三端固定集成稳压器7812和稳压二极管。

三端固定输出集成稳压器通用产品有CW7800系列(正电源)和CW7900系列(负电源)。

传感器项目规划设计方案 (1)

传感器项目 规划设计方案规划设计/投资分析/实施方案

摘要 传感器作为现代信息产业的重要神经触角,是新技术革命和信息社会 的重要技术基础,广泛应用于各行各业。目前世界发达国家都大力布局传 感技术产业,中国的传感器市场发展很快,但本土高端传感器技术与世界 发达国家水平相比仍存在明显差距,很多核心技术都掌握在国外企业的手里,因此还有较大的提升空间。传感器是信息社会的重要技术基础,它 也是当前各发达国家竞相发展的技术。目前,活跃在国际市场上的仍然是 德国、日本、美国等国家。相比而言,我国的传感器产业发展较慢,80%以 上的传感器都依靠进口。我国物联网发展一直无法突破,缺乏“感知能力”正是一个重要原因。传感器产业的发展大体可分三个阶段:20世纪50 年代伊始,结构型传感器出现;20世纪70年代开始,固体型传感器逐渐发 展起来;20世纪末开始,智能型传感器出现并得到快速发展。到2025年,物联网带来的经济效益将在2.7万亿到6.2万亿美元之间,其中传感器作 为物联网技术最重要的数据采集入口,将迎来广阔的发展空间。流量传 感器、压力传感器、温度传感器占据最大的市场份额。我国对MEMS传 感器的研究虽然起步较晚,但重视程度深,投入力度大,出台了多项政策 文件,从关键技术研发、产业应用等多角度大力支持MEMS传感器的发展。 近年来,我国MEMS传感器持续保持快速增长。从产业链来看,我国智 能传感器产业生态也逐渐趋于完备,设计制造,封测等重点环节均有骨干 企业布局。这些传感器的生产企业主要集中在长三角地区,并逐渐形成以

北京、上海、南京、深圳、沈阳和西安等中心城市为主的区域空间布局。从企业分布来看,传感器企业主要分布在华东地区、京津及东北地区、珠三角地区、中西部地区四大产业聚集区。其中,华东地区传感器企业数量最多,后面是珠三角地区、京津及东北地区、中西部地区。此外,传感器产业伴随着物联网的兴起,在其它区域,如陕西、四川和山东等地也逐步发展起来。目前,我国国内供给能力不足,跨国公司占据超过60%的市场份额,特别是高端产品几乎全靠进口补给,80%的芯片依赖国外;剩余的份额也只要集中在几家上市公司手中,占领国内MEMS市场的40%以上;国内MEMS企业中70%的是中小企业,产品主要集中在中低端。中国MEMS 传感器市场的起步和发展与中国3C产品(包括计算机、通信和消费类电子产品)及汽车电子产品保持快速增长、全球电子整机产业向中国转移密切相关,而智能手机又是3C产品中MEMS传感器应用最为集中的领域,因此中国MEMS传感器的市场构成以汽车电子和智能手机相关传感器为主。分行业来看,消费电子目前是中国MEMS传感器最大的应用领域,其次是工业控制和汽车电子,三者合计占据总市场份额的75%以上。未来几年,伴随着新产品和新应用在汽车电子、以智能手机和平板电脑为代表的3C产品和医疗电子中进一步渗透,压力传感器、加速度传感器、微机械陀螺和麦克风等4类重要传感器之外,主要应用于医疗电子的生物微流控系统和应用于智能手机的微镜阵列的市场份额也将进一步增加。物联网、云计算、大数据、人工智能应用的兴起,推动传感技术由单点突破向系统化、体系化

矿用风速传感器设计方案

矿用风速传感器设计方案 第1章矿用风速传感器概述 1.1矿用风速传感器的作用 矿用风速传感器用于检测煤矿井下各坑道、风口、主风扇等处的风速。在煤炭开采的过程中,总有瓦斯涌出。为稀释矿井空气中的瓦斯,需不断地向井下输送新鲜空气。风量是通风系统的重要参数之一。因此,对矿井风速的监测是矿井监控的主要内容之一。 1.2矿用风速传感器的安装位置 安装:风速传感器可安装在主要测风站和进回风巷等地。安装地应在距顶板较好无明显淋水,不妨碍运输和行人安全的地方,传感头指向应与风流方向一致。安装前应首先测量通道平均风速,任选一点安装,遥控器对准传感器按动上、下键,使就地显示为平均风速即可。注意:传感器安装一定要牢固,不得摆动,传感器测风面一定要垂直风流方向。 1.3矿用风速传感器的技术指标 测量范围:0.4 ~15m/s 测量误差:≤±0.3m/s 输出信号:频率型200Hz~1000Hz或电流型1mA~5mA 工作电压:12V~21V(DC) 工作电流:≤90 mA 传输距离:≤2Km 1.4矿用风速传感器的分类 (1)按传感器用途可分为环境参数传感器与生产参数传感器。 (2)按供电方式可分为自带电源式传感器与外接电源式传感器两种。 (3)按其输出信号形式可分为模拟量、开关量、累计脉冲量等。模拟信号应符合 下列信号制式:电流模拟信号为1~5mA或4~20mA,频率模拟信号为200~1000Hz 或5~15Hz。 (4)按作用原理不同可分为:机械翼式风速传感器、电子翼式风速传感器、热效应式风速传感器超声波风速传感器。 (5)按风速的测量范围可分为高速风速传感器(V>10m/s)、中速风速传感器

