当前位置:文档之家› 强度理论四个基本的强度理论

强度理论四个基本的强度理论

强度理论四个基本的强度理论
强度理论四个基本的强度理论

强度理论四个基本的强度理论

四个基本的强度理论分别为第一强度理论,第二强度理论,第三强度理论和第四强度理论。现将它们的有关知识点对应列于四个强度理论比较表,以便于比较学习。未在表中涉及的内容,此处给出介绍。

第一强度理论--看一下它的强度条件的取得。

在简单拉伸试验中,三个主应力有两个是零,最大主应力就是试件横截面上该点的应力,当这个应力达到材料的极限强度sb时,试件就断裂。因此,根据此强度理论,通过简单拉伸试验,可知材料的极限应力就是sb。于是在复杂应力状态下,材料的破坏条件是

s1=sb(a)

考虑安全系数以后的强度条件是

s1≤[s](1-59)

需指出的是:上式中的s1必须为拉应力。在没有拉应力的三向压缩应力状态下,显然是不能采用第一

强度理论来建立强度条件的。

第二强度理论--看看它的强度条件的取得

此理论下的脆断破坏条件是

e1=ejx =sjx /E (b)

由式(1-58)

可知,在复杂应力状态下一点处的最大线应变为

e1=[s1-m(s2+s3)]/E

代入(b)可得

[s1-m(s2+s3)]/E =sjx /E 或[s1-m(s2+s3)]=sjx

将上式右边的sjx 除以安全系数及得到材料的容许拉应力[s]。故对危险点处于复杂应力状态的构件,

按第二强度理论所建立的强度条件是:

[s1-m(s2+s3)]≤[s] (1-60)

第三强度理论--也来看看它的强度条件的取得

对于象低碳钢这一类的塑性材料,在单向拉伸试验时材料就是沿斜截面发生滑移而出现明显的屈服现象的。这时试件在横截面上的正应力就是材料的屈服极限ss,而在试件斜截面上的最大剪应力(即45°斜截面上的剪应力)等于横截面上正应力的一半。于是,对于这一类材料,就可以从单向拉伸试验中得到材料的

极限值txy

txy =ss/2

按此理论的观点,屈服破坏条件是

tmax =txy =ss/2(c)

由公式(1-56)可知,在复杂应力状态下下一点处的最大剪应力为

tmax =(s1-s3)/2

其中的s1、s3分别为该应力状态中的最大和最小主应力。故式(c)又可改写为

(s1-s3)/2=ss/2 或(s1-s3)=ss

将上式右边的ss除以安全系数及的材料的容许拉应力[s],故对危险点处于复杂应力状态的构件,按第

三强度理论所建立的强度条件是:

(s1-s3)≤[s](1-61)

第四强度理论--首先介绍一下形状改变比能,然后看看强度条件的推导。

物体在外力作用下会发生变形,这里所说的变形,既包括有体积改变也包括有形状改变。当物体因外力作用而产生弹性变形时,外力在相应的位移上就作了功,同时在物体内部也就积蓄了能量。例如钟表的发条(弹性体)被用力拧紧(发生变形),此外力所作的功就转变为发条所积蓄的能。在放松过程中,发条靠它所积蓄的能使齿轮系统和指针持续转动,这时发条又对外作了功。这种随着弹性体发生变形而积蓄在其内部的能量称为变形能。在单位变形体体积内所积蓄的变形能称为变形比能。

由于物体在外力作用下所发生的弹性变形既包括物体的体积改变,也包括物体的形状改变,所以可推断,弹性体内所积蓄的变形比能也应该分成两部分:一部分是形状改变比能md ,一部分是体积改变比能mq 。在复杂应力状态下,物体形状的改变及所积蓄的形状改变比能是和三个主应力的差值有关;而物体体积的改变及所积蓄的体积改变比能是和三个主应力的代数和有关。

