当前位置:文档之家› 厦门大学电子技术实验九集成运算放大器组成的RC文氏电桥振荡器

厦门大学电子技术实验九集成运算放大器组成的RC文氏电桥振荡器

厦门大学电子技术实验九集成运算放大器组成的RC文氏电桥振荡器
厦门大学电子技术实验九集成运算放大器组成的RC文氏电桥振荡器

实验名称:实验九集成运算放大器组成的RC文氏电

桥振荡器

系别:班号:实验组别:实验者姓名:

学号:

实验日期:

实验报告完成日期:

指导教师意见:

目录

二、实验原理 (3)

三、实验仪器 (5)

四、实验内容及数据 (5)

1、电路分析及参数计算 (5)

2、振荡器参数测试 (7)

3、振幅平衡条件的验证 (8)

4、观察自动稳幅电路作用 (9)

五、误差分析 (10)

六、实验总结 (11)

一、实验目的

1. 掌握产生自激振荡的振幅平衡条件和相位平衡条件;

2. 了解文氏电桥振荡器的工作原理及起振的条件和稳幅原理。

二、实验原理

1. 产生自激振荡的条件:

当放大器引入正反馈时,电路可能产

生自激振荡,因此,一般振荡器都由放大

器和正反馈网络组成。其框图如图1所示。

振荡器产生自激振荡必须满足两个基本

条件:

(1)振幅平衡条件:反馈信号的振幅应该等于输入信号的振幅,即

VF = Vi 或 |AF| = 1

(2)相位平衡条件:反馈信号与输入信号同相位,其相位差应为:

π???n F A 2±=+=(n = 0、1、2……)

2. RC 串-并联网络的选频特性:

RC 串-并联网络如图2(a)所示,其电压传输系数为:

2

()1122F +=12R1211(1)(21)122R2112R VF jwR c R c VO R j wc R jwc jwR c c wc R ++==+++++-()

当R1= R2= R , C1= C2= C 时,则上式为:

1

()13()F j wRc wRc +=+-

若令上式虚部为零,即得到谐振频率fo 为:1

=2RC o f π

当f = fo 时,传输系数最大,相移为0,即:F max =1/3,0=F ?

传输系数F 的幅频特性相频特性如图2(b)(c)所示。由此可见,RC 串—并联网络具有选频特性。对频率f o 而言,为了满足政府平衡条件| AF | = 1,要求放大器| A | = 3。为满足相位平衡条件:π??n F A 2=+,要求放大器为同相放大。

3. 自动稳幅:

由运算放大器组成的RC 文氏电桥振荡器原理图如图3所示,负反馈系数为:

()1(-)1F = F F V R Vo R R -=+

在深度负反馈情况下:

1()1111F F F R R R A F R R -+===+

因此,改变R F 或者R1就可以改变放大器的电压增益。

由振荡器起振条件,要求| AF (+)| > 1,

当起振后,输出电压幅度将迅速增大,以至

进入放大器的非线性区,造成输出波形产生

平顶削波失真现象。为了能够获得良好的正

弦波,要求放大器的增益能自动调节,以便

在起振时,有| AF (+)| > 1;起振后,有| AF (+)|

= 1,达到振幅平衡条件。由于负反馈放大器的增益完全由反馈系数V F(-)决定。因此,若能自动改变R F 和R 1的比值,就能自动稳定输出幅度,使波形不失真。

三、实验仪器

1、示波器 1台

2、函数信号发生器 1台

3、直流稳压电源 1台

4、数字万用表 1台

5、多功能电路实验箱 1台

6、交流毫伏表 1台

四、实验内容及数据

1、电路分析及参数计算:

分析图6电路中,运算放大器和RF1,RF2及Rw 构成同相放大器,调整Rw 即可调整放大器的增益;RC 串——并联网络构成选频网络;选频网络的输出端经R2、R3构成分压电路分压送运算放大器

的同相端,构成正反馈,D1,D2为稳伏二极管。

在不接稳伏二极管时,在谐振频率点,正反馈系数为:

3

22)(31)

(R R R V V F O F +?==++

而负反馈系数为:w

F F w R R R R F ++=-21)( (1)为保证电路能稳定振荡,则要求:

F(+)=F(-),由此,根据电路参数,计算Rw 的

理论值;

Rw=0.628k Ω

(2)同相放大器的电压增益AVF= 33 ;

(3)电路的振荡频率

fo=

1.6076KHz ;

仿真电路图:

2、振荡器参数测试:

(1)按图6搭接电路,(D1、D2不接,K拨向1)经检查无误后,接通+12V电源。

(2)调节Rw,用示波器观察输出波形,在输出为最佳正弦波,测量输出电压V

p-p

=20.2 V

V

p-p

(3)测量Rw值;

Rw=0.6004 kΩ

示波器图形:

(4)用李萨茹波形测量振荡频率;

李萨茹波形测量信号频率方法:将示波器CH1接振荡器输出,CH2接信号发生器正弦波输出,令示波器工作在“外扫描X-Y”方式;当调节信号发生器频率时,若信号发生器频率与振荡器频率相同时,示波器将出现一椭圆;通过此方法可测量未知信号频率。

f = 1.6195180kHz

示波器图形:

3、振幅平衡条件的验证:

在振荡器电路中,调节R w ,使输出波形为正弦波时,保持Rw 不变,将开关K 拨向2位置,则,即输入正弦信号(频率为振荡频率,峰-峰值V ip-p =100mV )则电路变为同相放大器,用毫伏表测量V i 、V o 、V A 、V F ,填入表1;

将电路恢复为振荡器(开关K 拨向1位置),调节R w ,使输出波形略微失真,再将开关拨向位置2,电路又变为同相放大器,用毫伏表测量V i 、V o 、V A 、V F ,填入表1;

将电路恢复为振荡器(开关K 拨向1位置),调节R w ,使输出波形停振,再将开关拨向2位置,电路又变为同相放大器,用毫伏表测量V i 、V o 、V A 、V F ,填入表1;