风速传感器介绍

日常生活生产中,很多地方都需要对风速值大小进行测量,如海上作业、环保、飞行作业,各类风扇制造业、通风空调系统等领域。对于不同的测量地点,进行不同的风速测量,可选择用不同方式的测风传感器进行测量,选型正确,对于测量的方便性和准确性都有很大的帮助。 风速传感器可分为: 1、G75B叶轮式风速传感器 叶轮式风速传感器可广泛应用在管道测风、建筑节能、环保监测等领域,避免了风杯式风速传感器体积较大,安装不方便的缺点。适用于有微小颗粒粉尘的设备管道中的微风测量 技术参数: 安装直径最小40mm; 启动风速:G75B:0.5m/s 最小显示分辨率0.01m/s; 温度范围:-20~80℃; 测量范围0-50m/s; 输出接口:1、脉冲;2、电流;3、电压;4、继电器接口(1c);5、RS232/RS485;6、显示接口(用户定制或现有的标准显示仪表);7、开关量输出接口NPN/PNP。 2、FS01型风速传感器 FS01型风速传感器采用高塑合金铝经严格的氧化、喷塑工艺加工而成,用于实现对环境风速的测量,输出标准的脉冲信号或电流信号,方便使用。可广泛用于智能温室、气象站、船舶、工程机械、风力发电等环境的风速测量。 技术参数: 量程:0-30m 输出:脉冲/4-20mA信号(FS01/S) 供电电压:DC12-24v 精度:5% 功耗:<0.5W 环境温度:-20~85℃ 传输距离:>300m 响应时间:<1s 重量:0.32Kg 安装方式:法兰盘安装或螺纹安装 3、FS02摆锤式风速传感器 FS02摆锤式风风速传感器专为各种大型起重、悬臂机械设备而研制开发,具有自调节竖直角度的智能风速传感设备,风杯采用优质合金铝制成,机械强度高、抗风能力强,且采用树脂喷涂技术,室外安装不生锈。主要适用于履带式起重机、汽车吊及抖动颠簸、起伏变化较大的露天设备。用它可以实时采集外界环境的实际风速并输出相应的信号。 技术参数: 量程:0-30m 输出: 4-20mA 供电电压:DC24V 精度:<5% 环境温度:-40~120℃ 启动风速:<0.5m/s 杯体摆动角度:120°

风速传感器说明书

风速传感器说明书文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一、产品概述 该三杯式风速传感器是我公司自主研发、生产的一款风速测量仪器,本品由壳体、风杯和电路模块组成,内部集成光电转换机构、工业微电脑处理器、标准电流发生器、电流驱动器等。 传感器壳体和风杯采用铝合金材料,使用特种模具精密压铸工艺,尺寸公差甚小表面精度甚高,内部电路均经过防护处理,整个传感器具有很高的强度、耐候性、防腐蚀和防水性。电缆接插件为军工插头,具有良好的防腐、防侵蚀性能,能够保证仪器长期使用,同时配合使用风速传感器内部进口轴承系统说明书,确保了风速采集的精确性。 电路PCB采用军工级A级材料,确保了参数的稳定和电气性能的品质;电子元件均采用进口工业级芯片,使得整体具有极可靠的抗电磁干扰能力,能保证主机在-20℃~+50℃,湿度35%~85%(不结露)范围内均能正常工作。 二、应用范围 本产品可广泛运用于工程机械(起重机、履带吊、门吊、塔吊等)领域,铁路、港口、码头、电厂、气象、索道、环境、温室、养殖、空气调节、节能监控、农业、医疗、洁净空间等领域风速的测量,并输出相应的信号。

三、技术参数 □脉冲输出型:□ NPN输出□ PNP输出 □ NPN输出带内部上拉(Ω) □RS485通讯型 □电压输出型:□ 0-2VDC □ 0-5VDC □ 0-10VDC □电流输出型: 4-20mA 电源:根据输出类型不同所需的电压源范围不同电流输出型: 12~24V 电压输出型:输出0-2VDC:6~24V 输出0-5VDC:6~24V 输出0-10VDC:12~24V 脉冲输出型:5~24V 量程:□0-30m/s □0-60m/s 负载能力: □其他□<500Ω□>2kΩ 最大功耗(DC24V): 脉冲型MAX≤200mW; 电压型MAX≤300mW; 电流型MAX≤700mW; 启动风力:~s 重量:≤

传感器项目可行性方案 (1)

传感器项目 可行性方案 规划设计/投资分析/产业运营

传感器项目可行性方案说明 我国传感器行业发展痛点为:关键技术有待突破。国内传感器在高精度、高敏感度分析、成分分析和特殊应用等高端方面与国际水平差距巨大,中高档传感器产品几乎完全从国外进口,绝大部分芯片依赖国外,国内缺 乏对新原理、新器件和新材料传感器的研发和产业化能力;在设计技术、 封装技术、装备技术等方面存在的差距也较大。国内尚无一套有自主知识 产权的传感器设计软件,国产传感器可靠性比国外同类产品低1-2个数量级,传感器封装尚未形成系列、标准和统一接口,部分传感器工艺装备研 发与生产被国外垄断。我国传感器技术的核心及关键技术都有待突破,技 术研发及创新能力亟待提升。企业竞争实力不足。我国的传感器企业虽 然数量众多,但大部分都属于中小型企业,且大都面向中低端领域,基础 薄弱,研究水平不高,整体规模及效益较差。许多企业都是引用国外的芯 片加工,自主创新能力薄弱,自主研发的产品较少,产品结构缺乏合理性,在高端领域几乎没有市场份额。企业的技术实力较弱,很多是与国外合作 或进行二次封装,已经突破的科研成果转化率低,产业发展后劲不足,综 合实力较低。从目前市场份额和市场竞争力指数来看,外资或国际企业仍 占据着有利地位,国内传感器企业的发展面临巨大挑战。国际差距明显。尽管中国传感器制造行业取得长足进步,但与国际发达国家相比仍存在明

