当前位置:文档之家› 戊基磷酸二戊酯萃取色层分离-电感耦合等离子体质谱法测定铀产品

戊基磷酸二戊酯萃取色层分离-电感耦合等离子体质谱法测定铀产品

2015年7月July 2015

岩 矿 测 试

ROCK AHD MIHERAL AHALYSIS

Vol.34,Ho.4

414~419

收稿日期:2015-04-24;修回日期:2015-06-20;接受日期:2015-07-03

作者简介:朱留超,助理研究员,从事核保障技术研究。E-mail :zhuliuchao@https://www.doczj.com/doc/0211490015.html, 。通讯作者:赵永刚,研究员,从事核材料分析及保障技术研究。E-mail :zhaoyg@https://www.doczj.com/doc/0211490015.html, 。

文章编号:02545357(2015)04041406DOI :10.15898/https://www.doczj.com/doc/0211490015.html,ki.11-2131/td.2015.04.006

戊基磷酸二戊酯萃取色层分离-电感耦合等离子体质谱法测定铀产品中9种杂质元素

朱留超,王同兴,赵永刚 ,徐常昆,赵立飞,姜小燕,赵兴红

(中国原子能科学研究院放射化学研究所,北京102413)

摘要:铀产品中杂质元素的含量测定在核法证学溯源分析或燃料元件厂质量检验中具有重要应用价值,保证测量的准确度主要在于控制流程空白、提高杂质元素的回收率。本文建立了戊基磷酸二戊酯(UTEVA )树脂快速分离铀与杂质元素、电感耦合等离子体质谱法(ICP -MS )测定杂质元素含量的系统流程。结果表明,UTEVA 树脂对铀的吸附能力强,铀样品取样量为16.43mg 时,全流程对铀的去污因子大于3?105,9种杂质元素(锰钼镍铜铬铝钛钒镉)的回收率为95.1%~105.1%,国家标准物质GBW04205中杂质元素的分析结果与参考值在不确定度(k =2)范围内一致。本工作建立的分离流程对铀的去污效果好,特别适用于样品量少的情况下铀中杂质元素的分析,为核法证分析最终的归因溯源或燃料质量检验提供了技术支持。

关键词:铀产品;杂质元素;去污因子;戊基磷酸二戊酯(UTEVA )树脂萃取色层分离;电感耦合等离子体质谱法中图分类号:O657.63;O614.62

文献标识码:A

核法证学产生于上世纪九十年代,主要是运用各种分析技术对截获的非法贩卖的核材料或放射性物质进行分析,并为侦测和阻止涉核犯罪提供线索

和证据[1-3]

。这门综合性学科的关注点与核燃料循

环的每个环节密切相关,铀作为核武器的主要原料,是核法证学研究的主要对象之一。铀在反应堆中使用时,对其中杂质元素含量有严格的要求,一般应小于5μg /g ;同时,由于不同厂家生产的铀产品中杂

质元素的含量各不相同,核法证分析者可以利用这

一特点,结合形态分析、同位素分析[4-6]、化学成分

分析、年龄分析[7]

等信息进行核材料的归因分析,

追溯可疑样品的来源。铀中杂质元素含量携带铀冶炼和转化工艺的信息,已成为核法证溯源中的重要依据,准确测定杂质元素的含量则是核法证分析实验室的主要考核指标。

对于铀中杂质元素的分析,需预先将铀与杂质元素分离,目前国内外大多采用萃取色层法,这种方法步骤简便、分离速度快,已有学者使用TBP 、阳离

子交换树脂[8-9]

分离铀基体中的稀土元素及其他微

量杂质元素,但分析时铀样品取样量较大(300mg ~1g ),铀残留量为微克量级,可能会对杂质元素测

量产生干扰,同时未见对流程去污因子的描述。戊基磷酸二戊酯(UTEVA )树脂是近年研制的一种分离树脂,因其性能可靠、分离效果好、流程本底低而

越来越多地被用于样品中铀、镎、钚的分离[10-12]

,国外Quemet 等[13]利用UTEVA 树脂对铀中杂质元素

进行了分离测定,但在我国尚未见报道。在利用UTEVA 分离铀基体时,一般采取纯化试剂、减少流

程环节等步骤控制流程空白。在测量方法方面,由于铀产品中杂质元素含量大多在微克量级,目前常用电感耦合等离子体发射光谱法(ICP -OES )和电

感耦合等离子体质谱法(ICP -MS )[14-15]