表1 振幅平衡条件验证 工作状态

测量值

测量计算值 Vip-p(m

V)

Vo(V) VA(V) VF(V) A=Vo/Vi F(+)=V F/Vo AF(+) 良好正弦波

100 1.2101 0.3990 0.0359 34.23 0.02967 1.0155 略微失真

100 1.2148 0.4007 0.0360 34.36 0.02963 1.0181 停振

100 1.2078 0.3984 0.0359 34.16 0.02972 1.0154 良好正弦波

时理论值 100 1.1667 0.3889 0.0354 33.00 0.03030 1.00

仿真电路图:

良好正弦波仿真波形:

4、观察自动稳幅电路作用:

在图6基础上,接入稳幅二极管D1、D2,调节电位器Rw ,观察输出波形的变化情况,测量出输出正弦波电压V op-p 的变化范围。

(V op-p )max=20.1 V

(V op-p )min=2.23 V

五、误差分析

%6.1%1000000.1000.10155.1A -%3.2%10003030

.003030.002963.0-%4%10000

.3300.33-23.34-)()()()()()(=?-===?-===?==++++++++理

理测)(理理

测)(理理测的相对误差:的相对误差:的相对误差:AF F AF E AF F F F E F A A A E A AF F A 误差来源分析:

(1)电阻或电容不精确,造成RC 文氏电桥振荡器震荡特性不好;

(2)运放不是理想运放;

(3)电路接触不好。

(4)实验仪器本身存在系统误差。

六、实验总结

1、实验中使用示波器观察输入输出波形时要注意表笔是否有衰减。

2、运算放大器管脚不要弄错,要一直加着工作电源。

3、调节Rw时要注意观察输出波形。

1KHZ桥式正弦波振荡器电路的设计与制作

目录 摘要 (2) 1.系统基本方案 (2) 1.1 正弦波振荡电路的选择与论证 (2) 1.2. 运算放大器的选择 (3) 1.3最终的方案选择 (3) 2.正弦波发生器的工作原理 (3) 2.1正弦波振荡电路的组成 (3) 2.1.1 RC选频网络 (3) 2.1.2放大电路 (6) 2.1.3正反馈网络 (6) 2.2产生正弦波振荡的条件 (6) 2.3.判断电路是否可能产生正弦波的方法和步骤 (7) 3.系统仿真 (7) 4.结论 (8) 参考文献: (11) 附录 (13)

1KHZ 桥式正弦波震荡器电路的设计与制作 摘要 本设计的主要电路采用文氏电桥振荡电路。如图1-1文氏桥振荡电路由放大电路和选频网络两部分组成,施加正反馈就产生振荡,振荡频率由RC 网络的频 率特性决定。它的起振条件为: ,振荡频率为: 。运算放大 器选用LM741CN,采用非线性元件(如温度系数为负的热敏电阻或JFET )来自动调节反馈的强弱以维持输出电压的恒定,进而达到自动稳幅的目的,这样便可以保证输出幅度为2Vp-p ;而频率范围的确定是根据式RC f π21 0= 以及题目给出的频 率范围来确定电阻R 或电容C 的值,进而使其满足题目的要求。 关键词:文氏电桥、振荡频率、LM741CN 1.系统基本方案 1.1 正弦波振荡电路的选择与论证 本设计选用文氏电桥振荡电路。

图1 RC 桥式振荡电路 这种电路的特点是:它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。振荡频率由RC 网络的频率特性决定。它的起振条件为: 12R R f > 。它的振荡频率为:RC f π21 0= 。 1.2. 运算放大器的选择 考虑到综合性能和题目要求的关系这里我们选用LM741CN 作为运算放大。 1.3最终的方案选择 文氏电桥振荡电路适用的频率范围为几赫兹到几千赫兹,可调范围宽,电路简单易调整,同时波形失真系数为千分之几。很适合我们题目的要求。故采用文氏电桥振荡电路. RC 文氏电桥振荡电路是以RC 选频网络为负载的振荡器. 这个电路由两部分组成,即放大电路和选频网络。放大电路由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点。而选频网络则由Z1、Z2组成,同时兼做正反馈网络。 2正弦波发生器的工作原理 2.1正弦波振荡电路的组成 放大电路 选频网络 正反馈网络 2.1.1 RC 选频网络

实验六 RC桥式正弦波振荡器

实验六RC桥式正弦波振荡器 一、实验目的 1.研究RC桥式振荡器中RC串、并联网络的选频特性。 2.研究负反馈网络中稳幅环节的稳幅功能。 3.掌握RC桥式振荡器的工作原理及调测技术。 二、实验原理 RC桥式振荡器的实验电路如图1所示。 图(b)Multisim仿真电路图 图1 RC桥式振荡器 该电路由三部分组成:作为基本放大器的运放;具有选频功能的正反馈网络;具有稳幅功能的负反馈网络。 1.RC串并联正反馈网络的选频特性。 电路结构如图2所示。一般取两电阻值和两电容值分别相等。由分压关系可得正反馈网络的反馈系数表达式: 1

2 RC j R C j R RC j R C j R C j R C j R Z Z Z V V F i F ωωωωωω++ ++=++=+==1111//11// 212 ()()RC j RC j RC j RC RC j RC j RC j RC j RC j RC j R C j RC j RC j R ωωωωωωωωωωωωω++=+-+=++=++++=131 2111112 2 令RC 10= ω,则上式为? ?? ? ??-+=ωωωω0031j F 由上式可得RC 串并联正反馈网络的幅频特性和相频特性的表达式和相应曲线(如图 3和图4所示)。 2 002 31 ? ?? ? ??-+=ωωωωF 3 arctg 0ω ωωωφ--=?F 图4 相频特性曲线 图3 幅频特性曲线

