当前位置:文档之家› 圆锥曲线知识点综合复习

圆锥曲线知识点综合复习

圆锥曲线知识点综合复习
圆锥曲线知识点综合复习

椭 圆

一、椭圆的标准方程 1.椭圆的定义 平面内与两个定点

的距离之和等于常数(大于

)的点的轨迹叫椭圆。两个定点

称为焦点,两焦点之间的距离称为焦距,记为2c 。若设M 为椭圆上的任意一点,则

。其中,

,a>c 。

注意:当a=c 时,轨迹为_______ 例1:已知椭圆的方程为:,则a=____,b=____,c=_______,焦点坐标为:____________焦距

等于______;若CD 为过左焦点F 1的弦,则△F 2CD 的周长为________;若P 为椭圆上一点,则△F 1PF 2的

周长为___________ 2.椭圆的标准方程 例2:求两个焦点分别是F 1(-2,0)、F 2(2,0),且过P

点的椭圆方程。

3.与椭圆有关的参数问题 例3:方程 ,分别求方程满足下列条件的m 的取值范围:

(1)表示一个椭圆;(2)表示焦点在x 轴上的椭圆。

二、椭圆的几何性质 1.离心率:,

2.焦半径:椭圆上的点P 与其两焦点F 1、F 2的连线段分别叫做椭圆的左焦半径和右焦半径,统称

“焦半径”。

例4:已知长方形ABCD ,AB=4,BC=3,则以A 、B 为焦点且过C 、D 的椭圆的离心率为_______

)0(122

22>>=+b a b y a x )0(12

2

22>>=+b a b x a y

3.与椭圆有关的最值问题 (1)点P 为椭圆上动点,则|PF 1||PF 2|的的最大值为______,最小值为_________ (2)设AB 是椭圆过焦点的弦,求AB 的最小值_________

(3)点P 为椭圆上动点,焦点F 1、F 2,则cos ∠F 1PF 2的最小值为__________ (4)点P 椭圆 上动点,焦点F 1、F 2,△F 1PF 2面积的最大值为

例5:已知椭圆求x+y 的最大值和最小值

例6:求椭圆 的内接矩形的面积的最大值.

4.焦点三角形面积计算 已知P 为椭圆

上的一点,

是焦点,

,则△

面积是

例7:已知点P 是椭圆上一点,

是焦点,若

,求△

面积

例8:21,F F 是椭圆17

92

2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,求Δ12AF F 的面积

课堂精练

1.如果22

2

=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0

2.椭圆

124

492

2=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为 A .20 B .22 C .28 D .24 3.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ). A .

22 B .21

2

- C .22- D .21- 4.曲线

与曲线

(0

A .相等的长、短轴

B .相等的焦距

C .相等的离心率

D .相同的准线 5.已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为,则椭圆的方程为( ). A . B . C . D .

6.已知方程x 2+k 2y 2=16所表示的图形是焦点在x 轴上的椭圆,那么k 的范围是( ). A .|k|>1 B .|k|<1 C .|k|>4 D .|k|<4

7.设椭圆的标准方程为,若其焦点在x 轴上,则k 的取值范围是( ). A .k>3 B .3

8.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )

A .

116922=+y x B .1162522=+y x C .1162522=+y x 或125

162

2=+y x D .以上都不对 9.椭圆

22189x y k +=+(k>1)的离心率为1

2

,则k 的值为______________。 10.

若椭圆2

2

1x my +=3

m 为_______________. 11.椭圆5522

=+ky x 的一个焦点是)2,0(,那么=k 。

双曲线

一、双曲线的标准方程 1.双曲线的定义

平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于︱F 1F 2︱)的点的轨迹叫做双曲线. | |MF 1| - |MF 2| | = 2a ,|F 1F 2|=2c ,a

的两个焦点,平面内一个动点M 满足

,则动点M

的轨迹是( )

A .双曲线

B .双曲线的一个分支

C .两条射线

D . 一条射线 2.双曲线的标准方程

3.与双曲线有关的参数取值范围问题 例2:(1)方程 表示焦点在y 轴双曲线时,则m 的取值范围_____________.

(2)若方程(k 2+k 2)x 2+(k+1)y 2=1的曲线是焦点在y 轴上的双曲线,则k 的取值范围 .

4.曲线共焦点类问题 (1)与双曲线的共焦点的双曲线方程为

(2)与椭圆

共焦点的双曲线方程为

例3:已知与双曲线x 216-y 29=1共焦点的双曲线过:P ????-5

2,-6,求该双曲线的标准方程.

二、双曲线的几何性质 1.渐近线 (1)双曲线的渐近线方程为 (2)双曲线

的渐近线方程为

122

22=-b y a x 122

22=-b

x a y )00(>>b a ,)00(>>b a ,

(3)等轴双曲线的渐近线方程为。等轴双曲线的两条渐近线互相垂直。

2.离心率:

3.焦点三角形面积 4.共渐近线问题

(1)双曲线的渐近线方程为,则双曲线方程为

。 (2)与双曲线

有相同渐近线的双曲线方程为

例4:双曲线的焦点在x 轴上,两条渐近线的方程为,则双曲线的离心率e 等于______________

例5:设双曲线的半焦距为c ,直线l 过点A(a,0)、B(0,b)两点,已知原点到直线l 的

距离为,则双曲线的离心率为______________

例6:求过点且与双曲线

有公共渐近线的双曲线方程。

例7: 若F 1,F 2是双曲线x 29-y 2

16=1的两个焦点,P 是双曲线上的点,且|PF 1|·|PF 2|=32,求△F 1PF 2的面积.

课堂精练 1.以椭圆的顶点为顶点,离心率为2的双曲线方程( )

A .