强度理论四个基本的强度理论

强度理论四个基本的强度理论 四个基本的强度理论分别为第一强度理论,第二强度理论,第三强度理论和第四强度理论。现将它们的有关知识点对应列于四个强度理论比较表,以便于比较学习。未在表中涉及的内容,此处给出介绍。 第一强度理论--看一下它的强度条件的取得。 在简单拉伸试验中,三个主应力有两个是零,最大主应力就是试件横截面上该点的应力,当这个应力达到材料的极限强度sb时,试件就断裂。因此,根据此强度理论,通过简单拉伸试验,可知材料的极限应力就是sb。于是在复杂应力状态下,材料的破坏条件是 s1=sb(a) 考虑安全系数以后的强度条件是 s1≤[s](1-59) 需指出的是:上式中的s1必须为拉应力。在没有拉应力的三向压缩应力状态下,显然是不能采用第一 强度理论来建立强度条件的。 第二强度理论--看看它的强度条件的取得 此理论下的脆断破坏条件是 e1=ejx =sjx /E (b) 由式(1-58) 可知,在复杂应力状态下一点处的最大线应变为 e1=[s1-m(s2+s3)]/E 代入(b)可得 [s1-m(s2+s3)]/E =sjx /E 或[s1-m(s2+s3)]=sjx 将上式右边的sjx 除以安全系数及得到材料的容许拉应力[s]。故对危险点处于复杂应力状态的构件, 按第二强度理论所建立的强度条件是: [s1-m(s2+s3)]≤[s] (1-60) 第三强度理论--也来看看它的强度条件的取得 对于象低碳钢这一类的塑性材料,在单向拉伸试验时材料就是沿斜截面发生滑移而出现明显的屈服现象的。这时试件在横截面上的正应力就是材料的屈服极限ss,而在试件斜截面上的最大剪应力(即45°斜截面上的剪应力)等于横截面上正应力的一半。于是,对于这一类材料,就可以从单向拉伸试验中得到材料的 极限值txy txy =ss/2 按此理论的观点,屈服破坏条件是 tmax =txy =ss/2(c) 由公式(1-56)可知,在复杂应力状态下下一点处的最大剪应力为 tmax =(s1-s3)/2 其中的s1、s3分别为该应力状态中的最大和最小主应力。故式(c)又可改写为 (s1-s3)/2=ss/2 或(s1-s3)=ss 将上式右边的ss除以安全系数及的材料的容许拉应力[s],故对危险点处于复杂应力状态的构件,按第 三强度理论所建立的强度条件是:

电路理论基础

1:电位是相对的量,其高低正负取决于()。 回答:参考点 2:不能独立向外电路提供能量,而是受电路中某个支路的电压或电流控制的电源叫()。 回答:受控源 3:振幅、角频率和()称为正弦量的三要素。 回答:初相 4:并联的负载电阻越多(负载增加),则总电阻越()。 回答:小 5:任一电路的任一节点上,流入节点电流的代数和等于()。 回答:零 6:电流的基本单位是()。 回答:安培 7:与理想电压源()联的支路对外可以开路等效。 回答:并 8:电气设备只有在()状态下工作,才最经济合理、安全可靠。 回答:额定 9:通常规定()电荷运动的方向为电流的实际方向。 回答:正 10:电容元件的电压相位()电流相位。 回答:滞后 11:两个同频率正弦量之间的相位差等于()之差。 回答:初相 12:电位是相对于()的电压。 回答:参考点 13:支路电流法原则上适用适用于支路数较()的电路。 回答:少 14:电压定律是用来确定回路中各段()之间关系的电路定律。 回答:电压

15:KCL和KVL阐述的是电路结构上()的约束关系,取决于电路的连接形式,与支路元件的性质()。 回答:电压与电流、无关 16:各种电气设备或元器件的电压、电流及功率都规定一个限额,这个限额值就称为电气设备的()。 回答:额定值 17:节点电压法适用于支路数较()但节点数较少的复杂电路。 回答:多 18:三个电阻元件的一端连接在一起,另一端分别接到外部电路的三个节点的连接称()连接。 回答:星形 19:提高功率因数的原则是补偿前后()不变。 回答:P U 20:交流电可通过()任意变换电流、电压,便于输送、分配和使用。回答:变压器 1:任一时刻,沿任一回路参考方向绕行方向一周,回路中各段电压的代数和恒等于()。 回答:零 2:对于两个内部结构和参数完全不同的二端网络,如果它们对应端钮的伏安关系完全相同,则称N1和N2是()的二端网络。 回答:相互等效 3:叠加定理只适用于线性电路求()和() 回答:电压电流 4:对一个二端网络来说,从一个端钮流入的电流一定等于另一个端钮()的电流。 回答:流出