显差距。利好政策推动行业快速发展:2014年以来,我国政府出台了多项战略性、指导性政策文件,推动我国传感器及物联网产业向着融合化、创新化、生态化、集群化方向加快发展。2017年5月,工信部聚焦智能终端、物联网、智能制造、汽车电子等重点应用领域,有效提升了中高端产品供给能力,推动了我国智能传感器产业加快发展。总体目标是,到2019年,我国智能传感器产业取得明显突破,产业生态较为完善,涌现出一批创新能力较强的国际先进企业,技术水平稳步提升,产品结构不断优化,供给能力有效提高。在国家政策的大力支持下,本土传感器企业有望提升技术从而摄取更多的市场份额。2017年12月,工信部明确提出要重点发展智能传感器等相关产业,智能传感器技术产品实现突破,支持微型化及可靠性设计、精密制造、集成开发工具、嵌入式算法等关键技术研发,支持基于新需求、新材料、新工艺、新原理设计的智能传感器研发及应用。到2020年,压电传感器、磁传感器、红外传感器、气体传感器等的性能显著提高。在模拟仿真、设计、MEMS工艺、封装及个性化测试技术方面达到国际先进水平,具备在移动式可穿戴、互联网、汽车电子等重点领域的系统方案设计能力。物联网产业发展:一般来说,物联网在结构上通常划分为感知层、网络层和应用层三个部分。其中,感知层作为数据采集的源头,是物联网实现的基础。在感知层,最重要的组件就是各种各样的传感器。在物联网产业的推动下,智能手机、可穿戴、虚拟现实、智能硬件、视频交互与安防监控、机器人、3G/4G通信技术的普及,5G技术

风速传感器和风向传感器的应用及原理解析

风速传感器和风向传感器的应用及原理解析 如何测量风速和风向,其实在古代很早就已经出现,著名的诸葛亮借东风火烧壁,就是因为有效的掌握了风向和风速方面的知识,从而取得了军事的重大胜利。 作为一种对天气测量的设备,用来测量风的方向在大小的的风速传感器和风向传感器在各行各业也得到了广泛的应用,下面我们就看看这两种设备。 风向传感器风向传感器是以风向箭头的转动探测、感受外界的风向信息,并将其传递给同轴码盘,同时输出对应风向相关数值的一种物理装置。 通常风向传感器主体都采用风向标的机械结构,当风吹向风向标的尾部的尾翼的时候,风向标的箭头就会指风吹过来的方向。为了保持对于方向的敏感性,同时还采用不同的内部机构来给风速传感器辨别方向。通常有以下三类: 电磁式风向传感器:利用电磁原理设计,由于原理种类较多,所以结构与有所不同,目前部分此类传感器已经开始利用陀螺仪芯片或者电子罗盘作为基本元件,其测量精度得到了进一步的提高。 光电式风向传感器:这种风向传感器采用绝对式格雷码盘作为基本元件,并且使用了特殊定制的编码编码,以光电信号转换原理,可以准确的输出相对应的风向信息。 电阻式风向传感器:这种风向传感器采用类似滑动变阻器的结构,将产生的电阻值的最大值与最小值分别标成360°与0°,当风向标产生转动的时候,滑动变阻器的滑杆会随着顶部的风向标一起转动,而产生的不同的电压变化就可以计算出风向的角度或者方向了。风速传感器风速传感器是一种可以连续测量风速和风量(风量=风速x横截面积)大小的常见传感器。 风速传感器大体上分为机械式(主要有螺旋桨式、风杯式)风速传感器、热风式风速传感器、皮托管风速传感器和基于声学原理的超声波风速传感器。 螺旋桨式风速传感器工作原理我们知道电扇由电动机带动风扇叶片旋转,在叶片前后产生一个压力差,推动气流流动。螺旋浆式风速计的工作原理恰好与此相反,对准气流的叶片系统受到风压的作用,产生一定的扭力矩使叶片系统旋转。通常螺旋桨式速传感器通过一

风速传感器 说明书

一、产品概述 (2) 二、应用范围 (2) 三、技术参数 (3) 四、功能特点 (4) 五、结构尺寸图 (4) 六、固定方式 (5) 七、信号输出定义 (5) 八、线色定义 (6) 九、脉冲型风速输出电路图 (7) 十、脉冲输出型计算 (8) 十一、RS485/232通讯协议 (8) 十二、风力等级划分表 (11) 十三、风速与输出信号对应表 (12)

一、产品概述 该三杯式风速传感器是我公 司自主研发、生产的一款风速测量 仪器,本品由壳体、风杯和电路模 块组成,内部集成光电转换机构、 工业微电脑处理器、标准电流发生 器、电流驱动器等。 传感器壳体和风杯采用铝合金材料,使用特种模具精密压铸工艺,尺寸公差甚小表面精度甚高,内部电路均经过防护处理,整个传感器具有很高的强度、耐候性、防腐蚀和防水性。电缆接插件为军工插头,具有良好的防腐、防侵蚀性能,能够保证仪器长期使用,同时配合使用风速传感器内部进口轴承系统说明书,确保了风速采集的精确性。 电路PCB采用军工级A级材料,确保了参数的稳定和电气性能的品质;电子元件均采用进口工业级芯片,使得整体具有极可靠的抗电磁干扰能力,能保证主机在-20℃~+50℃,湿度35%~85%(不结露)范围内均能正常工作。 二、应用范围 本产品可广泛运用于工程机械(起重机、履带吊、门吊、塔吊等)领域,铁路、港口、码头、电厂、气象、索道、环境、温室、