3 I I D1D1图5 由特性曲线图可知,当ω=ω0时,正反馈系数达最大值为1/3,且反馈信号与输入信号同相位,即φF =0,满足振荡条件中的相位平衡条件,此时电路产生谐振ω=ω0=1/RC 为振荡电路的输出正弦波的角频率,即谐振频率f o 为 RC f o π21 = 当输入信号i V 的角频率低于ω0时,反馈信号的相位超前,相位差φF 为正值;而当输入信号的角频率高于ω0时,反馈信号的相位滞后,相位差φF 为负值。 2、带稳幅环节的负反馈支路 由上分析可知,正反馈选频网络在满足相位平衡的条件下,其反馈量为最大,是三分之一。因此为满足幅值平衡条件,这样与负反馈网络组成的负反馈放大器的放大倍数应为三倍。为起振方便应略大于三倍。由于放大器接成同相比例放大器,放大倍数需满足 VF A =1+31 ≥R R f ,故1 R R f ≥2。为此,线路中设置电位器进行调节。 为了输出波形不失真且起振容易,在负反馈支路中接入非线性器件来自动调节负反馈量,是非常必要的。方法可以有很多种。有接热敏电阻的,有接场效应管的(压控器件),本实验是利用二极管的非线性特性来实现稳幅的。其稳幅原理可从二极管的伏安特性曲线得到解答。如图5所示。 在二极管伏安特性曲线的弯曲部分,具有非线性特性。从图中可以看出,在Q 2点,PN 结的等效动态电阻为22Q di dv r D D d =;而在Q 1 点,PN 结的等效动态电阻为1 1Q di dv r D D d =;显然, 1d r >2d r ;也就是说,当振荡器的输出电压幅度增 大时,二极管的等效电阻减少,负反馈量增大,从而抑制输出正弦波幅度的增大,达到稳幅的目的。 通过R p 调节负反馈量,将振荡器输出正弦波控 制在较小幅度,正弦波的失真度很小,振荡频率接近估算值;反之则失真度增大,且振荡

文氏桥振荡电路

文氏桥振荡电路的设计与测试 电子工程学院 一、实验目的 1.掌握文氏桥振荡电路的设计原理 2.掌握文氏桥振荡电路性能的测试方法 二、实验预习与思考 1.复习应用集成运放实现文氏振荡桥电路的原理 2.设计文氏桥振荡电路,实现正弦信号的产生,并设计实验报告,记录实验数据。 3.文氏桥振荡电路中,D 1、D 2是如何稳定幅的? 三、实验原理 如图1所示,RC 文氏桥振荡电路其中RC 串,并联电路构成真反馈支路,并起选频作用,R 1、R 2、R W 及二极管等原件构成负反馈和稳幅环节。调节R W 可改变负反馈深度,以满足振荡的振幅条件与改变波形。利用两个反向的并联二极管D 1、D 2要求特性匹配,以确保输出波形正,负半周期对称。R 3的接入是为了消弱二极管死区的影响,改善波形失真。 电路的振荡频率:01 2f RC π= 图1 文氏桥振荡电路 起振的幅值条件:1 13f f R A R =+ ≥

调整R W,使得电路起振,且失真最小。改变选频网络的参数C或R,即可调节振荡频率。 四、实验内容 1.文氏桥振荡器的实现 根据元件,应用集成运放设计并搭建实现文氏桥振荡电路,调节电路中参数使得电路输出从无到有,从正弦波到失真。定量地绘出正弦波的波形,记录起振时的电路参数,分析负反馈强弱规律对起振条件及输出波形的影响。并记录出最大不失真输出时的振幅。 1.当Rw=550Ω时电路开始拥有输出波形; 2.当增加Rw的值时,振幅逐渐增加;且当Rw=750Ω时,输出波形开始出现失真,此时的正弦波振幅为8.569,周期为约2.188ms

3.当继续增加Rw的值时,失真将加剧,如下两图所示: 此时Rw=10kΩ

RC正弦波振荡器设计实验

综合设计 正弦波振荡器的设计与测试 一.实验目的 1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法 4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理 在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加 的选频网络,用以确定振荡频率。正弦波振荡的平衡条件为:.. 1AF = 起振条件为.. ||1A F > 写成模与相角的形式:.. ||1A F = 2A F n πψ+ψ=(n 为整数) 电路如图1所示: 1. 电路分析 RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路, 决定振荡频率0f 。1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。 该电路的振荡频率 : 0f =RC π21 ① 起振幅值条件:311 ≥+ =R R A f v ② 式中 d f r R R R //32+= ,d r 为二极管的正向动态电阻 2. 电路参数确定 (1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC= 21f π ③ 为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使

R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求 (2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常 取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R (3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实 现稳幅。图1中稳幅电路由两只正反向并联的二极管1D 、2D 和电阻3R 并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻3R 。实验证明,取3R ≈d r 时,效果最佳。 三.实验任务 1.预习要求 (1) 复习RC 正弦波振荡电路的工作原理。 (2) 掌握RC 桥式振荡电路参数的确定方法 2. 设计任务 设计一个RC 正弦波振荡电路。其正弦波输出要求: (1) 振荡频率:接近500Hz 或1kHz 左右,振幅稳定,波形对称,无明显非线性失真 (2)* 振荡频率:50Hz~1kHz 可调,其余同(1) 四.实验报告要求 1. 简述电路的工作原理和主要元件的作用 2. 电路参数的确定 3. 整理实验数据,并与理论值比较,分析误差产生的原因 4. 调试中所遇到的问题以及解决方法 五.思考题 1. 在RC 桥式振荡电路中,若电路不能起振,应调整哪个参数?若输出波形失真应如何调整? 2. 简述图-1中21D D 和的稳幅过程。 六.仪器与器件 仪器: 同实验2 单管 器件: 集成运算放大器μA741 二极管 1N4001 电阻 瓷片电容 若干

文氏桥电路产生正弦波,方波要点

电子线路课程设计 院部: 专业: 姓名: 学号: 指导教师: 完成时间:

电子线路课程设计任务书姓名班级指导老师

目录 目录 (1) 第1章引言 (1) 第2章基本原理 (2) 2.1基本文氏振荡器 (2) 2.2振荡条件 (2) 第3章参数设计及运算 (4) 3.1结构设计 (4) 3.2参数计算 (5) 第4章仿真效果与实物 (8) 心得体会 (9) 参考文献 (9)

第1章引言 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。

第2章 基本原理 2.1 基本文氏振荡器 基本文氏电桥反馈型振荡电路如图1所示,它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。运算放大器施加负反馈就为放大电路的工作方式,施加正反馈就为振荡电路的工作方式。图中电路既应用了经由R 3和R 4的负反馈,也应用了经由串并联RC 网络的正反馈。电路的特性行为取决于是正反馈还是负反馈占优势。 图2-1 将这个电路看作一个同相放大器,它对V p 进行放大,其放大倍数为 o 3p 4 V R A 1V R = =+ 在这里为了简化我们假设运算放大器是理想的。令,R 1=R 2=R,C 1=C 2=C 。反过来,V p 是由运算放大器本身通过两个RC 网络产生的,其值为V P =[Z P /(Z P +Z 1)]V o 。式中Z p =R ∥﹙1/j2πfC ﹚, Z 1/2s R j fC π=+。展开后可以得到 ()()o p 00V 1V 3//B jf j f f f f = = +- 上式中 01/2f fC π=。信号经过整个环路的总增益是()T jf AB =或者表示为

稳幅文氏电桥正弦波发生器说课讲解

* 课程设计报告 题目:文氏电桥正弦波振荡 学生姓名:** 学生学号:*** 系别:电气信息工程学院专业:通信工程 届别:2014届 指导教师:** 电气信息工程学院制 2013年5月

文氏电桥正弦波振荡 学生:** 指导教师:** 电气信息工程学院通信工程专业 1 课程设计的任务与要求 1.1 课程设计的任务 1. 培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 3. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 1.2 课程设计的要求 (1)熟悉multisim的使用方法,掌握文氏电桥正弦波振荡原理,以此为基础在软件中画出电路图。 (2)绘制出文氏电桥正弦波振荡的波形,观察其波形,通过对分析结果来加强对其原理的理解。 (3)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。 1.3 课程设计的研究基础(设计所用的基础理论) 以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。 在自控、测量、无线电通讯、测量等技术领域中,需用到波形发生器,较常用的是正弦波振荡器和多谐振荡器两大类。采用Multisim10仿真软件对正弦波振荡器进行仿真,该软件是NI 公司下属的Electronics WorkbenchGroup 发布的交

实验五RC正弦波振荡器

实验五RC正弦波振荡器 一.实验目的 1.学习文氏桥振荡器的电路结构和工作原理。 2.学习振荡电路的调整与测量振荡频率的方法。 二.电路原理简述 从电路结构上看,正弦波振荡器实质上是一个没有输入信号,但带有选频网络的正反馈放大器。它由选频网络和放大器两部分组成,选频网络由R、C串并联组成,故振荡电路称为RC振荡器,它可产生lHz--1MHz的低频信号。根据RC 电路的不同,可分为RC移项、RC串并联网络、双T选频网络等振荡器。 RC串并联网络(文氏桥)振荡器电路形式如图5—1所示。其原理为:图中的RC选频电路,若把Ui看成输入电压,把Uo看成输出电压,则只有当f=fo=1/2∏RC,Uo和Ui才能同相位。且在有效值上Uo=3Ui,对该振荡器电路而言.当电路满足振荡频率f=fo=1/2∏RC,且放大电路的放大倍数︳Au ︳>3时,就能产生一个稳定的正弦波电压Uo。 图5—1 RC串并联网络振荡器原理图 本实验采用两极共射极带负反馈放大器组成RC正弦波振荡器,实验电路如图5-2。 电路特点:改变RC则可很方便的改变振荡频率,由于采用两级放大及引入负反馈电路,所以能很容易得到较好的正弦波振荡波形。

其中:R F1=1kΩ,R W=150kΩ,增加Rf3=1kΩ,C2=C3=0.47μF,C7=C8=0.01μF,C1=10μF/25V,C E1= C E2=47μF/25V,R E1’=R E2’=10Ω,R F2=51Ω,R C1’=R E1”=120Ω,R C2=R S= R E2”=470 Ω,R B22=1kΩ,R B21=1.5kΩ,R B1=10kΩ,T1=T2=9013,外接电阻R=2kΩ,电容C=0.01μF, 三.实验设备 名称数量型号 1.直流稳压电源 1台 0~30V可调 2.低频信号发生器1台 3.示波器 1台 4.晶体管毫伏表 1只 5.万用表 1只 6.反馈放大电路模块 1块 ST2002 四. 实验内容与步骤 1. RC振荡电路的调整 1)按照图5-2电路原理,选用“ST2002反馈放大电路”模块,熟悉元件安装位置,开始接线,此电路中D和0V两点不要连接,检查连接的实验电路确保无误后,在稳压电源输出为12V的前提下对实验电路供电。 2)在A,B断开(无负反馈)情况下,调整放大器静态工作点,使其Vc1=8V左右,工作点调好后断开电源然后将A,B短接(引入负反馈),按照电路原理图接上R、C电阻和电容(选频网络),连接F,I两点,组成文氏振荡器。 3)用示波器观察输出波形,若无振荡波形可调节R F1,直至输出为稳定不失真的正弦波为止。 文氏振荡器的振荡频率f,满足下式fo =1/2∏RC 2.测量振荡频率及输出电压 ,在在E端用示波器观察输出的正弦波波形。然后用交流毫伏表测出输出电压V O 示波器上读出振荡频率的周期填入表5—1中,并与计算值相比较。 3.测量负反馈放大电路的放大倍数A vf。