四大强度理论

第10章强度理论 10.1 强度理论的概念 构件的强度问题是材料力学所研究的最基本问题之一。通常认为当构件承受的载荷达到一定大小时,其材料就会在应力状态最危险的一点处首先发生破坏。故为了保证构件能正常地工作,必须找出材料进入危险状态的原因,并根据一定的强度条件设计或校核构件的截面尺寸。 各种材料因强度不足而引起的失效现象是不同的。如以普通碳钢为代表的塑性材料,以发生屈服现象、出现塑性变形为失效的标志。对以铸铁为代表的脆性材料,失效现象则是突然断裂。在单向受力情 况下,出现塑性变形时的屈服点 σ和发生断裂时的强度极限bσ可由实 s 验测定。 σ和bσ统称为失效应力,以安全系数除失效应力得到许用应s 力[]σ,于是建立强度条件 可见,在单向应力状态下,强度条件都是以实验为基础的。 实际构件危险点的应力状态往往不是单向的。实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。常用的方法是把材料加工成薄壁圆筒(图10-1),在内压p作用下,筒壁为二向应力状态。如再配以轴向拉力F,可使两个主应力之比等于各种预定的数值。这种薄壁筒

试验除作用内压和轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。此外,还有一些实现复杂应力状态的其他实验方法。尽管如此,要完全复现实际中遇到的各种复杂应力状态并不容易。况且复杂应力状态中应力组合的方式和比值又有各种可能。如果象单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。由于技术上的困难和工作的繁重,往往是难以实现的。解决这类问题,经常是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。 图10-1 经过分析和归纳发现,尽管失效现象比较复杂,强度不足引起的失效现象主要还是屈服和断裂两种类型。同时,衡量受力和变形程度的量又有应力、应变和变形能等。人们在长期的生产活动中,综合分析材料的失效现象和资料,对强度失效提出各种假说。这类假说认为,材料之所以按某种方式(断裂或屈服)失效,是应力、应变或变形能等因素中某一因素引起的。按照这类假说,无论是简单应力状态还是复杂应力状态,引起失效的因素是相同的。也就是说,造成失效的原因与应力状态无关。这类假说称为强度理论。利用强度理论,便可由简单应力状态的实验结果,建立复杂应力状态下的强度条件。至于某种强

806材料力学复习大纲

806《材料力学》复习大纲 一、考试的基本要求 要求学生系统地理解材料力学的基本概念和基本理论,掌握材料力学的研究方法,并要求考生具有一定的计算能力、逻辑推理能力和综合运用所学的知识分析问题和解决实际问题的能力。 二、考试方式和考试时间 闭卷考试,总分150,考试时间为3小时。 三、参考书目(仅供参考) 《材料力学》(Ⅰ)、(Ⅱ)第五版,刘鸿文主编,高等教育出版社,2011年。 四、试题类型: 主要包括填空题、选择题、是非题、计算题等类型,并根据每年的考试要求做相应调整。 五、考试内容及要求 第一部分材料力学基本概念 掌握:强度、刚度和稳定性的概念;内力与应力(正应力和切应力)的概念;变形与应变(线应变和切应变)的概念;截面法的概念;能正确运用截面法计算杆件的内力。 熟悉:材料力学的研究对象和基本假设。 第二部分基本变形的强度和刚度设计 掌握:(1)掌握轴向拉伸与压缩的概念;熟练作出杆件轴向拉伸与压缩时的轴力图;熟练计算杆件轴向拉伸与压缩时横截面上的正应力并进行相关强度设计;熟练计算杆件轴向拉伸与压缩时的变形。(2)熟练分析各种连接接头的剪切变形和挤压变形;熟练计算剪切应力和挤压应力,并进行剪切强度和挤压强度的设计。(3)掌握扭转的概念;熟练作出杆件的扭矩图;熟练计算圆截面和圆环截面杆扭转时横截面上的切应力并进行扭转强度设计;熟练计算圆截面和圆环截面杆扭转时的扭转角并进行扭转刚度设计。(4)掌握对称弯曲和平面弯曲的概念;熟练写出梁的剪力方程和弯矩方程并作出梁的剪力图和弯矩图;熟练计算平面弯曲时梁横截面上的正应力,并运用弯曲正应力强度条件进行梁的强度设计;正确理解梁的挠曲线近似微分方程,熟练运用积分法和叠加法计算梁的弯曲变形,并

材料力学四个强度理论

四大强度准则理论: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]