养殖、空气调节、节能监控、农业、医疗、洁净空间等领域风速的测量,并输出相应的信号。 三、技术参数 □脉冲输出型:□NPN输出□PNP输出 □NPN输出带内部上拉(4.7KΩ) □RS485通讯型 □电压输出型:□0-2VDC □0-5VDC □0-10VDC □电流输出型: 4-20mA 电源:根据输出类型不同所需的电压源范围不同 电流输出型: 12~24V 电压输出型:输出0-2VDC:6~24V 输出0-5VDC:6~24V 输出0-10VDC:12~24V 脉冲输出型:5~24V 量程:□0-30m/s □0-60m/s 负载能力: □其他□<500Ω□>2kΩ 最大功耗(DC24V): 脉冲型MAX≤200mW; 电压型MAX≤300mW; 电流型MAX≤700mW; 启动风力:0.4~0.8m/s 重量:≤0.5Kg

机器人设计方案

机器人设计方案 一、设计要求 设计一具有独立前进、转弯、后退、避障、救人等功能的救援机器人。 二、设计任务 1.电子控制组:设计好控制电路及原理图,各类传感器电路及稳压电源,并制作成 独立模块,按程序要求进行调试(超声波、雷达和红外线传感器的感应距离)。 2.机械设计组:设计机器人各部分结构(包括机械手、身躯、底盘)以及各类传感 器模块的安装。 3.程序设计组:按照具体设计要求进行编程及调试、烧录等工作。 三、设计思路 机器人在封闭场地内利用红外线传感器自动搜索安装了红外线发射管的洋娃娃。 一旦发现目标便向目标靠近,途中发现障碍物则侧移距离L或转弯角度a然后继续前进,当机器人与洋娃娃之间距离达到S(此时红外线传感器比超声波传感器或雷达优先级更高)时,触发控制机械臂抓向小人,机械臂的“手指”部分装有压力传感器(或轻触开关代替触觉传感器实现),当抓紧小人时触发单片机控制(入口设一200W 白炽灯光感返回或者程序倒退返回)机器人返回,并翻转电机松开洋娃娃。 四、场地模拟 有一封闭场地并设立一入口, 反转松开小人并复位。 五、机器人运作流程图:

六、 电路模块设计 1.超声波发射电路:

2.超声波接收电路: 4.红外线接受电路 5.直流电机的驱动电路 6.5V 与12V 直流电源电路 7.压力或触觉传感器 8.步进电机驱动电路(1):

步进电机驱动电路(2) 环境虚拟到内存以二维数组 存储(一个元素代表一个固 机器行走时记录行走过的位 置(只有正向行走时才记录)。 机器人救援分成三部分:循迹、 救援、返回。循迹又分找到前 和找到后(大概方位)。 4、 个部分流程图如下: 机器人俯视图 可以保证只接受到一个直线放 向的红外线而不被其他方向的 红外线干扰,在机器人前方装 有5个或7个红外线接收头,数目越多搜索越精确。

传感器项目规划设计方案

传感器项目 规划设计方案 规划设计/投资方案/产业运营

传感器项目规划设计方案说明 传感器最早出现于工业生产领域,主要被用于提高生产效率。随着集 成电路以及科技信息的不断发展,传感器逐渐迈入多元化,成为现代信息 技术的三大支柱之一,也被认为是最具发展前景的高技术产业。正因此, 全球各国都极为重视传感器制造行业的发展,投入了大量资源,目前美国、欧洲、俄罗斯从事传感器研究和生产厂家均在1000家以上。在各国持续推 动下,全球传感器市场保持快速增长。随着全球市场对传感器的需求量不 断增长,传感器市场规模仍将延续增长势头。我国传感器制造行业发展 始于20世纪60年代,在1972年组建成立中国第一批压阻传感器研制生产 单位;1974年,研制成功中国第一个实用压阻式压力传感器;1978年,诞生 中国第一个固态压阻加速度传感器;1982年,国内最早开始硅微机械系统(MEMS)加工技术和SOI(绝缘体上硅)技术的研究。20世纪90年代以后,硅微机械加工技术的绝对压力传感器、微压传感器、呼吸机压传感器、多 晶硅压力传感器、低成本TO-8封装压力传感器等相继问世并实现生产,传 感器技术及行业均取得显著进步。进入21世纪,传感器制造行业开始 由传统型向智能型发展。智能型传感器带有微处理机,具有采集、处理、 交换信息的能力,是传感器集成化与微处理机相结合的产物。由于智能型 传感器在物联网等行业具有重要作用,我国将传感器制造行业发展提到新

的高度,从而催生研发热潮,市场地位凸显。同时,受到汽车、物流、煤 矿安监、安防、RFID标签卡等领域的需求拉动,传感器市场也得到快速扩张。尽管中国传感器制造行业取得长足进步,但与发达国家相比仍存在 明显差距。这种差距体现在:产品品种不全、规格少,新品欠缺;科技创新差,拥有自主知识产权的产品少;工艺装备落后,产品质量差;人才资源匮乏,产业发展后劲不足;统筹规划不足,科研投资强度偏低,科研设备落后,科研和生产脱节;政府重视不够, 对传感器技术重要性的认识滞后于计算机 技术和通讯技术。正因此,美国、日本、德国占据全球传感器市场近七成 份额,而中国仅占到10%左右。企业竞争方面,中国传感器市场七成左 右的份额被多家主要参与全国传感市场的外资企业占据。而我国传感器 制造行业多以中小企业为主,主要集中在长三角地区。2017年,我国规模 以上传感器制造企业数量为298家,比上年增加7家。其中中小型企业数 量占据绝大部分,大型企业数量较小。虽然暂时处于落后,但中国企业 并未毫无追赶机会。例如,在世界范围内传感器增长最快的汽车领域,中 国就已占据着一定地位。数据显示,中国占全球汽车传感器市场份额达到14.20%,仅次于欧洲,超过了美国和日本。总体来说,在传感器系统向 着微小型化、智能化、多功能化和网络化的方向发展下,我国企业仍有弯 道超车的机会,未来有望出现产值超过10亿元的行业龙头和产值超过5000万元的小而精的企业。