进行测定,

由于铀的谱线复杂,对杂质元素的测量产生谱线干扰,更多的是应用ICP -MS 法进行分析。

2013年12月,核法证学技术专家组首次组织

了我国5个具有核法证分析能力的实验室开展铀中

414—

高分辨等离子体质谱法测定锂同位素丰度的方法研究

第2l卷第3,4期 虞谱学掇 JOURNALoFC}{INESEMASSSPECTROMET科SOCtgⅣ Vot2l "No.3,4高分辨等离子体质谱法 测定锂同位素丰度的方法研究 郭冬发武朝辉崔建薅 (核工业北京地旋研究院托京100029) 程核燃料中,锂同位索率发是重要的检测对象。近十雾年来,快速发展怒来懿ICP-MS技术具有分析速囊抉,戒本低,灵敏发商等忧点,融瘟用棱材辩中铺、镪等间位豢测定。零文研究了裹努辨譬离予蒋矮谱≤HR-ICP-MS)溅定键嗣位綮丰澄麴技本方法,测定了纯键化合耪中镁问靛索车度。 {癸羧技术 1.1主要仪器和试剂 使胡静仪器为德餮FJnniganMAT公司产ELELldENT型窿分辨魄惑耦含等离予悔矮谱仪。主要试裁必锻同位豢标准滚滚(8Li率发戈95.麟,浓度为501.tg/mL)、媛沸蒸馏硝酸。 2。2样品溶液制餐 称取纯键纯含物样品0。005克放入50mL聚甄氟己烯坩璃孛,先篇少鬣承润瀑,加入2raL亚沸硝酸溶解。将藏溶渡转入100mL磊英褰鬣瓶中,用二次蒸壤承穗释譬裹《霾。此溶液楣当予弱Hg/mL纯镪他合物(氨氧他镪袋碳酸锂),酸度控制在1%L痞。2.3{霹经索眈值测爨及结聚诗簿 夜优纯好工作参数斡HR-ICP-MS仪器上,测定10mL空自(1%HNO,)孛的6Li和7Li离子流计数强度。符室囟溯定究嚣,囱该空白中加入O,lmL锤耐健索标准溶液(嘎i率度必95.s蓠),测量该潘渡中6瓣积7接离子溅计数强度,该离子滋强度减去空白中离子流计数强度,得到锂同像素标准的6LiPLi德(R"搪准_量值),由融知的6L扩“参考攮(&,标准参考蒜)掺正梭浏器瓣璜鬟菠褫羧戏,褥副棱委系数(f): f=I%7㈣/R67标准辩量德 弼间样方法溅窆祥晶溶液中鼍j和7“离子流计数净强泼,进蔼得到%i/TLi测艇馥(&?{摹最瓣量),用质疑歧褪效斑袭数校正6L护“测鳖馕褥到分板结果(R#撵黜自繁): R6,样鼎鲒鬻尝K样鼎祷量×f‘。6’=R67f#,脯llXf 由&7{葶8菇蓑霹娃诗算6“和7“懿率度n  万方数据

电感耦合等离子体质谱

电感耦合等离子体质谱 ICP-MS所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP是一样的,其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k的等离子焰炬。样品由载气带入等离子体焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量大约为1L/min。冷却气以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却,冷却气流量为10-15L/min。 最常用的进样方式是利用同心型或直角型气动雾化器产生气溶胶,在载气载带下喷入焰炬,样品进样量大约为1ml/min,是靠蠕动泵送入雾化器的。 在负载线圈上面约10mm处,焰炬温度大约为8000K,在这么高的温度下,电离能低于7eV 的元素完全电离,电离能低于10.5ev的元素电离度大于20%。由于大部分重要的元素电离能都低于10.5eV,因此都有很高的灵敏度,少数电离能较高的元素,如C,O,Cl,Br等也能检测,只是灵敏度较低。 ICP-MS由ICP焰炬,接口装置和质谱仪三部分组成;若使其具有好的工作状态,必须设置各部分的工作条件。 ICP工作条件 主要包括ICP功率,载气、辅助气和冷却气流量。样品提升量等,ICP功率一般为1KW 左右,冷却气流量为15L/min,辅助气流量和载气流量约为1L/min,调节载气流量会影响测量灵敏度。样品提升量为1ml/min。 接口装置工作条件 ICP产生的离子通过接口装置进入质谱仪,接口装置的主要参数是采样深度,也即采样锥孔与焰炬的距离,要调整两个锥孔的距离和对中,同时要调整透镜电压,使离子有很好的聚焦。 质谱仪工作条件 主要是设置扫描的范围。为了减少空气中成分的干扰,一般要避免采集N2、O2、Ar 等离子,进行定量分析时,质谱扫描要挑选没有其它元素及氧化物干扰的质量。同时还要有合适的倍增器电压。 事实上,在每次分析之前,需要用多元素标准溶液对仪器整体性能进行测试,如果仪器灵敏度能达到预期水平,则仪器不再需要调整,如果灵敏度偏低,则需要调节载气流量,锥孔位置和透镜电压等参数。

电感耦合等离子体质谱仪

电感耦合等离子体质谱仪 1 仪器总体要求 *1.1 电感耦合等离子体质谱仪要求为“三重四极杆串联质谱仪或“双重四级杆+单八级杆”的串联四级杆质谱仪,而非普通的单极四极杆质谱仪; *1.2 第一重四极杆-四级杆离子选择偏转器,可以实现将所需的特定质荷比的离子依次进入第二重四极杆的反应池内; 1.3 第二重四极杆-通用池,通过反应气与待分析离子相同质荷比的干扰离子反应产生新的不同质荷 比的离子,通过四极杆质量扫描过滤,彻底消除干扰物和反应副产物,只允许待分析的离子进入第三重四极杆; 1.4 第三重四极杆-质量分析器,将待分析的单原子离子依次分开进行检测; 1.5 具有彩色等离子体观测窗,无需打开仪器,可对锥、炬管和负载线圈进行观测,使等离子体采 样深度的优化和有机物的分析简单、方便。同时可实时监测锥孔及喷射管孔样品沉积情况,便于维护和清洗; 1.6 电感耦合等离子体质谱仪具有与高效液相色谱技术联机进行元素价态、结合形态的分析能力, 具有专业的形态分析软件; 1.7 仪器要求能进行样品定性、半定量、定量、同位素比、同位素稀释、单颗粒分析、单细胞分析。 1.8 至少能用于硫和磷同位素标记的定量研究; 1.9 能够分析纳米材料的元素组成与浓度、尺寸及其尺寸分布。 2 仪器工作环境 2.1 工作环境温度:15-30℃。 2.2 工作环境湿度:<80% (无冷凝)。 2.3电源:单相200-240V,50 Hz。 3 技术要求 3.1 仪器硬件 3.1.1 雾化器:高效石英或PFA同心雾化器; 3.1.2 雾化室:小体积石英旋流雾化室; *3.1.3 全基体进样系统控制气路:可实现样品气体稀释,稀释倍数大于100倍;可通入氧气,实现有机样品的直接进样分析;可通入甲烷气,实现难电离元素,如砷、硒等元素的超痕量分析; 3.1.4 等离子体可视系统:可以从实际观测窗中实时监控等离子体状态; *3.1.5 接口设计:为实现对离子射束紧凑控制,接口至少采用三级锥设计,应至少包括一个采样锥、一个截取锥和一个超级锥或嵌片。锥接口设计要求具高灵敏度、高复杂基体耐受和低干扰水平的大锥口设计。采样锥口径要求必须≥1.0mm,所有截取锥或超级锥要求必须≥0.75mm,从而保证长期分析高基体、高盐样品的稳定性,并延长了锥体的使用寿命。投标设备如在接口设计上采用简单两锥设计时,必须额外提供样品锥及截取锥各3套备用;