《电路理论基础》(第三版 陈希有)习题答案第一章

答案1.1 解:图示电路电流的参考方向是从a 指向b 。当时间t <2s 时电流从a 流向b,与参考方向相同,电流为正值;当t >2s 时电流从b 流向a ,与参考方向相反,电流为负值。所以电流i 的数学表达式为 2A 2s -3A 2s t i t ? 答案1.2 解:当0=t 时 0(0)(59e )V 4V u =-=-<0 其真实极性与参考方向相反,即b 为高电位端,a 为低电位端; 当∞→t 时 ()(59e )V 5V u -∞∞=-=>0 其真实极性与参考方向相同, 即a 为高电位端,b 为低电位端。 答案1.3 解:(a)元件A 电压和电流为关联参考方向。元件A 消耗的功率为 A A A p u i = 则 A A A 10W 5V 2A p u i === 真实方向与参考方向相同。 (b) 元件B 电压和电流为关联参考方向。元件B 消耗的功率为 B B B p u i = 则 B B B 10W 1A 10V p i u -===- 真实方向与参考方向相反。 (c) 元件C 电压和电流为非关联参考方向。元件C 发出的功率为 C C C p u i = 则 C C C 10W 10V 1A p u i -===-

真实方向与参考方向相反。 答案1.4 解:对节点列KCL 方程 节点③: 42A 3A 0i --=,得42A 3A=5A i =+ 节点④: 348A 0i i --+=,得348A 3A i i =-+= 节点①: 231A 0i i -++=,得231A 4A i i =+= 节点⑤: 123A 8A 0i i -++-=,得123A 8A 1A i i =+-=- 若只求2i ,可做闭合面如图(b)所示,对其列KCL 方程,得 28A-3A+1A-2A 0i -+= 解得 28A 3A 1A 2A 4A i =-+-= 答案1.5 解:如下图所示 (1)由KCL 方程得 节点①: 12A 1A 3A i =--=- 节点②: 411A 2A i i =+=- 节点③: 341A 1A i i =+=- 节点④: 231A 0i i =--= 若已知电流减少一个,不能求出全部未知电流。 (2)由KVL 方程得

《电路理论基础》(第三版 陈希有)习题答案

答案2.1 解:本题练习分流、分压公式。设电压、电流参考方向如图所示。 (a) 由分流公式得: 23A 2A 23 I R Ω?==Ω+ 解得 75R =Ω (b) 由分压公式得: 3V 2V 23 R U R ?==Ω+ 解得 47 R =Ω 答案2.2 解:电路等效如图(b)所示。 20k Ω 1U + - 20k Ω (b) + _ U 图中等效电阻 (13)520 (13)k //5k k k 1359 R +?=+ΩΩ=Ω=Ω++ 由分流公式得: 220mA 2mA 20k R I R =?=+Ω 电压 220k 40V U I =Ω?= 再对图(a)使用分压公式得: 13==30V 1+3 U U ? 答案2.3 解:设2R 与5k Ω的并联等效电阻为 2325k 5k R R R ?Ω = +Ω (1) 由已知条件得如下联立方程:

32 113 130.05(2) 40k (3) eq R U U R R R R R ?==?+??=+=Ω ? 由方程(2)、(3)解得 138k R =Ω 32k R =Ω 再将3R 代入(1)式得 210k 3 R = Ω 答案2.4 解:由并联电路分流公式,得 1820mA 8mA (128)I Ω =? =+Ω 2620mA 12mA (46)I Ω =? =+Ω 由节点①的KCL 得 128mA 12mA 4mA I I I =-=-=- 答案2.5 解:首先将电路化简成图(b)。 图 题2.5 120Ω (a) (b) 图中 1(140100)240R =+Ω=Ω 2(200160)120270360(200160)120R ??+?=+Ω=Ω??++?? 由并联电路分流公式得 2 112 10A 6A R I R R =? =+ 及

(完整版)四大强度理论基本内容介绍

四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为:σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)

由公式得:τmax=τ1s=(σ1-σ3)/2。所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 四大强度理论适用的范围 各种强度理论的适用范围及其应用 第一理论的应用和局限 1、应用 材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。 2、局限 没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。 第二理论的应用和局限 1、应用 脆性材料的二向应力状态且压应力很大的情况。 2、局限 与极少数的脆性材料在某些受力形势下的实验结果相吻合。