风向风速仪传感器的故障原因分析

风向风速仪传感器的故障原因分析 风向风速记录仪是使用风向风速传感器而研发的,在运用过程中传感器可能会出现一些故障,以下是对风向风速仪传感器的故障原因分析: (1)风速传感器:转动不灵活、有卡滞;风速示值为0m/s;风速示值与电接风风速指示值比较有明显的偏差;起动风速明显偏高;低风速时正常,风速大时不正常或明显偏低。遇到以上情况的时候可以进行如此分析,带电测量风速传感器,若有故障,更换传感器;发现有卡滞现象,拆卸传感器进行维护清洗或更换传感器;风速示值为0m/s,检查电缆线和电源供电系统有无问题,用备份设备联机,转动风速轴,假如轴转灵活,无明显噪声,则说明风速传感器转动部分工作正常,检查示值有无数据,有数据则检查其它部分工作是否正常、无数据,则风速传感有故障,更换传感器;用万用表检测室外信号转接盒中FS与地之间有无频率变化,没有则传感器有故障;用风向风速校验仪检验风向传感器工作是否正常。 (2)风向传感器:风向标转动不灵活、有卡滞;风向示值为239°不变;风向示值为0°;风向示值与电接风风向指示值比较有明显的偏差;风向个别方位值不正确;风向标转动但风向示值不变等等。带电测量风向传感器,若有故障,更换传感器;发现有卡滞现象,更换传感器或拆卸传感器进行维护清洗;假如为239°不变,信号开路,检查接插件和电缆;风向示值为0°检查电缆线和电源供电系统;用备份设备联机,转动风向标,假如能转动使风向示值为239°,则说

明风向传感器工作正常,则检查其它部分工作是否正常;用备份设备联机,转动风向标,始终风向示值不出现239°,其它方位也常出现跳变显示,则说明风向传感器中有个别红外发光二级管有坏的,检查维修;用风向风速校验仪检验风向传感器工作是否正常。 通过以上方法对风向风速记录仪进行风向风速传感器的故障分析,通过故障剖析,采取最佳的方法来解除问题,保证风向风速仪在监测过程中能够做到时时准确的监测风向风速的变化。

KGF2矿用风量传感器企标(江苏三恒)

Q/3204JSSH 144-2012 KGF2矿用风量传感器 KGF2 air volume sensor 2012-11-15发布 2012-11-15实施

江苏三恒科技股份有限公司发布

Q/3204JSSH 144-2012 前言 本标准参照GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》而编制,同时参照部分国家标准和行业标准进行制定的。 本标准防爆性能遵守GB 3836.1-2010《爆炸性环境第1部分:设备通用要求》、GB 3836.4-2010《爆炸性环境第4部分:由本质安全型“i”保护的设备》;技术指标遵守MT 209-90《煤矿通信、检测、控制用电工电子产品通用技术要求》、MT 210-90《煤矿通信、检测、控制用电工电子产品基本试验方法》、MT 448-2008《矿用风速传感器》编写(其中抗干扰、可靠性除外)。 本标准由江苏三恒科技股份有限公司提出并起草。 本标准由江苏三恒科技股份有限公司研发中心归口。3144256866 本标准主要起草人:毕成模、杨皆沈。153********

KGF2矿用风量传感器 1范围 本标准规定了KGF2矿用风量传感器的产品分类、技术要求、试验方法、检验规则、标志、包装、运输及贮存。 本标准适用于KGF2矿用风量传感器(以下简称传感器)。 2 规范性引用文件 下列文件中条款通过本标准的引用而成为本标准条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T191-2008 包装贮运图示标志 GB/T 2423.1 电工电子产品环境试验第2部分:试验方法试验A:低温 GB/T 2423.2 电工电子产品试验环境第2部分:试验方法试验B:高温 GB/T2423.4 电工电子产品基本环境试验规程试验Db:交变湿热试验方法 GB/T2423.5 电工电子产品环境试验第2部分:试验方法试验Ea 和导则:冲击 GB/T2423.8 电工电子产品环境试验第2部分:试验方法试验Ed:自由跌落 GB/T2423.10 电工电子产品环境试验第2部分:试验方法试验Fc和导则:振动(正弦)GB 3836.1-2010 爆炸性环境第1部分:设备通用要求 GB 3836.4-2010 爆炸性环境第4部分:由本质安全型“i”保护的设备 MT/T154.10 煤矿用安全仪器仪表产品型号编制方法和管理办法 MT210-1990 煤矿通信、检测、控制用电工电子产品基本试验方法 AQ 1043-2007 矿用产品安全标志标识 GB/T 9969-2008 工业产品使用说明书总则 GB/T2829-2002 周期检验计数抽样程序及表(适用于对过程稳定性的检验) GB/T10111-2008 随机数的产生及其在产品质量抽样检验中的应用程序 GB 4208-2008 外壳防护等级(IP 代码) MT448-2008 矿用风速传感器 MT/T772 煤矿监控系统主要性能测试方法 3 术语和定义