电感耦合等离子体质谱法

电感耦合等离子体质谱法 2015年版《药典》四部通则0412 本法是以等离子体为离子源的一种质谱型元素分析方法。主要用于进行多种元素的同时测定,并可与其他色谱分离技术联用,进行元素形态及其价态分析。 样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体中心区,在高温和惰性气氛中被去溶剂化、汽化解离和电离,转化成带正电荷的正离子,经离子采集系统进入质量分析器,质量分析器根据质荷比进行分离,根据元素质谱峰强度测定样品中相应元素的含量。 本法灵敏度高,适用于各类药品从痕量到微量的元素分析,尤其是痕量重金属元素的测定。 1.仪器的一般要求 电感耦合等离子体质谱仪由样品引入系统、电感耦合等离子体(ICP)离子源、接口、离子透镜系统、四极杆质量分析器、检测器等构成,其他支持系统有真空系统、冷却系统、气体控制系统、计算机控制及数据处理系统等。 样品引入系统按样品的状态不同分为液体、气体或固体进样,通常采用液体进样方式。样品引入系统主要由样品导入和雾化两个部分组成。样品导入部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速泵入,废液顺畅排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体离子源。要求雾化器雾化效率高,雾化稳定性好,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并应经常清洗。常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。实际应用中应根据样品基质、待测元素、灵敏度等因素选择合适的雾化器和雾化室。

电感耦合等离子体质谱分析法.

】电感耦合等离子体质谱分析法(ICP-MS)是二十世纪八十年代发展起来的一种元素分析技术,从1980年发表第一篇里程碑文章,至今已有27年。目前,ICP-MS法成为公认的最强有力的痕量元素和同位素分析技术,应用范围广泛。ICP-MS的分析特点包括:灵敏度高、极低的检出限(10-15~10-12量级)、极宽的线性动态范围(8~9个数量级)、谱线简单、干扰少、分析速度快、可提供同位素信息等。但对于电离电位高的元素(诸如As、Se、Hg等)灵敏度低。在原子光谱分析法中,提高检测灵敏度的方法很多,其中最常用的包括化学蒸气发生(CVG)进样。它是利用待测元素在某些条件下能形成挥发性元素或化合物的特点,将待测物以气态的形式从样品溶液中分离出来,然后进行测定的一种进样方法。本文利用CVG-ICP-MS测定了水样中的汞。在众多的蒸气发生体系中,本文选择冷蒸气发生与ICP-MS联用。所生成的产物为气态汞或其化合物,经过气液分离后导入到ICP-MS中进行测定。本文选择了SnCl2、KBH4、Vis Photo-HCOOH、UV photo-HCOOH四种化学蒸气发生体系测汞,并就灵敏度、检出限、和抗干扰能力对几种体系进行了比较,同时还与常规ICP-MS进行了比较。首先,优化了ICP-MS的工作参数以及各试剂浓度,并且在最佳条件下测定了校正曲线,计算了检出限和灵敏度。结果发现,最灵敏的方法是使用KBH4为还原剂的化学蒸发生体系,其灵敏度为2.5×105 Lμg-1,这表明KBH4的还原能力是最强的。SnCl2、Vis Photo-HCOOH、UV photo-HCOOH三个体系的检出限接近,分别为0.002,0.001,0.003μg L-1;但KBH4体系的检出限要差一些,为0.01μg L-1。这主要是由于KBH4体系有大量的H2生成,使等离子炬不稳定,引起信号波动造成的。最稳定的方法是常规ICP-MS,虽然灵敏度比KBH4化学蒸发生法小得多,但检出限与KBH4体系接近,为0.05μg L-1。无论如何,蒸气发生技术的引入,使汞的检出限得到了不同程度的改善,同时提高了抗基体干扰的能力。实验发现,使用SnCl2和可见光诱导的HCOOH为还原剂的蒸气发生体系的稳定性比使用KBH4和紫外光诱导的HCOOH为还原剂的蒸气发生体系要好。紫外光诱导的HCOOH比可见光诱导的HCOOH还原能力强,因而UV-CVG体系更灵敏,但螺旋形反应管的引入,降低了信号的稳定性,因此检出限较可见光诱导的HCOOH体系没有改善。实验还发现,使用KBH4和SnCl2为还原剂的蒸气发生体系比使用HCOOH为还原剂的蒸气发生体系或常规气动雾化法的记忆效应更严重,需要更长的清洗时间,

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法 电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。 样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。 本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。 1、对仪器的一般要求 电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。 样品引入系统 按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。样品引入系统由两个主要部分组成:样品提升部分和雾化部分。样品提升部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。实际应用中宜根据样品基质,待测元素,灵敏度等因

素选择合适的雾化器和雾化室。 电感耦合等离子体(ICP)光源 电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。实际应用中宜根据样品基质、待测元素、波长、灵敏度等因素选择合适的观察方式。 色散系统 电感耦合等离子体原子发射光谱的色散系统通常采用棱镜或光栅分光,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。 检测系统 电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成电信号。常见的光电转换器有光电倍增管和固态成像系统两类。固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷注入器件(CID)、电荷耦合器件(CCD)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。检测系统应保持性能稳定,具有良好的灵敏度、分辨率和光谱响应范围。 冷却和气体控制系统 冷却系统包括排风系统和循环水系统,其功能主要是有效地排出仪器内部的热量。循环水温度和排风口温度应控制在仪器要求范围内。气体控制系统须稳定正常地运行,氩气的纯度应不小于99.99%。 2、干扰和校正 电感耦合等离子体原子发射光谱法测定中通常存在的干扰大致可分为两类:

电感耦合等离子体质谱法(ICP-MS)

(六)电感耦合等离子体质谱法(ICP-MS) ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级,实际的检出限不可能优于你实验室的清洁条件。必须指出,ICP-MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS 检出限的优点会变差多达50倍,一些普通的轻元素(如S、 Ca、 Fe 、K、 Se)在ICP-MS 中有严重的干扰,也将恶化其检出限。 ICP-MS由作为离子源ICP焰炬,接口装置和作为检测器的质谱仪三部分组成。 ICP-MS所用电离源是感应耦合等离子体(ICP),其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k的等离子焰炬。被分析样品通常以水溶液的气溶胶形式引入氩气流中,然后进入由射频能量激发的处于大气压下的氩等离子体中心区,等离子体的高温使样品去溶剂化,汽化解离和电离。部分等离子体经过不同的压力区进入真空系统,在真空系统内,正离子被拉出并按照其质荷比分离。在负载线圈上面约10mm处,焰炬温度大约为8000K,在这么高的温度下,电离能低于7eV的元素完全电离,电离能低于10.5ev的元素电离度大于20%。由于大部分重要的元素电离能都低于10.5eV,因此都有很高的灵敏度,少数电离能较高的元素,如C,O,Cl,Br等也能检测,只是灵敏度较低。

高分辨等离子体质谱法测定地质样品中微量硼的方法研究

第2l卷第3,4期 质讲学报 JOURNALOFCHtNESEMASSSPECTROME羊|tYSOGlE彳Y V01.2I No+3,4高分辨等离子体质谱法测定 地质样品中微量硼的方法研究 武朝辉郭冬发崔建劈宋往宁章来平 (核工她jE索避鹱疆究虢jE寨100029) 硼燕重要的造岩元素之一,快速准确测定她质样品中的徽最硼,对地球化学研究其有重要意义。尽嚣本嶷验燮开发憋等勰子髂发射光谱法测定辫焉审瘫豢骊静方法蠢成为核章子业铀矿地质分耩测试标准方法,但由于测定硼的基体效应丈,溶矿方法不够理想,使得矿样中微餐硼测定存在溶矿时硼的挥发损失和戆体千抚等髓难。近10年来,莰速发矮起来的ICP-MS技零对瓣决样辩1孛微鬃疆豹测定吴骞予撬步,梭避蔽低静撬点,已鹿耀予援誊砉辩孛鞭靛测定。本文臻究比较了堍蜃样赫分瓣方法积分襄条转,撬化了高分辨等离子体质谱(HR-ICP,MS)测定硼的技术条件,测定了地质标样中微量硼,测定结采与推荐值吻合怠好。 {撵晶努瓣与分囊 1.1混酸溶矿阴离子交换分离法(方法1) 称取样品0.1宽放入25mL聚四氟乙烯坩埚中.先用少巅水润湿,加入lmL硝黢lmL盐骏lmL氢簸酸耪凡瓣舞蘸酸,霉艇AlmL彗露醇+盖上±彗蠛簸,藏在壤热扳上擒燕溶解2小时,待样品分解后,拿下坩埚蘸并用少量水冲洗,蒸发至约lmL浓稠状态,取下,用约20mL沸水摄取至50mL的石艇烧杯中,并洗净坩埚,向烧杯中加入颓滴酚酝,矮(1+1)氨水孛零l歪酪歉变蛀,冷帮,壤承转爨50mL静翁英容璧瓶中,定客播岛,立剃于过滤于熬料溉中,准确穆彀2mL注入已经平餐好豹强虢赣骧蕊予拄。进努分离富集后供tiR—ICP一瞄测登。 1.2混酸溶矿沉淀分离法(方法2) 熬敷0。050竞撑晶藏入25mL聚嚣氟乙烯圭彗埚孛,先精多璧承滤港,翔入lmL磷酸ImL磷酸lmL赫酸lmL甄氟酸,辩姆入lmL甘露醇,盖上坩埚薇,放在嗽热板上加热溶解2小时,待样品分解后.拿下坩埚盏并用少量水冲洗,蒸发至约1ⅢL浓稠状态,取下,髑约20mL沸求援教至50mL静石英烧耨中。势洗洚港蛹,商浇杯串加入两滴酚酞,用(1+1)氨水中和蕊酚酞变红,冷却,用水转到50mL的蠢英容量瓶中,定容攫匀,立刻干过滤于塑料瓶中,滤液供HR—ICP-MS测量。 2#R—10卜弱仪器等参数谎往  万方数据

电感耦合等离子体ICP

第八章电感耦合等离子体(ICP-AES) 原子发射光谱法 Inductively Coupled plasma-atomic emission Spectrometry 金属元素分析 教学内容 1.原子发射光谱法(AES)的发展概况、分析流程及特点 2.原子发射光谱的产生(能级、能级图) 3.激发源ICP的基本原理、特点;谱线强度及影响因素 4.仪器及应用(定性、半定量、定量分析) 5.干扰效应及消除(自学为主) 学习目标 1.基本掌握ICP的基本原理、特点及适应性 2.基本掌握ICP-AES法的原理特点和应用 3.较好掌握光谱定性、半定量、定量分析并了解干扰效应及消除方法 一.发展概况 二.工作原理 1.等离子体 定义:是由数目几乎相等的正,负离子所构成的一种物质形态。气态。离子体气体。如:大量的星际物质,火焰和电弧的高温部分太阳和其它恒星的表面气层。 性质:是气态物质在温度进一步升高到一定程度后发生电离而形成的。物质第四态。 特点:在整体上呈电中性 2.原理: 激发源(ICP)---分光系统(单色器)---检测器 §3-2-1 AES的产生 激发----基态原子在激发光源(外界能量)的作用下,获得足够的能量,外层电子跃迁到较高能级状态的激发态的过程 原子发射(发光)----处在激发态的原子很不稳定,在极短的时间内(10-8s)外层电子跃迁回基态或其它较低的能态而释放出多余的能量。释放能量的方式两种 无辐射跃迁(与其它粒子的碰撞传递能量) 以一定波长的电磁波形式辐射出去 释放的能量及辐射线的频率符合:

o原子中外层电子(价电子或光电子)能量分布是量子化的,所以△E的值不是连续的,因此,原子光谱是线光谱; o同一原子中电子能级很多,有各种不同的能级跃迁,所以有各种不同△E,即可以发射出许多不同频率的辐射线。跃迁遵循“光谱选律”(不是任何能级之间都发生跃迁); o不同元素的原子由不同的能级构成,△E不一样,所以发射频率也不同,各种元素都有其特征的光谱线,由此可识别鉴定样品中元素的存在(光谱定性分析)o元素特征谱线的强度与样品中该元素的含量有确定的关系,通过测定谱线的强度可确定元素在样品中的含量(光谱定量分析) o有关术语 激发电位(激发能);电离电位(电离能); 共振线;原子线;离子线 §3-2-2 原子发射光谱(AES)分析过程 光谱的获得和光谱的分析两大过程。 1. 试样的处理 要根据进样方式的不同进行处理:做成粉末或溶液等,有些时间还要进行必要的分离或富集; 2. 样品的激发 在激发源上进行,激发源把样品蒸发、分解原子化和激发; 3. 光谱的获得和记录 从光谱仪中获得光谱并进行记录; 4. 光谱的检测 用检测仪器进行光谱的定性、半定量、定量分析 3.等离子体如何产生? 氩气Ar 高频电磁场高频线圈石英炬管 点火装置:电子点火碳棒点火 碰撞电离形成ICP 激发源:ICP

电感耦合等离子体质谱的应用

电感耦合等离子体质谱的应用 摘要:随着对新的无机元素分析测试的需要,一种新型的元素和同位素分析技术—电感耦合等离子体质谱(ICP-MS)迅速发展起来。目前该技术已经成为无机元素分析领域不可缺少的技术之一,已被广泛应用于环境、化工、卫生防疫等各个领域。ICP-MS相比其他无机分析方法具有可分析元素种类多、灵敏度高、线性范围宽、分析速度快、分析成本低的特点。 关键词:电感耦合等离子体质谱;元素分析;方法;应用 Abstract: With the need for analysis and testing new inorganic elements, a new type of elemental and isotopic analysis - Inductively Coupled Plasma Mass Spectrometry (ICP-MS) rapidly developed. The technology has become indispensable in the field of inorganic elemental analysis technology; it has been widely used in various fields of environmental, chemical, health and epidemic prevention. ICP-MS compared to other inorganic analytical methods can be analyzed and many kinds of elements, high sensitivity, wide linear range, rapid analysis, low-cost analysis. Key words: inductively coupled plasma mass spectrometry; elemental analysis;; application 1 引言 目前,痕量元素分析尤其是对毒性较大的重金属元素和一些有益微量元素的分析,已成为各种生产、卫生法规的重要规定,占据着日常工作中相当大的分析工作量,在环境领域中具有不可替代的作用。灵敏、快速、准确的无机元素分析仪器是环境领域最重要的装备之一。 ICP-MS是80年代发展起来的新的无机元素分析测试技术。它以独特的接口技术将ICP的高温(8000K)电离特性与四极杆质谱计的高灵敏、快速扫描的优点相结合,可同时分析几乎地球上所有元素。被广泛应用于环境、化工、卫生防疫等样品中的多元素同时分析。 2 目前几种常用的无机分析技术以及ICP-MS的优势 目前无机分析所用的仪器主要有火焰吸收光谱法(FAAS)、石墨炉吸收光谱(GF-AAS)、氢化物原子荧光光谱法(HG-AFS)、电感耦合等离子体发射光谱法(ICP-AES)以及电感耦合等离子体质谱法(ICP-MS)几大类。其中: 火焰吸收光谱法(FAAS)的灵敏度差, 线性范围窄, 不能满足环境中重金属元素的测定要求。

电感耦合等离子体质谱仪工作原理详解

电感耦合等离子体质谱仪工作原理详解 电感耦合等离子体质谱仪是一种常用的质谱仪产品,主要由等离子体发生器、雾化室、矩管、四极质谱仪和一个快速通道电子倍增管等部件组成,在多个行业中都有一定的应用。电感耦合等离子体质谱仪工作原理是什么呢?下面 小编就来具体介绍一下,希望可以帮助到大家。电感耦合等离子体质谱仪工作原理工作原理是根据被测元素通过一定形式进入高频等离子体中,在高温下电离成离子,产生的离子经过离子光学透镜聚焦后进人四极杆质谱分析器按照荷质比分离,既可以按照荷质比进行半定量分析,也可以按照特定荷质比的离子数目进行定量分析。该类型质谱仪主要由离子源、质量分析器和检测器三部分组成,还配有数据处理系统、真空系统、供电控制系统等。样品从引入到得到最终结果的流程如下:样品通常以液态形式以1mL/min的速率泵入雾化器,用大约1L/min的氩气将样品转变成细颗粒的气溶胶。气溶胶中细颗粒的雾滴仅 占样品的1%~2%,通过雾室后,大颗粒的雾滴成为废液被排出。从雾室出口出来的细颗粒气溶胶通过样品喷射管被传输到等离子体炬中。ICP-MS中等离子体炬的作用与ICP-AES中的作用有所不同。在铜线圈中输入高频(RF)电流产生强的磁场,同时在同心行英管(炬管)沿炬管切线方向输入流速大约为15L/min 的气体(一般为氩气),磁场与气体的相互作用形成等离子体。当使用高电压电火花产生电子源时,这些电子就像种子一样会形成气体电离的效应,在炬管的开口端形成一个温度非常高(大约10000K)的等离子体放电。但是,ICP-MS与ICP-AES的相似之处也仅此而已。在ICP-AES中,炬管通常是垂直放置的,等离子体激发基态原了的电了至较高能级,当较高能级的电子落回基态时,就会发射出某一待测元素的特定波长的光子。在ICP-MS中,等离子体炬管都是水平放置的,用于产生带正电荷的离子,而不是光子。实际上,ICP-MS分析中