电路理论基础试卷

一、填空题:(每空1分,1x20=20分) 1.线性电路线性性质的最重要体现就是性和性,它们反映了电路中激励与响应的内在关系。 2.理想电流源的是恒定的,其是由与其相连的外电路决定的。 3.KVL是关于电路中受到的约束;KCL则是关于电路中 受到的约束。 4.某一正弦交流电压的解析式为u=102cos(200πt+45°)V,则该正弦电流的有效值U= V,频率为f= H Z,初相φ= 。当t=1s 时,该电压的瞬时值为V。 5.一个含有6条支路、4个节点的电路,其独立的KCL方程有_____ _个,独立的KVL 方程有个;若用2b方程法分析,则应有_ _ ___个独立方程。 6.有一L=0.1H的电感元件,已知其两端电压u=1002cos(100t-40°)V,则该电感元件的阻抗为____________Ω,导纳为___________S,流过电感的电流(参考方向与u关联)i= A。 7.已知交流电流的表达式:i1= 10cos(100πt-70°)A ,i2=3cos(100πt+130°)A,则i1超前(导前)i2_________ 。 8.功率因数反映了供电设备的率,为了提高功率因数通常采用 补偿的方法。 9.在正弦激励下,含有L和C的二端网络的端口电压与电流同相时,称电路发生了。 二、简单计算填空题:(每空2分,2x14=28分) 1.如图1所示电路中,电流i= A。 2.如图2所示电路中,电压U ab= V。

3.如图3所示二端网络的入端电阻R ab= Ω。 4.如图4所示电路中,电流I= A。 5.如图5所示为一有源二端网络N,在其端口a、b接入电压表时,读数为10V,接入电流表时读数为5A,则其戴维南等效电路参数U OC= V, R O= Ω。 6.如图6所示为一无源二端网络P,其端口电压u与电流i取关联参考方向,已知u=10cos(5t +30°)V, i=2sin(5t+60°)A,则该二端网络的等效阻抗Z ab= Ω,吸收的平均功率P= W,无功功率Q= Var。

四大强度理论对比

四大强度理论 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力 状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为: 2、sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ] 四个强度理论的比较

工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容 一、四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力

状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 二、四大强度理论适用的范围 1、各种强度理论的适用范围及其应用 第一理论的应用和局限 1、应用 材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。 2、局限 没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。 第二理论的应用和局限 1、应用 脆性材料的二向应力状态且压应力很大的情况。 2、局限 与极少数的脆性材料在某些受力形势下的实验结果相吻合。 第三理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 没考虑σ2对材料的破坏影响,计算结果偏于安全。 第四理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 与第三强度理论相比更符合实际,但公式过于复杂。 2、总结来讲: 第一和第二强度理论适用于:铸铁、石料、混凝土、玻璃等,通常以断裂形式失效的脆性材料。 第三和第四强度理论适用于:碳钢、铜、铝等,通常以屈服形式失效的塑性材料。 以上是通常的说法,在实际中,有复杂受力条件下,哪怕同种材料的失效形

081406桥梁与隧道工程考试大纲

081406桥梁与隧道工程考试大纲 《材料力学》考试大纲 一、考试要求 材料力学是变形固体力学入门的专业基础课。要求考生对构件的强度、刚度、稳定性等问题有明确的认识,全面系统地掌握材料力学的基本概念、基本定律及必要的基础理论知识,同时具备一定的计算能力及较强的分析问题及解决问题的能力。 二、考试内容 1、基本变形形式下杆件的强度及刚度计算问题 ·轴向拉伸及压缩的概念、轴力图、横截面上的应力、许用应力及强度条件、轴向拉压杆的变形计算及胡克定律、材料拉伸及压缩时的力学性能,应力-应变曲线 ·剪切的概念及实例。剪切与挤压的实用计算 ·扭转的概念。圆轴横截面上的应力及切应力强度条件、切应力互等定理、剪切胡克定律。圆轴扭转角的计算公式及刚度条件 ·平面弯曲的概念及实例。熟练绘制剪力图与弯矩图。梁横截面上的正应力、切应力计算公式及强度条件。用积分法及叠加法计算弯曲变形 2、超静定问题 ·轴向拉伸压缩超静定计算,温度应力 ·求解超静定梁及其弯曲内力、弯曲应力 3、平面图形的几何性质 ·静矩、惯性矩、惯性积的定义、形心位置 ·惯性矩与惯性积的平行移轴公式,形心主轴的概念 4、应力状态及强度理论 ·应力状态的概念 ·运用解析法求平面应力状态下任意斜截面上的应力、主应力、最大切应力·应力圆的概念 ·平面应力状态下的广义胡克定律及其综合应用 ·空间应力状态下任一点主应力与最大切应力及三向应力圆 ·体积应变、体积改变比能与形状改变比能 ·材料的两种失效形式 ·四个古典强度理论的相当应力及强度条件的应用 5、组合变形 ·斜弯曲、偏心压缩、拉伸与弯曲等组合变形时应力的计算及强度条件