文氏桥振荡电路

文氏桥振荡电路 一、问题背景 将RC串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。 RC串并联选频网络接在运算放大器的输出端和同相输入端 之间,构成正反馈,接在运算放大器的输出端和反相输入端之间的电阻,构成负反馈。正反馈电路和负反馈电路构成一文氏电桥电桥。 文氏电桥振荡器的优点是:不仅振荡较稳定,波形良好,而且振荡频率在较宽的范围内能方便地连续调节。 二、问题简介 由文桥选频电路和同相比例器组成的正弦波发生器如图1 所示。(1)若取R1=15kΩ,试分析该振荡电路的起振条件(R f的取值);(2)仿真观察R f取不同值时,运放同相输入端和输出端的电压波形; 图1 由文桥选频电路和放大器组成正弦波发生器的电路原理图

(3)若在反馈回路中加入由二极管构成的非线性环节(如图2所示),仿真观察R2取不同值时,运放同相输入端和输出端的电压波形。也可同时改变R f和R2的值。 图2 加入非线性环节的正弦波发生器的电路原理图 三、理论分析 (1)由图一的电路可以看出,电路在回路网络中加入了文氏选频网络,下面对文氏选频网络进行理论上的分析,从电路总提取文氏电路如图三所示。 图3 文氏选频网络

图中o U 是运放的输出量,f U 是反馈量。为了能够使电路振荡起 来,就必须通过选定参数即确定频率,使得在某一频率下o U 和 f U 同 相。 那么,当信号频率很低时,有 1R C ω>> 故将会有f U 的相位超前o U 的相位,当频率接近0时,相位超前接近于 90度。相反地,当信号频率很高以至于趋于无穷大时,可以得出 f U 的 相位滞后o U 的相位几乎-90度。 所以,在信号频率由0到无穷大的变化过程中,必然有某一个频率,使得输出量与反馈量同相,从而形成正反馈。下面就具体来求解此振荡频率。 由反馈系数 1//11//f o R U j C F U R R j C j C ωωω==++ 整理可得 1 13()F j CR CR ωω=+- 若电路的信号频率为f ,令特征频率 01 2f RC π= 代入F 的表达式,可以得到 001 3()F f f j f f =+-。

文氏电桥正弦波振荡电路

文氏电桥正弦波振荡电路 (2007.4.27总结) 一、振荡原理 如上图所示,信号Xi经过一个放大环节A放大后得到放大信号Xo=A*Xi。 如果在上图中加一个反馈环节,如下图所示: Xo经过反馈环节F后得到反馈信号Xf=A*F*Xi。当反馈信号Xf与输入信号Xi幅值和相位都相同时,即以Xf作为输入Xi,则可以在输出端维持原有的信号Xo,也就是自激。所以,要使得上图中的系统平衡,则应有A*F=1。 即|A*F|=1(幅度平衡条件) 且Ψa+Ψf=2*n*PI(n为整数)Ψa和Ψf分别为A、F的幅角,此式说明反馈环节F是一个正反馈。 A*F=1是振荡平衡的条件,也就是可维持等幅振荡输出;如果A*F<1,则电路的振荡输出将越来越小,直到停止振荡;如果A*F>1,振荡电路的输出将越来越大,直到电路中器件达到饱和或者截止。所以电路维持等幅振荡的唯一条件是A*F=1。 二、振荡的建立和稳定 前面讨论的自激振荡条件,是假设先给振荡电路的放大环节有一个外加的输入信号。但实际振荡电路一般不会外加激励信号。

对于一个正弦波振荡器来说,有一个选频网络,所以振荡电路只可能在某一个频率f0下满足相位平衡的条件(在后面的内容中将会对此做详细的叙述)。放大电路中存在噪声或干扰(例如接通直流电源时电路中就会产生电压或者电流的瞬变过程),它的频谱范围很广,必然包括振荡频率的分量。这些噪声和干扰经过选频网络选频后,只有f0这一频率分量满足相位平衡条件,只要此时A*F>1则可以增幅振荡,将此信号放大,建立起振荡。而除了f0之外的其他频率的分量则衰减。 所以电路起振的条件为A*F>1且Ψa+Ψf=2*n*PI(n为整数)。除了要求电路的相位满足条件之外还要满足|A*F|>1。 从A*F>1到A*F=1:接通电源后,频率为f0的分量将逐渐增大,当幅值达到一定程度后,放大环节的非线性期间就会接近甚至进入非线性工作区(饱和区或者截止区),这时候放大增益A将逐渐下降,输出波形产生失真,所以经过选频网络后其输入也将随之下降。形成失真振荡。所以为了避免失真振荡,应尽量避免放大器件进入非线性工作区。解决办法是在放大器件在没有进入非线性工作期前加稳幅环节,使A*F从大于1逐渐减小到1,从而达到稳幅振荡的目的。 三、文氏电桥振荡电路 1.选频网络

RC振荡电路实验报告(特选资料)

广州大学学生实验报告 院(系)名称 物理与信息工程系 班别 姓名 专业名称 学号 实验课程名称 模拟电路实验 实验项目名称 RC 串并联网络(文氏桥)振荡器 实验时间 实验地点 实验成绩 指导老师签名 【实验目的】 1.进一步学习RC 正弦波振荡器的组成及其振荡条件。 2.学会测量、调试振荡器。 【实验原理】 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。 RC 串并联网络(文氏桥)振荡器 电路型式如图6-1所示。 振荡频率 RC 21 f O π= 起振条件 |A &|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 图6-1 RC 串并联网络振荡器原理图 注:本实验采用两级共射极分立元件放大器组成RC 正弦波振荡器。 【实验仪器与材料】 模拟电路实验箱 双踪示波器 函数信号发生器 交流毫伏表 万用电表 连接线若干