电感耦合等离子体质谱ICP-MS的原理与操作

电感耦合等离子体质谱ICP-MS 1.ICP-MS仪器介绍 测定超痕量元素和同位素比值的仪器。由样品引入系统、等离子体离子源系统、离子聚焦和传输系统、质量分析器系统和离子检测系统组成。 工作原理: 样品经预处理后,采用电感耦合等离子体质谱进行检测,根据元素的质谱图或特征离子进行定性,内标法定量。样品由载气带入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气体中被充分蒸发、解离、原子化和电离,转化成带电荷的正离子,通过铜或镍取样锥收集的离子,在低真空约133.322帕压力下形成分子束,再通过1~2毫米直径的截取板进入质谱分析器,经滤质器质量分离后,到达离子探测器,根据探测器的计数与浓度的比例关系,可测出元素的含量或同位素比值。 仪器优点: 具有很低的检出限(达ng/ml或更低),基体效应小、谱线简单,能同时测定许多元素,动态线性范围宽及能快速测定同位素比值。地质学中用于测定岩石、矿石、矿物、包裹体,地下水中微量、痕量和超痕量的金属元素,某些卤素元素、非金属元素及元素的同位素比值。

2.ICP产生原理 ICP-MS所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP是一样的,其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k 的等离子焰炬。样品由载气带入等离子体焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量大约为1 L/min。冷却气以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却,冷却气流量为10-15 L/min。

电感耦合等离子体质谱(ICP-MS)仪实操

深圳市药品检验研究院(深圳市医疗器械检测中心) 检验记录 检品编号:CZ20172653 检品名称:喜炎平注射液 批号:2016112503 规格:2ml:50mg 剂型:注射剂 生产单位:江西青峰药业有限公司 供样单位:深圳市食品药品监督管理局 检验依据:铅、镉、砷、汞、铜测定法(中国药典2015版一部附录ⅨB电感耦合等离子体法) 装 订 线 备注:所有称样的原始数据采集在本院lims系统中,无纸质打印数据。 检验者:日期:年月日~ 年月日 校核者:日期:年月日

检品编号:CZ20172653检品名称:喜炎平注射液 【重金属及有害元素残留(铅、镉、砷、汞、铜)】初试 复试□日期:2017 年06 月01日~06月02 日室温:_21.8℃__ 相对湿度:_58%RH__ 方法:电感耦合等离子体质谱法 仪器:微波消解仪型号MARS6 编号_20070641___ 仪器:电感耦合等离子体质谱仪型号X-Series 2 编号_20100118___ 移液器:10~100μL单通道移液器(222766Z) 100~1000μL单通道移液器(214563Z) 500~5000μL单通道移液器(235793Z) 检验者:校核者:

标准品储备液的制备:分别精密吸取铅、砷单元素标准溶液(国家有色金属及电子材料分析测试中心,批号分别为16B064-1、16A005-4,浓度分别为1000μg/ml)各1ml、镉单元素标准溶液(国家有色金属及电子材料分析测试中心,批号分别为16B033-2,浓度为1000μg/ml)0.5ml,置100ml量瓶中,用2%硝酸溶液稀释并定容至刻度,摇匀,再精密吸取5ml,置50ml量瓶中,用2%硝酸溶液稀释并定容至刻度,摇匀,作为储备液①(铅、砷:1μg/ml,镉:0.5μg/ml); 精密吸取铜单元素标准溶液(国家有色金属及电子材料分析测试中心,批号分别为16B032-2,浓度为1000μg/ml)0.5ml,置50ml量瓶中,用2%硝酸溶液稀释并定容至刻度,摇匀,作为储备液②(铜:10μg/ml); 精密吸取汞单元素标准溶液(国家有色金属及电子材料分析测试中心,批号分别为16A015-2,浓度为1000μg/ml)0.5ml置50ml量瓶中,用2%硝酸溶液稀释并定容至刻度,摇匀,再精密吸取0.5ml,置50ml量瓶中,用2%硝酸溶液稀释并定容至刻度,摇匀,作为储备液③(汞:0.1μg/ml)。 标准溶液的制备:分别精密吸取储备液① 0、0.05、0.25、0.5、1.0ml和储备液② 0、0.25、0.5、1.0、2.5ml,置50ml量瓶中,用2%硝酸溶液稀释并定容至刻度,摇匀,即得。(每1ml含铅和砷0、1、5、10、20ng;含镉0、0.5、2.5、5、10 ng;含铜0、50、100、200、500 ng); 精密吸取储备液③ 0、0.1、0.25、0.5、1.0、2.5ml,置50ml量瓶中,用2%硝酸溶液稀释并定容至刻度,摇匀,即得。(每1ml含汞0、0.2、0.5、1、2、5ng)。 内标溶液的制备:精密量取锗、铟、铋单元素标准溶液(国家有色金属及电子材料分析测试中心,批号分别为为16B008、169013、169044-2,浓度分别为1000μg/ml)各0.5ml,置50ml量瓶中,加2%硝酸溶液稀释至刻度,摇匀,再精密吸取1ml,置500ml量瓶中,用2%硝酸溶液稀释并定容至刻度,摇匀,即得,浓度为20ng/ml。 检验者:校核者:

电感耦合等离子体实验讲义

实验三电感耦合等离子发射光谱定量分析 一、实验目的 1.初步掌握电感耦合等离子发射光谱仪的使用方法。 2.学会用电感耦合等离子发射光谱法定性判断试样中所含未知元素的分析方法。 3.学会用电感耦合等离子发射光谱法测定试样中元素含量的方法。 二、实验原理 原子发射光谱法是根据处于激发态的待测元素的原子回到基态时发射的特征谱线对待测元素进行分析的方法。各种元素因其原子结构不同,而具有不同的光谱。因此,每一种元素的原子激发后,只能辐射出特定波长的光谱线,它代表了元素的特征,这是发射光谱定性分析的依据。 电感耦合等离子发射光谱仪是以场致电离的方法形成大体积的ICP 火焰,其温度可达10000 K,试样溶液以气溶胶态进入ICP 火焰中,待测元素原子或离子即与等离子体中的高能电子、离子发生碰撞吸收能量处于激发态,激发态的原子或离子返回基态时发射出相应的原子谱线或离子谱线,通过对某元素原子谱线或离子谱线的测定,可以对元素进行定性或定量分析。ICP 光源具有ng/mL 级的高检测能力;元素间干扰小;分析含量范围宽;高的精度和重现性等特点,在多元素同时分析上表现出极大的优越性,广泛应用于液体试样(包括经化学处理能转变成溶液的固体试样)中金属元素和部分非金属元素(约74种)的定性和定量分析。 三、仪器与试样 仪器:ICP OES-6300 电感耦合等离子发射光谱仪 试样:未知水样品(矿泉水) 四、实验内容 1.每五位同学准备一水样品进行定量分析,熟悉测试软件的基本操作,了解光谱和数据结果的含义。 2.观摩定量分析操作,学会分析标准曲线的好坏,掌握操作要点和测试结果的含义。 五、实验步骤 1.样品处理 (1)自带澄清水溶液20 mL,要求无有机物,不含腐蚀性酸、碱,溶液透明澄清无悬浮物,离子浓度小于100 μg/mL。 (2)将待测液倒入试管。

等离子体发射光谱和质谱法测定(精)

等离子体发射光谱和质谱法测定 环境样品中重金属研究 项目承担单位:国家电化学和光谱研究分析中心 项目完成人:陈杭亭宋雪洁谢文兵段太成刘杰 随着生产力的飞速发展,已有文献报道,土壤环境中的重金属含量近一个世纪来有了明显增加,重金属输入量增高,土壤中累积量不断增大;人们对生活质量要求的不断提高又要求通过食物链摄入的重金属总量受严格的控制,这对矛盾日益尖锐化。本项目针对工农业生产环境的评价、污染控制的要求,采用多种原子光谱方法开展了准确、快速、简便的环境样品(主要是土壤样品和水)中痕量和超痕量重金属分析方法研究。 针对土壤、植物类样品,设计了酸法提取、HF酸赶SiO2、微波高压消解等多种处理方法;用等离子体原子发射光谱、等离子体质谱、原子荧光光谱方法分别测定,并对测定结果进行比较。针对不同的仪器分析方法,优化了工作参数,考察了分析元素间的干扰情况,并采取了简单、易行的消除干扰或补偿的方法。 完成了包括As、Hg、Pb、Cd、Cr、Be、Tl等公认有害元素在内的16种金属元素原子光谱法的定量测定。 本方法已应用于吉林省通化市委组织部的扶贫项目“无公害中草药种植基地”的土壤中重金属测定和长春市高新技术开发区环境评估项目(表层土、深层土和地表水、地下水中重金属含量测定),取得了满意的结果。 一、实验部分 1. 仪器与试剂 等离子体发射质谱仪(美国TJA 公司POEMS型),原子吸收光谱仪(美国P-E公司800型), AFS-920双道原子荧光仪(北京吉天仪器有限公司),微波消解仪和,高压釜,恒温箱。 实验用HSO4、HNO3、HCl、HClO4和HF等均为优级纯试剂,硫脲、抗坏血酸、KBH4、KOH、盐酸羟胺等为分析纯试剂,As和Hg 标准溶液(100μg/mL,北京钢铁研究总院), 溶液作Hg保其他元素标准溶液均由光谱纯金属或金属氧化物配制而成。以50g/L KMnO 4 304

电感耦合等离子体发射光谱仪原理要点

电感耦合等离子体发射光谱仪原理 1、ICP-AES分析性能特点 等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。 电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP 光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。这些特点使ICP光源具有优异的分析性能,符合于一个理想分析方法的要求。 一个理想的分析方法,应该是:可以多组分同时测定;测定范要围宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。ICP-AES分析方法便具有这些优异的分析特性: ⑴ ICP-AES法首先是一种发射光谱分析方法,可以多元素同时测定。