·弯扭组合及拉(压)弯扭组合时的应力计算及强度条件6、压杆稳定 ·稳定的概念 ·压杆的稳定校核、安全因数法、稳定系数法

四种强度理论(1)

由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。 1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达

到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。 脆断破坏条件:ε1=εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) =σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3)

四种强度理论

1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。

脆断破坏条件:ε1= εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) = σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3 ) 破坏条件:σ1?σ3= σs 强度条件:σ1?σ3≤[σ]

电路理论基础 孙立山 陈希有主编 第3章习题答案详解

教材习题3答案部分(P73) 答案3.1略 答案3.2 解: (a ) 本题考虑到电桥平衡,再利用叠加定理,计算非常简单。 (1)3V 电压源单独作用,如图(a-1)、(a-2)所示。 (a-1)(a-2) 由图(a-2)可得 '3V 1A 148348 I ==?Ω+Ω+ 由分流公式得: ''182 A 483 I I Ω=-?=-Ω+Ω (2)1A 电流源单独作用,如图(a-3)所示。 (a-3) 考虑到电桥平衡, "0I =, 在由分流公式得: "1131A A 134 I =-? =-+ (3)叠加: '"1A I I I =+= '"11117/12A I I I =+=- 2 111 2.007W P I Ω=?= (b )

(1)4V 电压源单独作用,如图(b-1)所示。 'I ' 由图(b-1)可得, '24V 2V (2+2)U Ω?= =Ω '136A I U =-=- ''21'5A I I I =+=- (2)2A 电流源单独作用,如图(b-2)所示。 (b-2) ''22 2A=2V 22 U ?= Ω?+ "''2311A 2 I I = ?= 对节点②列KCL 方程得, """1132A 4A I U I +== 对节点③列KCL 方程得, "" "230I I U ++= 解得 "5A I = (3) 叠加 '"1116A 4A=10A I I I =+=--- '"5A 5A=10A I I I =+=--- 2111100W P I Ω=?Ω= 答案3.3略

答案3.4略 答案3.5 解 :利用叠加定理,含源电阻网络中的电源分为一组,其作用为' I ,如图 (b)所示。S I 为一组,其单独作用的结果I '' 与S I 成比例,即:" S I kI =,如图(c) 所示。 I I s kI (a) (b) (c) + '"'S I I I I kI =+=+ (1) 将已知条件代入(1)式得 ' ' 04A 1A 2A I k I k ?=+???-=+??? 联立解得: '2A I =,12 k = 即: S 1 2A+2 I I =-? 将1A I =代入,解得 S 6A I = 答案3.6 解:根据叠加定理,将图(a)等效成图 (b)与图 (c)的叠加。 I (b) 2 S (c) 由已知条件得 S11S1 28W 14V 2A I P U I '= = = 2 8V U '= 1 12V U ''=

材料四大强度理论

四大强度准则理论: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。τmax=τ0。依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs--横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。所以破坏条件改写为σ1-σ3=σs。按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。发生塑性破坏的条件为: 所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]