【实验内容及步骤】 1.RC 串并联选频网络振荡器 (1)按图6-2组接线路 图6-2 RC 串并联选频网络振荡器 (2)接通RC 串并联网络,调节R f 并使电路起振,用示波器观测输出电压u O 波形,再细调节R f ,使获得满意的正弦信号,记录波形及其参数,即,测量振荡频率,周期并与计算值进行比较。 (3) 断开RC 串并联网络,保持R f 不变,测量放大器静态工作点,电压放大倍数。 (4)断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。(输入小信号:f=1KHz,峰峰值为100mV 正弦波)用毫伏表测量u i 、u 0 就可以计算出电路的放大倍数。 (5)改变R 或C 值,观察振荡频率变化情况。 将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。且输入、输出同相位,此时信号源频率为 2πRC 1 f f ο== 【实验数据整理与归纳】 (1)静态工作点测量 U B (V ) U E (V ) U C (V) 第一级 2.48 2.96 4.66 第二级 0.84 11.51 1.01 (2)电压放大倍数测量: u i (mV) u o (V) Av 788 2.80 3.60

RC文氏电桥振荡电路知识分享

R C文氏电桥振荡电路

RC文氏电桥振荡器的电路如图1所示,RC串并联网络是正反馈网络,由运算放大器、R3和R4负反馈网络构成放大电路。 C1R1和C2R2支路是正反馈网络,R3R4支路是负反馈网络。C1R1、C2R2、R3、R4正好构成一个桥路,称为文氏桥。 图1 RC文氏电桥振荡器 RC串并联选频网络的选频特性 RC串并联网络的电路如图2所示。RC串联臂的阻抗用Z1表示,RC并联臂的阻抗用Z2表示。 图2 RC串并联网络 RC串并联网络的传递函数为

式(1) 当输入端的电压和电流同相时,电路产生谐振,也就是式(1)是实数,虚部为0。令式(1)的虚部为0,即可求出谐振频率。 谐振频率 对于文氏RC振荡电路,一般都取R=R1 = R2,C=C1 = C2时,于是谐振角频率: 频率特性幅频特性 相频特性 文氏RC振荡电路正反馈网络传递函数的幅度频率特性曲线和相位频率特性曲线如图3所示。

(a) 幅频特性曲线 (b) 相频特性曲线 图3 RC串并联网络的频率响应特性曲线 反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数 当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数 此时反馈系数 与频率f0的大小无关,此时的相角 jF=0°。文氏RC振荡电路可以通过双连电位器或双连电容器来调节振荡电路的频率,即保证R=R1 = R2,C=C1 = C2始终同步跟踪变化,于是改变文氏桥RC振荡电路的频率时,不会影响反馈系数和相角,在调节频率的过程中,不会停振,也不会使输出幅度改变。 根据振荡条件丨AF丨>1,在谐振时,放大电路的电压增益应该Au=3。由图1可知,RC串并联网络的反馈信号加在运算放大器的同相输入端,运算放大器的电压增益由R3和R4确定,是电压串联负反馈,于是应有 振荡的建立和幅度的稳定 振荡的建立 所谓振荡的建立,就是要使电路自激,从而产生持续的振荡输出。由于电路中存在噪声,噪声的频谱分布很广,其中也包括f0及其附近一些频率成分。由于噪声的随机性,有时正有时负,有时大一些有时小一些。为了保证这种微弱的信号,经过放大通过正反馈的选频网络,使输出幅度愈来愈大,振荡电路在起振时应有比振荡稳定时更大一些的电压增益,即丨AF丨>1,所以Au f>3,丨AF丨>1称为起振条件。 通过热敏元件稳定输出幅度 加入R3、R4支路,电路是串联电压负反馈,其放大倍数

实验六 RC正弦波振荡器的设计及调试

实验六 RC 正弦波振荡器的设计及调试 一、实验目的 1、进一步学习RC 正弦波振荡器的组成及其振荡条件; 2、学会测量、调试振荡器。 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大电路。若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz ~1MHz 的低频信号。 1、RC 移相振荡器 电路型式如图8.1所示,选择R >>R i 。 振荡频率:O f =起振条件:放大电路A 的电压放大倍数|A |>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围:几Hz ~数十kHz 。 2、RC 串并联网络(文氏桥)振荡器 电路型式如图8.2所示。 振荡频率:12O f RC p = 起振条件:|A |>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 三、实验条件 1、12V 直流电源 2、函数信号发生器 3、双踪示波器 图8.1 RC 移相振荡器原理图 图8.2 RC 串并联网络振荡器原理图

4、频率计 5、直流电压表 6、3DG12×2或9013×2,电阻、电容、电位器等 四、实验内容 1、RC串并联选频网络振荡器 2、双T选频网络振荡器 3、RC移相式振荡器的组装与调试 五、实验步骤 1、RC串并联选频网络振 荡器 (1)按图8.4组接线路; (2)接通12V电源,调节 电阻,使得Vce1=7-8V, Vce2=4V左右。用示波器观察 图8.4 RC串并联选频网络振荡器有无振荡输出。若无输出或振 荡器输出波形失真,则调节Rf以改变负反馈量至波形不失真。并测量电压放大倍数及电路静态工作点。 (3)观察负反馈强弱对振荡器输出波形的影响。 逐渐改变负反馈量,观察负反馈强弱程度对输出波形的影响,并同时记录观察到 的波形变化情况及相应的Rf值。 (4)改变R(10KΩ)值,观察振荡频率变化情况; (5)RC串并联网络幅频特性的观察。 将RC串并联网络与放大电路断开,用函数信号发生器的正弦信号注入RC

文氏电桥振荡电路仿真实验报告

模拟电子技术课程 文氏电桥振荡器电路仿真实验报告 学号:515021910574 姓名:梁奥 一、 本仿真实验的目的 1.理解RC桥式正弦波震荡电路的原理和功能。 2.能够调节反馈电阻使电路产生正弦波振荡。 3.能够选择适当的RC参数选出特定频率。 4.能够选择适当的稳幅网络,实现稳幅功能,且失真较小。 二、 仿真电路 图2.1 注:集成运放使用LM324,其电源电压为±15V,图中Multisim默认为电源端4、11已接电源。XSC1示波器观察输出电压。