FM-FS风速传感器

https://www.doczj.com/doc/0d1929791.html,/ FM-FS风速传感器 FM-FS风速传感器技术参数: .供电电压:DC5-24V 或者 DC12-24 V(可选) .信号输出方式:电压:0-2v 0-5v、0-10v(可选) 电流:4-20mA 数字:RS485(232) 脉冲信号 .传感器样式:三杯式 .启动风速:0.4-0.8m/s .分辨率: 0.1m/s .测量范围:0-30m 0-60m(可选) .系统误差:±3% .传输距离:大于1000m .接线方式:电压:三线制电流:三线制、两线制数字:四线制 TTL电平:三线制脉冲:三线制 .工作温度:-20℃~80℃ .功耗:脉冲型MAX≤0.2W;电压型MAX≤0.3W;电流型MAX≤0.7W .重量:<1kg FM-FS风速传感器功能及特点: 风速传感器由壳体、风杯和电路模块组成。传感器壳体和风杯采用铝合金材料,使用特种模具精密压铸工艺,尺寸公差甚小表面精度甚高,内部电路均经过防护处理,整个传感器具有很高的强度、耐候性、防腐蚀和防水性。电缆接插件为军工插头,具有良好的防腐、防侵蚀性能,能够保证仪器长期使用,同时配合内部进口轴承系统,确保了风速采集的精确性。 电路PCB采用军工级A级材料,确保了参数的稳定和电气性能的品质;电子元件均采用进口工业级芯片,使得整体具有极可靠的抗电磁干扰能力,能保证主机在-20℃~60℃,湿度10%─95%范围内均能正常工作。 1

https://www.doczj.com/doc/0d1929791.html,/ 2 风速传感器体积小巧,法兰盘底座,携带、安装方便快捷、外观精美,测量精度高,量程宽,稳定性能好,低功耗,数据信息性度好,信号传输距离长,抗外界干扰能力强,信号输出形式多样,铝合金材料质量轻,强度高。 FM-FS 风速传感器 适用范围: .可广泛应用于温室、环境保护、气象站、船舶、 码头、重机、吊车、港口、码头、缆车、任何需要测量风速风向的场所。 FM-FS 风速传感器 外型规格:

传感器项目规划设计方案 (2)

传感器项目规划设计方案 投资分析/实施方案

传感器项目规划设计方案 传感器最早出现于工业生产领域,主要被用于提高生产效率。随着集 成电路以及科技信息的不断发展,传感器逐渐迈入多元化,成为现代信息 技术的三大支柱之一,也被认为是最具发展前景的高技术产业。正因此, 全球各国都极为重视传感器制造行业的发展,投入了大量资源,目前美国、欧洲、俄罗斯从事传感器研究和生产厂家均在1000家以上。在各国持续推 动下,全球传感器市场保持快速增长。随着全球市场对传感器的需求量不 断增长,传感器市场规模仍将延续增长势头。我国传感器制造行业发展 始于20世纪60年代,在1972年组建成立中国第一批压阻传感器研制生产 单位;1974年,研制成功中国第一个实用压阻式压力传感器;1978年,诞生 中国第一个固态压阻加速度传感器;1982年,国内最早开始硅微机械系统(MEMS)加工技术和SOI(绝缘体上硅)技术的研究。20世纪90年代以后,硅微机械加工技术的绝对压力传感器、微压传感器、呼吸机压传感器、多 晶硅压力传感器、低成本TO-8封装压力传感器等相继问世并实现生产,传 感器技术及行业均取得显著进步。进入21世纪,传感器制造行业开始 由传统型向智能型发展。智能型传感器带有微处理机,具有采集、处理、 交换信息的能力,是传感器集成化与微处理机相结合的产物。由于智能型 传感器在物联网等行业具有重要作用,我国将传感器制造行业发展提到新

的高度,从而催生研发热潮,市场地位凸显。同时,受到汽车、物流、煤 矿安监、安防、RFID标签卡等领域的需求拉动,传感器市场也得到快速扩张。尽管中国传感器制造行业取得长足进步,但与发达国家相比仍存在 明显差距。这种差距体现在:产品品种不全、规格少,新品欠缺;科技创新差,拥有自主知识产权的产品少;工艺装备落后,产品质量差;人才资源匮乏,产业发展后劲不足;统筹规划不足,科研投资强度偏低,科研设备落后,科研和生产脱节;政府重视不够, 对传感器技术重要性的认识滞后于计算机 技术和通讯技术。正因此,美国、日本、德国占据全球传感器市场近七成 份额,而中国仅占到10%左右。企业竞争方面,中国传感器市场七成左 右的份额被多家主要参与全国传感市场的外资企业占据。而我国传感器 制造行业多以中小企业为主,主要集中在长三角地区。2017年,我国规模 以上传感器制造企业数量为298家,比上年增加7家。其中中小型企业数 量占据绝大部分,大型企业数量较小。虽然暂时处于落后,但中国企业 并未毫无追赶机会。例如,在世界范围内传感器增长最快的汽车领域,中 国就已占据着一定地位。数据显示,中国占全球汽车传感器市场份额达到14.20%,仅次于欧洲,超过了美国和日本。总体来说,在传感器系统向 着微小型化、智能化、多功能化和网络化的方向发展下,我国企业仍有弯 道超车的机会,未来有望出现产值超过10亿元的行业龙头和产值超过5000万元的小而精的企业。

风向风速传感器EIA-485接口模块的设计

风向风速传感器EIA-485接口模块的设计 南京长川公司景江 广西水文水资源局唐奇善 摘要:把风向、风速传感器输出的代表风速的脉冲信号以及代表风向的并行GRAY码信号,通过一个二合一的智能化接口模块,转换成为国际标准的EIA-485串行信号。 关键词:EIA-485、即插即用、TVS、网络协议 在自动化领域,随着分布式控制系统的发展,各种工业控制、智能仪器仪表、数据采集都趋向网络化,EIA RS-485是工业应用中的一种支持多节点、远距离的数据传输总线标准。 目前,在风向、风速测量方面,多采用霍尔或光电元件将风速转换为与风速成正比的脉冲信号,将风向变换为并行的GRAY码输出。风速传感器输出的脉冲信号需通过公式计算后才能得到真正的风速值,输出GRAY码的风向信号也需要通过公式计算或软件查表转换才能得到真正的风向值。此种接口不符合国际标准,无法与大多数采用EIA RS-485工业应用总线标准的仪器设备直接连接,影响了其推广及应用范围。 由于采用脉冲及并行传输,该类传感器的信号线一般要求选用10~20芯标准电缆,电路复杂,现场安装及维修不便。此外,在传输距离较远的情况下,电缆及敷设工程成本增大;在接收端为了防止感应雷对设备的破坏,必须对多芯电缆中的每一条有效进线加TVS管(注1)作保护,从而增加了保护多路并行输入口所付出的成本。