发射光谱分析方法只要将待测原子处于激发状态,便可同时发射出各自特征谱线同时进行测定。ICP-AES仪器,不论是多道直读还是单道扫描仪器,均可以在同一试样溶液中同时测定大量元素(30~50个,甚至更多)。已有文献报导的分析元素可达78个[4],即除He、Ne、Ar、Kr、Xe惰性气体外,自然界存在的所有元素,都已有用ICP-AES法测定的报告。当然实际应用上,并非所有元素都能方便地使用ICP-AES法进行测定,仍有些元素用ICP-AES法测定,不如采用其它分析方法更为有效。尽管如此,ICP-AES法仍是元素分析最为有效的方法。 ⑵ ICP光源是一种光薄的光源,自吸现象小,所以ICP-AES法校正曲线的线性范围可达5~6个数量级,有的仪器甚至可以达到7~8个数量级,即可以同时测定0.00n%~n0%的含量。在大多数情况下,元素浓度与测量信号呈简单的线性。既可测低浓度成分(低于mg/L),又可同时测高浓度成分(几百或数千mg/L)。是充分发挥ICP-AES多元素同时测定能力的一个非常有价值的分析特性。 ⑶ ICP-AES法具有较高的蒸发、原子化和激发能力,且系无电极放电,无电极沾污。由于等离子体光源的异常高温(炎炬高达1万度,样品区也在6000℃以上),可以避免一般分析方法的化学干扰、基体干扰,与其它光谱分析方法相比,干扰水平比较低。等离子体焰炬比一般化学火焰具有更高的温度,能使一般化学火焰难以激发的元素原子化、激发,所以有利于难激发元素的测定。并且在Ar气氛中不易生成难熔的金属氧化物,从而使基体效应和共存元素的影响变得不明显。很多可直接测定,使分析操作变得简单,实用。

电感耦合等离子体质谱仪(ICP-MS)技术规格要求

电感耦合等离子体质谱仪(ICP-MS)技术规格要求 1.仪器整体要求 1.1电感耦合等离子体质谱仪(ICP-MS)应由电感耦合等离子体离子源、四级杆离子透镜、四级杆通用碰撞反应池、四极杆质量过滤器、离子检测系统等部分构成。由微机和必要的软件对仪器进行控制,并进行数据获取、压缩、处理显示和存储。质谱仪还应该包括维持高真空的所有设备,以及进行常规溶液样品雾化的进样系统。 1.2 ICP-MS的功能应包括样品引入、原子化、离子化和质量分析,以进行样品的定性确认、定量分析以及同位素分析和形态分析。 1.3 仪器要求符合美国EPA200.8 ,EPA6020等标准方法 2. 仪器工作环境 2.1工作环境温度:15-30℃ 2.2工作环境湿度:20- 80% 2.3电源:220V AC 10% ,50 Hz 3. 等离子体 3.1射频发生器:40.68 MHz,功率600-1600W,1W连续可调。射频发生器为自激式,匹配自动进行,等离子体的功率通过反馈电路维持恒定。 *3.2射频线圈采用氩气冷却。 *3.3具有通风感应功能,当没有开通风而点火时,等离子体在10分钟内自动熄灭,并在软件诊断的炬管箱温度给出提示。 *3.4 每次点火前和点火后,炬管的位置都固定不动,无需炬管后退和调节。仪器应能够使炬管在分析样品的位置点燃等离子体,而无需在点燃等离子体后再移动到分析样品的位置。 *3.5质谱仪后侧无任何连接管路和电路,仪器可以紧贴着实验室墙面来安装和运行。 *3.6 等离子体具有全彩色的观察窗,通过观察窗可以实时观察锥孔和炬管中心管是否需要清洗。 *3.7 互相反相的两路射频来维持等离子体并消除线圈与采样锥之间的放电,无需屏蔽炬这样的消耗品。 3.8 等离子体位置XYZ三轴全自动调节,定位精度优于50微米。 4. 进样系统 4.1蠕动泵:内置的三通道蠕动泵以稳定样品提升的流量。蠕动泵应由计算机控制,泵速0-48rpm连续可调。蠕动泵应安装在与等离子体隔绝的仪器外部以避免化学侵蚀而损坏。蠕动泵滚柱应为不锈钢材质。 4.2蠕动泵与雾化器紧密相邻以减小记忆效应。 4.3一体化卡套式进样系统组件,仅需? 圈即可锁紧或解锁,无论用左,右手均能操作自如*4.4炬管应为可拆卸式的设计。 4.4雾室应直接连接到炬管的基座上,而无需在雾室与炬管之间使用传输管。

等离子体质谱法测定Nb、Ta、Zr、Hf等9种元素量

等离子体质谱法测定Nb、Ta、Zr、Hf等9种元素量 1 范围 本方法规定了各类样品中Be、Cs、Hf、Li、Nb、Rb、Sr、Ta、Zr元素含量的测定方法。 本方法适用于矿物、水系沉积物、土壤和岩石等类型样品中以上各元素量的测定。 本方法检出限(3S)及测定范围见表1。 表1 方法检出限及测定范围* 元素方法检出限 (3S) μg·g-1 测定范 围 μg·g-1 元素 方法检出限 (3S) μg·g-1 测定范 围 μg·g-1 Be 0.006 0.02~200 Nb 0.03 0.1~5000 Cs 0.003 0.01~200 Rb 0.1 0.3~5000 Hf 0.015 0.05~500 Sr 0.4 2~10000 Li 0.06 0.2~1000 Ta 0.005 0.02~500 00 Zr 0.015 0.5~1000

*可根据含量确定称样量及稀释倍数扩大测定范围上限。 2 规范性引用文件 下列文件中的条款通过本方法的本部分的引用而成为本部分的条款: 下列不注日期的引用文件,其最新版本适用于本方法。 GB/T20001.4 标准编写规则第4部分:化学分析方法。 GB/T14505 岩石和矿石化学分析方法总则及一般规定。 GB6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。 GB/T14496-93 地球化学勘查术语。 3 方法提要 试料用氢氟酸、硝酸、高氯酸分解并赶尽高氯酸,用王水溶解后,移至聚乙烯试管中,定容,摇匀。分取部分澄清溶液,用硝酸(3+97)稀释至1000倍(指试料总稀释系数为1000)后,在等离子体质谱仪上测定。 4 试剂 除非另有说明,在分析中仅使用确认为优级纯的试剂和去离子水。在空白试验(6.2)中,若已检测到所用优级纯试剂中含有大于以上元素方法检出限的含量,并确认已经影响试料中以上元素低量的测定,应净化试剂。

相关主题
文本预览
相关文档 最新文档