三、 仿真内容 (1)设计电路参数使 f0=500Hz。 (2)计算RC串并联选频网络的频响特性。 (3)使用二极管稳幅电路,使输出振荡波形稳幅,且波形失真较小。 四、 仿真结果 选择RF1=1kΩ,RF2=1.8kΩ,电路产生正弦波,起振过程如图4.1。由于二极管存在动态电阻,因此RF2与RF1的比值小于2。 图4.1 (1)由选频网络特性可知: f = 1 2πRC 因此,选择电阻R=31.8kΩ,电容C=0.01μF,经计算可得 f0理论值为500.7Hz。 实验结果为: f = 1 T =498.0Hz。

图4.2 (2)已知RC 串并联网络的幅频特性为: F i 相频特性为: ?F =?arctan 13f f 0?f 0f ????? ? 当 f =f 0时, F i =13, U f i =13U 0i , ?F =00 如图4.3所示

图4.3 通过一个电路图测试RC串并联电路的频率响应: 图4.4 输入为1kHz,1V的正弦信号,由XBP1可以看出:

模电实验_RC正弦波振荡器

实验六——正弦波振荡器发生器实验报告 一,实验目的 (1)学习运算放大器在对信号处理,变换和产生等方面的应用,为综合应用奠定基础。 (2)学习用集成运算放大器组成波形发生器的工作原理。 二,实验原理 波形的产生是集成运算放大器的非线性应用之一。常见的波形发生器有正弦波发生器、方波发生器、三角波发生器和锯齿波发生器,每一种波形的产生方法都不是唯一的。 RC正弦波振荡器。 RC桥式震荡电路由两部分组成,即放大电路和选频网络。电路如图所示,选频网络由R,C元件组成,一般用来产生1Hz~1MHz的低频信号,在放大电路中引入正反馈时,会产生自激,从而产生持续振荡,由直流电变为交流电。 若图中R1=R2=R,C1=C2=C,则电路的振荡频率为f0=1/2πRC。为使电路起振要求电压放大倍数Av满足Av=1+(RP+R4)/R3>3→Rp+R4>2R3。 三,实验内容 (1)用示波器观察Vo、Vc处的波形,记录波形并比较他们之间的相位关系。(2)用示波器测量Vo,Vc处波形的幅值和频率

(3)调节可变电阻Rp,用示波器观察输出电压Vp的变化情况。 (4)当T1=T2时,测量电阻Rp的大小,将理论值与实测值进行比较。 四,实验器材 (1)双路直流稳压电源一台 (2)函数信号发生器一台 (3)示波器一台 (4)万用表一台 (5)集成运算放大器两片 (6)电阻,电容,二极管,稳压管若干。 (7)模拟电路试验箱一台。 五,实验步骤 RC正弦波振荡器。 1)按图示连接号电路,检查无误后,接通±12V直流电源。 2)用示波器观察有无正弦波输出。 3)调节可变电阻Rp,使输出波形从无到有直至失真,绘制输出波形Vo,记录临界起振、正弦波输出及出现失真情况下的Rp值。 4)调节可变电阻Rp,分别测量以上三种情况下,输出电压vo和反馈电压vf的值并将结果记录到表3.4.2中,分析负反馈强弱对起振条件和输出波形的影响。 5)测量当R1=R2=10kΩ,C1=C2=0.01μF和R1=R2=10kΩ,C1=C2=0.02μF 两种情况下。输出波形的幅值和频率,计入表3.4.3中,并与理论值比较。 6)断开二极管D1,D2,重复步骤3)的内容,并将结果与步骤3)的结果进行比较。 六,实验数据及结果分析 RC正弦波振荡器 1)正弦波输出如图

文氏桥振荡电路(multisim仿真)

高频电子线路课程设计 题目: 院(系、部): 学生姓名: 指导教师: 年月日 河北科技师范学院教务处制

摘要 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。 本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。文氏桥振荡电路由两部分组成:即放大电路和选频网络。由集成运放组成的电压串联负反馈放大电路,取其输入电阻高、输出电阻低的特点。经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内。 关键词:正弦波;振荡器;文氏电桥

目录 摘要.................................................... 错误!未定义书签。1设计任务及要求. (9) 1.1.................................................................................................... 错误!未定义书签。 1.2 ***............................................................................................ 错误!未定义书签。 2 方案论证 (10) 3 单元电路设计 (11) 4 电路原理图及PCB版图 (11) 5 总结................................................... 错误!未定义书签。附录及参考文献........................................... 错误!未定义书签。

模电实验_RC正弦波振荡器

实验六--- 正弦波振荡器发生器实验报告 一,实验目的 (1)学习运算放大器在对信号处理,变换和产生等方面的应用,为综合应用奠定基础。 (2)学习用集成运算放大器组成波形发生器的工作原理。 二,实验原理 波形的产生是集成运算放大器的非线性应用之一。常见的波形发生器有正弦波发生器、方波发生器、三角波发生器和锯齿波发生器,每一种波形的产生方法都不是唯一的。 RC正弦波振荡器。 RC桥式震荡电路由两部分组成,即放大电路和选频网络。电路如图所示,选频网络由R,C元件组成,一般用来产生1Hz~1MHz的低频信号,在放大电路中引入正反馈时,会产生自激,从而产生持续振荡,由直流电变为交流电。 若图中R1=R2=R 3= C2=C则电路的振荡频率为f0=1/2 n RC为使电路起振要求电压放大倍数Av满足Av=1+ ( RP+R4 /R3>3—Rp+R4>2R3 三,实验内容 (1) 用示波器观察Vo、Vc处的波形,记录波形并比较他们之间的相位关系 (2) 用示波器测量Vo, Vc处波形的幅值和频率 (3)调节可变电阻Rp,用示波器观察输出电压Vp的变化情况。