本文描述了在此类测风传感器上外加一个与EIA-485接口的适配器设计方案。即在不破坏传感器产品结构、不增加内部电路的基础上,依照即插即用的思路,通过在测风传感器的外部信号接口上插接独立的EIA-485接口模块的方式,把风速的脉冲信号以及风向的并行信号转换为EIA-485工业标准协议的信号。 为了叙述方便,以下以EC9系列高动态性能测风传感器为例,见图1。 1设计目的 通过该接口模块,为实际应用中应带来以下好处:提高了信号传输的可靠性、增加了信号的传输距离、降低了二次仪表软硬件的开发难度、降低了安装及维护的复杂性、减少了土建及电缆的造价,尤其重要的是传感器的接口符合国际标准,容易同其它智能化仪器、传感器联网运行。 2接口模块的硬件设计 模块主要由单片机、协议转换芯片、及供电电源组成。其原理框图见图2。按照EIA-485的标准,除总线的A线B线以外,另外增加两根电源线,对位于传感器端的接口模块及传感器供电。这样即构成了四线制串行传输。 遵循即插即用、高可靠、低成本、低功耗的设计原则,用精简的硬件结构来实现高可靠的设计思想,模块的结构设计成圆柱形密封体,插头与外壳一体化。一端带12或19芯航空插头,直接插在测风传感器上的12或19芯航空插座上,另一端为中心带密封圈孔(引出电缆)的端盖。四芯双绞电缆由该带密封圈孔进入模块内部,同标准直插式4针欧式端子的插头联接,然后再同模块内部电路板上的4针欧式端子的插座相插接。 4针欧式端子的其中2针接四芯双绞电缆中的2根电源线,

GFY15矿用双向风速传感器技术参数

GFY15矿用双向风速传感器产品介绍 矿用双向风速传感器(以下简称传感器),主要用于煤矿井下各种巷道、风口、扇风机井口等处的风速、风向的检测,能够就地显示当前风速值并有同步风速值信号输出。 GFY15矿用双向风速传感器技术参数 1、防爆型式矿用本质安全型,防爆标志为:“ExibⅠMb”。 2、供电电源a)工作电压:直流9V~24V;b)工作电流:≤50mA。 3、测量范围:0.4m/s~15m/s。 4、基本误差:在测量范围内不超过±0.2m/s。 5、分辨率:0.1m/s。 6、输出信号(出厂时只有一种) 6.1、RS485 信号a) 半双工通信方式,传输速率:2400bps;b) 信号电压峰峰值:2V~12V;c) 最大传输距离:不小于2km(使用MHYV 煤矿用电缆,其单芯截面积为1.5mm2)。 6.2、频率信号a) 信号范围:200Hz~1000Hz(线性对应0 m/s~15m/s)频率信号;b) 信号的正、负脉冲宽度:≥0.3ms;c) 高电平不小于3.0V (拉电流为2mA 时),低电平不大于0.5V(灌电流为2mA 时)。6.3、电流信号a) 1mA~5mA 或4mA~20mA 电流信号(线性对应0 m/s~15m/s,也可选为0~5mA 或者0~20mA);b) 负载能力:1mA~5mA 时≥800Ω;4mA~20mA 时≥200Ω。 6.4、电流信号a) 电流类型:1mA/5mA、0mA/5mA(对应正向风/反向风)可选(电路板右边的跳线J1,拨下时输出1mA/5mA,接上时输出

0mA/5mA);b) 信号范围:0mA时,≤0.05mA;1mA 时,1mA~1.4mA;5mA 时,4.5mA~5.5shenhua08mA;c) 负载能力:≥1kΩ。 7、响应时间传感器的响应时间:≤5s。 8、声光报警功能a) 传感器能在测量范围内设置报警点(出厂设为8m/s),报警显示值与设定值中煤的差值不大于0.1m/s;b) 报警声级强度在其1m远处的声响信号的声级不小于80dB(A);光信号在黑暗环境中20m 远处清晰可见。

风速传感器说明书

风速传感器说明书标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

一、产品概述 该三杯式风速传感器是我公司自主研发、生产的一款风速测量仪器,本品由壳体、风杯和电路模块组成,内部集成光电转换机构、工业微电脑处理器、标准电流发生器、电流驱动器等。 传感器壳体和风杯采用铝合金材料,使用特种模具精密压铸工艺,尺寸公差甚小表面精度甚高,内部电路均经过防护处理,整个传感器具有很高的强度、耐候性、防腐蚀和防水性。电缆接插件为军工插头,具有良好的防腐、防侵蚀性能,能够保证仪器长期使用,同时配合使用风速传感器内部进口轴承系统说明书,确保了风速采集的精确性。 电路PCB采用军工级A级材料,确保了参数的稳定和电气性能的品质;电子元件均采用进口工业级芯片,使得整体具有极可靠的抗电磁干扰能力,能保证主机在-20℃~+50℃,湿度35%~85%(不结露)范围内均能正常工作。 二、应用范围 本产品可广泛运用于工程机械(起重机、履带吊、门吊、塔吊等)领域,铁路、港口、码头、电厂、气象、索道、环境、温室、养殖、空气

调节、节能监控、农业、医疗、洁净空间等领域风速的测量,并输出相应的信号。 三、技术参数 □脉冲输出型:□ NPN输出□ PNP输出 □ NPN输出带内部上拉(Ω) □RS485通讯型 □电压输出型:□ 0-2VDC □ 0-5VDC □ 0-10VDC □电流输出型: 4-20mA 电源:根据输出类型不同所需的电压源范围不同 电流输出型: 12~24V 电压输出型:输出0-2VDC:6~24V 输出0-5VDC:6~24V 输出0-10VDC:12~24V 脉冲输出型:5~24V 量程:□0-30m/s □0-60m/s 负载能力: □其他□<500Ω□>2kΩ 最大功耗(DC24V): 脉冲型MAX≤200mW; 电压型MAX≤300mW; 电流型MAX≤700mW; 启动风力:~s 重量:≤