损伤力学读书报告

《损伤力学》读书报告 随着现代工业的飞速发展,大型机械和复杂构件的日益增加,金属构件的疲劳失效已经成为工程领域中,关系到安全、可靠以及经济性的一个重要因素。 一般认为金属的疲劳破坏形式分为如下几个阶段:裂纹形核、小裂纹扩展、长裂纹扩展以及瞬时失效阶段,一般将裂纹形核和小裂纹扩展归为第一阶段,对于这阶段的研究,其主要方法是试验与统计相结合的方法,目前较多的研究室基于细观力学、分子动力学以及断裂物理的研究较多,对于裂纹的扩展阶段,一般是采用试验与断裂力学相结合的方法,这对于飞行器以及工程构件的损伤容限设计是非常必要的手段。但是这些方法也存在于若干不足之处: (1)、对于裂纹的曲线扩展路径的描述困难。 (2)、二维裂纹扩展和三维裂纹扩展的描述难以统一。 (3)、把第一阶段与裂纹扩展阶段视为独立的阶段。 为止,就需要一个新的固体力学工具,将裂纹形成与扩展的描述进行统一,将二维和三维裂纹的扩展研究进行统一,将裂纹的直线扩展与曲线扩展进行统一。 此时,损伤力学就应运而生,从80年代初期,到目前为止,这方面出版了许多专著,他们对损伤力学的理论以及发展做出了巨大的贡献;下面就介绍损伤力学的一些先关内容: 一、破坏力学的发展及损伤力学定义 破坏力学发展的三个阶段 1)、古典强度理论:以材料的强度作为设计指标:[]σσ<*,即只要材料的应力*σ小于材料的许用应力[]σ就不会破坏。 2)、断裂力学:以材料的韧度为设计指标:IC IC J K J K , ,<。 3)、损伤力学:以渐进衰坏程度作为为指标:C ωω<。 损伤力学定义 损伤力学是研究材料的细(微)结构在载荷历史过程中产生不可逆劣化(衰坏)过程,从而引起材料(构件)性能变化、以及变形破坏的力学规律。 二、传统材料力学的强度问题 对于传统的力学材料研究首先满足:材料均匀性和连续性假设,即认为材料是 各处性质相同的连续体。 其研究理论和思想如下图所示:

电路理论基础

(一) 一、单选题 1.交流电可通过()任意变换电流、电压,便于输送、分配和使用。 A.电源 B.变压器 C.电感答案 B 2.受控源的电动势或输出电流,受电路中()控制。 A.电流 B.电压 C.电流或电压答案 C 3.以支路电流为未知量,根据基尔霍夫两定律列出必要的电路方程,再求解各支路电流的方法,称支路()法。 A.电流 B.电压 C.电阻答案 A 4.在电路等效的过程中,与理想电压源()联的电流源不起作用。 A.串 B.并 C.混答案 B 5.电感上无功功率是指吸收电能转换成()能的功率。 A.电 B.磁 C.化学答案 B 6.在电路等效的过程中,与理想电流源()联的电压源不起作用。 A.串

B.并 C.混答案 A 7.叠加定理只适用于()电路。 A.线性 B.非线性 C.非线性时变答案 A 8.以假想的回路电流为未知量,根据KVL定律列出必要的电路方程,再求解客观存在的各 支路电流的方法,称()电流法。 A.回路 B.节点 C.支路答案 A 9.火线与火线之间的电压称为()电压。 A.相 B.线 C.直流答案 C 10.与理想电流源()联的支路对外可以短路等效。 A.串 B.并 C.混答案 A 11.对外提供恒定的电压,而与流过它的电流无关的电源是()。 A.电压源 B.瓦特 C.电流源答案 A 12.功率因数越低,发电机、变压器等电气设备输出的有功功率就越低,其容量利用率就()。 A.低 B.高

C. 大答案A 13.电路中某点的电位大小是()的量 A.绝对 B.相对 C.常量答案 B 14.时间常数τ越大,充放电速度越()。 A.快 B.慢 C.稳答案 C 15.应用 KCL 定律解题首先约定流入、流出结点电流的()。 A.大小 B.方向 C.参考方向答案 C 16.三相电源绕组首尾相连组成一个闭环,在三个连接点处向外引出三根火线,即构成()接。 A.星形 B.角形 C.串形答案 B 17.电压的单位是()。 A.欧姆 B.千安 C.伏特答案 C 18.通过改变串联电阻的大小得到不同的输出()。 A.电流 B.电压 C.电流和电压答案 B

电路理论基础习题

4Ωx +6V - +-i 电路理论基础(铜山大学) 2-22(b )用网孔分析法求图题2-17所示电路中的i 2-24 用节点分析法求图2-24所示电路中的u 和i

u s2▲3-3 u 3-3 电路如图所示(1)N 为仅由线性电阻组成的网络。当u s1=2v,u s2=3v 时,i x =20A ,而当u s1=-2v 时,u s2=1v 时,i x =0。求u s1=u s2=5v 时的电流i x (2)若将N 换成含有独立源的线性电阻网络,当u s1=u s2=0时,i x =-10A ,且(1)中已知条件仍然适用,再求u s1=u s2=5v 时的电流i x

i 3-7a 3-5 电路如图所示,当2A 电流源未接入时,3A 电流源向网络提供的功率为54W,u2=12V;当3A 电流源未接入时,2A 电流源向网络提供的功率为28W,u3=8V.求两电源同时接入是,各电流源的功率。 3-7(a )试用戴维南定理求图题3-7所示各电路的电流i 图题3-5