(4)当T仁T2时,测量电阻Rp的大小,将理论值与实测值进行比较 四,实验器材 1)双路直流稳压电源一台 2)函数信号发生器一台 3)示波器一台 4)万用表一台 5)集成运算放大器两片 6)电阻,电容,二极管,稳压管若干 7)模拟电路试验箱一台。 五,实验步骤 RC正弦波振荡器。 1)按图示连接号电路,检查无误后,接通土12V直流电源。 2)用示波器观察有无正弦波输出。 3)调节可变电阻Rp,使输出波形从无到有直至失真,绘制输出波形Vo,记录临界起振、正弦波输出及出现失真情况下的Rp值。 4)调节可变电阻Rp,分别测量以上三种情况下,输出电压vo和反馈电压vf的值并将结果记录到表3.4.2中,分析负反馈强弱对起振条件和输出波形的影响。 5)测量当R仁R2=10Q, 3= C2=0.0V F 和R仁R2=10Q, 3=。2=0.0卬F 两种情况下。输出波形的幅值和频率,计入表3.4.3中,并与理论值比较。 6)断开二极管D1, D2,重复步骤3)的内容,并将结果与步骤3)的结果进行比较。 六,实验数据及结果分析 RC正弦波振荡器 1 )正弦波输出如图

RC正弦波振荡电路设计

RC 正弦波振荡电路设计 电气工程系 王文川 任务三 RC 正弦波振荡电路 一、RC 正弦波振荡器 任务描述 RC 正弦波振荡电路的描述 学习目标 RC 正弦波振荡电路的认识。

一、实验目的 1、进一步学习RC正弦波振荡器的组成及其振荡条件 2、学会测量、调试振荡器 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R、C元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz~1MHz的低频信号。 1、 RC移相振荡器 电路型式如图12-1所示,选择R>>R i。 图12-1 RC移相振荡器原理图 振荡频率 起振条件放大器A的电压放大倍数||>29 电路特点简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围几赫~数十千赫。 2、 RC串并联网络(文氏桥)振荡器 电路型式如图12-2所示。 振荡频率 起振条件 ||>3 电路特点可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 图12-2 RC串并联网络振荡器原理图

3、双T选频网络振荡器 电路型式如图12-3所示。 图12-3 双T选频网络振荡器原理图 振荡频率 起振条件 ||>1 电路特点选频特性好,调频困难,适于产生单一频率的振荡。 注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。 三、实验设备与器件 1、+12V 直流电源 2、函数信号发生器 3、双踪示波器 4、频率计 5、直流电压表 6、 3DG12×2 或 9013×2 电阻、电容、电位器等 四、实验内容 1、 RC串并联选频网络振荡器 (1)(1)按图12-4组接线路 图12-4 RC串并联选频网络振荡器

RC正弦波振荡器实验

实验 RC 正弦波振荡器 一.实验目的 1. 掌握RC 正弦波振荡器的设计方法 2. 掌握RC 正弦波振荡器的调试方法 二.实验仪器及器件 集成运算放大器μA741 二极管 电阻 瓷片电容 若干 三.实验原理 振荡电路有RC 正弦波振荡电路、桥式振荡电路、移相式振荡电路和双T 网络式振荡电 路等多种形式。其中应用最广泛的是RC 桥式振荡电路, (如图 黑板上的图) 1. 电路分析 RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成 正反馈电路,决定振荡频率0f ,1R 、f R 形成负反馈回路,决定起振的幅值条件。 两个二极管起稳定作用(如波形) 该电路的振荡频率 0f = RC π21 (1) 起振幅值条件 311≥+=R R A f v (2) 式中 153f w R R k k =++, 若加二极管,此时153//f w d R R k k r =++ 此时d r 为二极管的正向动态电阻 2. 电路参数确定 (1).确定1R 、f R 电阻1R 和f R 应由起振的幅值条件来确定,由式(2)可知f R ≥21R 通常取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。 (2).确定稳幅电路 通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实现稳幅。图中稳幅电路由两只正反向并联的二极管1D 、2D 和3k Ω 电阻并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻3R 。实验证明,取3R ≈d r 时,效果最佳。 四、实验内容 1. 根据图形连接好电路,填写如下表格

西工大 模电实验报告 RC文氏电桥振荡器

2.8RC文氏电桥振荡器 一、实验目的 (1)学习RC正弦波振荡器的组成及其振荡条件。 (2)学会测量、调试振荡器。 二、实验原理 文氏电桥振荡器是一种较好的正弦波产生电路,适用于产生频率小于1MHz,频率范围宽,波形较好的低频振荡信号。 因为没有输入信号,为了产生正弦波,必须在电路里加入正反馈。 下图是用运算放大器组成的电路,图中R3,R4构成负反馈支路,R1,R2,C1,C2的串并联选频网络构成正反馈支路并兼作选频网络,二极管构成稳幅电路。 调节电位器R p可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。二 极管D1,D2要求温度稳定性好且特性匹配,这样才能保证输出波形正负半周对称,同时接入R4以消除二极管的非线性影响。 若R1=R2,C1=C2,则振荡频率为f0=1/2πRC,正反馈的电压与输出电压同

相位,且正反馈系数为1/3。为满足电路的起振条件放大器的电压放大倍数A V> 3,其中A V = 1+R5/ =R p+R4。由此可得出当R5>2R3时,可满足电路的自激振荡的振幅起振条件。在实际应用中R5应略大于R3,这样既可以满足起振条件,又不会因其过大而引起波形严重失真。 此外,为了输出单一的正弦波,还必须进行选频。由于振荡频率为f0=1/2πRC,故在电路中可变换电容来进行振荡频率的粗调,可用电位器代替R1,R2来进行频率的细调。 电路起振后,由于元件参数的不稳定性,如果电路增益增大,输出幅度将越来越大,最后由于二极管的非线性限幅,这必然产生非线性失真。反之,如果增益不足,则输出幅度减小,可能停振,为此振荡电路要有一个稳幅电路。图中两个二极管主要是利用二极管的正向电阻随所加电压而改变的特性,来自动调节负反馈深度。 三、实验内容 (一)计算机仿真部分 (1)按实验电路图连接好仿真电路。

相关主题
文本预览
相关文档 最新文档