楼道感应灯设计方案

声控楼道路灯电路图 单向可控硅PCR606J引脚图及外形图 分立元件声光控灯电路图 [图]声控楼道路灯电路图元器件清单: R1 220K R2 18K

R3 27K R4 18K R5 3M R6 200 R7 470K R8 750K C1 22μf 50v C2 22μf 50v C3 0.01μf C4 22μf 50v Q1 S9014 Q2 S9014 Q3 C945 SCR单向可控硅 PCR606J D1 1N4007 D2 1N4007 D3 1N4007 D4 1N4007 MC 驻极体话筒

LDR 光敏电阻 负载功率小于40W 静态功耗0.2W 提问人的追问2010-12-23 17:05 能具体的说一下原件的功能及原理吗? 团队的补充2010-12-23 17:26 1.声控开关/这里你指的是红外感应开关回路, 2.太阳能电源为直流或者交流输入电压单元 3.定时器串起并作互锁模式 4.昼夜交叉时间定时器作辅助功能 5.双电源保护模式也是互锁模式 6.三极管用于电路电压放大功能,二极管作滤波整流桥或者单向开关指示灯,电容作通交流阻直流. 提问人的追问2010-12-23 17:31 我要用蓄电池供电,蓄电池没电时自动换220V的家用电源供电该怎么实现? LED灯制作电路图 20

[ 标签:, ] 90个灯珠,分三组。每个灯珠------需要3.2V电压,15mA电流。求解: C1,C2,R1,R2,R3.各需要多少的规格和参数。希望解题人回答完善具体,最好写上步骤。在此先谢上了。 回答:2 人气:124 解决时间:2011-03-11 12:09 满意答案 好评率:100% 提问人的追问2011-03-09 21:39 为什么C2 R3 R2 可以不用?可以解释下么?谢谢! 团队的补充2011-03-09 21:44

风速传感器

摘要 矿用传感器是煤矿监控系统的“耳目”,它用于监测煤矿环境参数与生产过程参数,将各种物理量转换为电信号。 环境安全监控系统主要用来监测甲烷浓度、一氧化碳浓度、二氧化碳浓度、氧气浓度、硫化氢浓度、风速、负压、湿度、温度、风门状态、风窗状态、风筒状态、局部通风机开停、主通风机开停、工作电压、工作电流等,并实现甲烷超限声光报警、断电和甲烷风电闭锁控制等。 环境参数传感器包括甲烷、一氧化碳、二氧化碳、温度、湿度、风速、绝对压力、相对压力(负压)、粉尘、烟雾等传感器。生产参数传感器包括机电设备开/停、料位、皮带秤重、机组位置、皮带打滑、电压、电流、功率等传感器。 矿用风速传感器在煤矿开采业中的作用,不可小觑。在煤矿开采时风速的大小直接影响矿工的生命安全,风速太小,有害气体得不到及时的稀释,可能导致爆炸;如瓦斯爆炸。当风速太大时,可能导致粉尘爆炸。因此风速传感器在煤矿开采中至关重要。 主要是将信号转换为超声波,利用接收换能器接收经过风速调制的信号。然后经过中频放大、检波、低频放大、整形后得到方波,然后分两路,一路送给就地显示,一路进行F/I转换。 关键词:传感器.,风速,超声波,CW7800卡曼涡街效应,

1 矿用风速传感器概述 1.1矿用风速传感器的应用 矿用风速传感器用于检测煤矿井下各坑道、风口、主风扇等处的风速。在煤炭开采的过程中,总有瓦斯涌出。为稀释矿井空气中的瓦斯,需不断地向井下输送新鲜空气。风量是通风系统的重要参数之一。因此,对矿井风速的监测是矿井监控的主要内容之一。 1.2矿用风速传感器的安装位置 安装:风速传感器可安装在主要测风站和进回风巷等地。安装地应在距顶板较好无明显淋水,不妨碍运输和行人安全的地方,传感头指向应与风流方向一致。安装前应首先测量通道平均风速,任选一点安装,遥控器对准传感器按动上、下键,使就地显示为平均风速即可。注意:传感器安装一定要牢固,不得摆动,传感器测风面一定要垂直风流方向。 1.3设计的意义 矿用风速传感器在煤矿开采业中的作用,不可小觑。在煤矿开采时风速的大小直接影响矿工的生命安全,风速太小,有害气体得不到及时的稀释,可能导致爆炸;如瓦斯爆炸。当风速太大时,可能导致粉尘爆炸。因此风速传感器在煤矿开采中至关重要 1.4矿用风速传感器的分类 (1)按传感器用途可分为环境参数传感器与生产参数传感器。 (2)按供电方式可分为自带电源式传感器与外接电源式传感器两种。 (3)按其输出信号形式可分为模拟量、开关量、累计脉冲量等。模拟信号应符合下列信号制式:电流模拟信号为1~5mA或4~20mA,频率模拟信号为200~1000Hz或5~15Hz。 (4)按作用原理不同可分为:机械翼式风速传感器、电子翼式风速传感器、热效应式风速传感器超声波风速传感器。 (5)按风速的测量范围可分为高速风速传感器(V>10m/s)、中速风速传感器(V=0.5m/s~10m/s)、低速风速传感器(V =0.3m/s~0.5m/s) 1.3矿用风速传感器的技术指标 测量范围:0.4 ~15m/s

相关主题
文本预览
相关文档 最新文档