? L ? ? ? 3-16 图示电路中N 为线性含源电阻网络。已知当R=10Ω时,U=15V; R=20Ω时,U=20V.求R=30Ω时,U=? 4-9 图题所示正弦交流电路中,已知电压有效值U 、UR 、UC 分别为10V 、6V 、3V 。求:(1)电压有效值UL ;(2)一电流为参考相量,画出 其相量图。 +-U R N 3-16

4-11 电路如图所示,已知电流表A1的读数为3A、A2为4A,求A表的读数。若此时电压表读数为100V,求电路的复阻抗及复导纳。 4-50 图示电路,正弦电压u的有效值U=200V,电流表A3的读数为零,求电流表A1的读数。

吉林大学-电路理论基础练习题A

电路理论基础练习题A 一、填空题 1. 只存储磁能,不消耗能量的器件叫(电感)。 2.电位是相对于(参考点)的电压。 3.对外提供恒定的或随时间变化的电压,而与流过它的电流无关的电源是(电压)源。4.电路结构的特点是具有受控支路和(控制支路)。 5.KCL和KVL阐述的是电路结构上(电压与电流)的约束关系,取决于电路的连接形式,与支路元件的性质(无关)。 二、选择题 1.(c毫伏)是电压辅助单位。 a电源b千欧c毫伏 2.对外提供恒定的电压,而与流过它的电流无关的电源是(a电压源)。 a电压源b瓦特c电流源 3.任一电路的任一节点上,流入节点电流的代数和等于(a零)。 a零b一c不定 4.KCL和KVL阐述的是电路结构上(c电流和电压)的约束关系。 a电流b电压c电流和电压 5.为了某种需要,可将电路中的某一段与电阻或变阻器并联,以起(a分流)的作用。 a分流b分压c减小电阻 6.与理想电压源(b并)联的支路对外可以开路等效。 a串b并c混 7.以假想的回路电流为未知量,根据KVL定律列出必要的电路方程,再求解客观存在的各支路电流的方法,称(a回路)电流法。 a回路b节点c支路 8.大小和方向随时间按一定规律作周期性变化,一个周期内的平均数值为零的电流、电压或电动势叫(b交流电)。 a正弦交流电b交流电c直流电 9.提高功率因数的原则是补偿前后(c P U )不变。 a P b U c P U 10.电源绕组首端指向尾端的电压称为(a相)电压。 a相b线c直流 三、判断题 1.电流不但有大小,而且有方向(√) 2.两点间的电压值是绝对的。(√) 3.应用KCL定律解题事先标出的是结点电流的实际方向。(×) 4.电路的参考点可以任意选取,参考点选得不同,电路中各点的电位是不变的。(×)5.任一时刻,沿任一回路参考方向绕行方向一周,回路中各段电压的代数和恒等于零。(√) 6.KVL是用来确定回路中各段电流之间关系的电路定律。(√) 7.如果需要调节电路中的电流时,一般也可以在电路中串联一个变阻器来进行调节。(×)

第三强度理论.

第七章 应力和应变分析 强度理论 §7.1应力状态概述 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 §7.2二向和三向应力状态的实例 §7.3二向应力状态分析—解析法 1.任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0s i n )s i n (c o s )s i n (=-+αασαατdA dA y yx αασαατ τsin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += xy τyx τn α t

ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取得极值。且绝对值小的角度所对应平面为最大正应力所在的平面,另一个是最小正应力所在的平面。求得最大或最小正应力为 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= ??? 0α代入剪力公式,0ατ为零。这就是说,正应力为最大或最小所在的平面,就是主平 面。所以,主应力就是最大或最小的正应力。 将切应力公式对α求导,令 02sin 22cos )(=--=ατασσα τα xy y x d d 若1αα=时,能使导数0=α τα d d ,则在1α所确定的截面上,剪应力取得极值。通过求导可得 02sin 22cos )(11=--ατασσxy y x xy y x tg τσσα221-= 求得剪应力的最大值和最小值是: 2 2min max )2 ( xy y x τσσττ+-±=??? 与正应力的极值和所在两个平面方位的对应关系相似,剪应力的极值与所在两个平面方

相关主题
文本预览
相关文档 最新文档