B .

C .

D .以上都不对

2.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2

=

Q PF ,则双曲线的离心率

e 等于( )

A .12-

B .2

C .12+

D .22+

3.与椭圆1422

=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13

322=-y x D .1222

=-y x 4.设P 是双曲线192

22=-y a

x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )

A . 1或5

B . 1或9

C . 1

D . 9

5.双曲线虚轴的一个端点为M ,两个焦点为F 1,F 2,∠F 1MF 2=120°,则双曲线的离心率为( ) A .3 B .

26 C .36 D .3

3 6.双曲线的两条渐近线互相垂直,那么该双曲线的离心率是( ).

A .2

B .

C .

D .

7.如果方程x 2+y 2cosα=1表示的图形是双曲线,那么α是( ).

A .第三象限角

B .第二或第三象限角 (

C )第四象限角 (

D )第三或第四象限角 8.经过点M (,

)且与双曲线有共同渐近线的双曲线方程为( ). A .

B .

C .

D .

9.如果椭圆是以双曲线的焦点为顶点,以其顶点为焦点,那么这个椭圆的方程是________.

10.过双曲线的两焦点作实轴的垂线,分别与渐近线交于A 、B 、C 、D 四点,则矩形ABCD 的

面积为 11.设是双曲线

的两个焦点,点P 在双曲线上,且 ,求△的面积

______

12.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b

y a x 的离心率为__________

抛物线

1.抛物线

的焦点到准线的距离是( )

A .

B .5

C .

D .10 2.如果抛物线y 2= ax 的准线是直线,那么它的焦点坐标为( )

A .(1, 0)

B .(2, 0)

C .(3, 0)

D .(-1, 0)

3.平面内过点A (,0),且与直线x=2相切的动圆圆心的轨迹方程是

( )

A . y 2=-2x

B . y 2=-4x

C .y 2=-8x

D .y 2=-16x

4.抛物线21

4

y x =

关于直线0x y -=对称的抛物线的焦点坐标是( ) A .(1,0) B .1(,0)16 C .(0,0) D .1

(0,)16

5.过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( ) A .8

B .10

C .6

D .4

6.已知点A (3,2),F 是抛物线y 2=2x 的焦点,点P 在抛物线上移动,为使得|PA|+|PF|取得最小值,则点P 的坐标是( ).

A .(1,2)

B .(2,1)

C .(2,2)

D .(0,1)

7.若抛物线2

8y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7,14) B .(14,14) C .(7,14)± D .(7,214)-± 8.以坐标轴为对称轴,以原点为顶点且过圆09622

2

=++-+y x y x 的圆心的抛物线的方程() A .2

3x y =或2

3x y -= B .2

3x y = C .x y 92

-=或2

3x y = D .2

3x y -=或x y 92

= 9.设AB 为过抛物线)0(22

>=p px y 的焦点的弦,则AB 的最小值为( ) A .

2

p

B .p

C .p 2

D .无法确定 10.若抛物线x y =2

上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )

A .12(,)44±

B .12(,84±

C .12(,44

D .12(,84

11.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为( )

A .y x 82

-=

B .y x 82

=

C . y x 162

-=

D .y x 162

=

12.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若BF BC 2=,且3=AF ,则此抛物线的方程为 ( ) A .x y 232=

B .x y 32=

C .x y 2

9

2= D .x y 92=

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

圆锥曲线知识点总结

圆锥曲线 一、椭圆 1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 22 10x y a b a b +=>> ()22 22 10y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<<e越小,椭圆越圆;e 越大,椭圆越扁 ?

二、双曲线 1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 2、双曲线的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 22 10,0x y a b a b -=>> ()22 22 10,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==+ 对称性 关于x 轴、y 轴对称,关于原点中心对称 离心率 ()2 211c b e e a a ==+>,e 越大,双曲线的开口越阔 渐近线方程 b y x a =± a y x b =± 三、抛物线

圆锥曲线知识点总结版

圆锥 曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为: 22 221x y a b +=(0a b >>)(焦点在x 轴上)或 122 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:①以上方程中,a b 的大小0a b >>,其中222b a c =-; ②在22221x y a b +=和22 221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位 置,只要看2 x 和2 y 的分母的大小。例如椭圆22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原

点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b , a 和 b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中, 2||OB b =,2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-; ④离心率:椭圆的焦距与长轴的比c e a =叫椭圆的离心率。∵0a c >>,∴ 01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=。 2.双曲线 (1)双曲线的概念 平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PF PF a -=)。 注意:①式中是差的绝对值,在1202||a F F <<条件下;12||||2PF PF a -=时为双曲线的一支; 21||||2PF PF a -=时为双曲线的另一支(含1F 的一支);②当122||a F F =时,12||||||2PF PF a -=表示两条射线; ③当122||a F F >时,12||||||2PF PF a -=不表示任何图形;④两定点12,F F 叫做双曲线的焦点,12||F F 叫做焦距。 (2)双曲线的性质

圆锥曲线知识点总结(供参考)

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或122 22=+b x a y (0a b >>)(焦点在y 轴 上)。 注:①以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; ②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和2y 的分 母的大小。例如椭圆 22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令 0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -, 2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

圆锥曲线常用结论

圆锥曲线常用结论 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线常用结论(自己选择) 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是 以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、 P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一 点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点, 连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习 一、椭圆方程. 1. 椭圆的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ 2.椭圆的方程形式: ①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: ) 0(12 22 2φφb a b y a x =+ . ii. 中心在原点,焦点在y 轴上: )0(12 22 2φφb a b x a y =+ . ②一般方程:)0,0(12 2 φφB A By Ax =+.③椭圆的参数方程: 2 22 2+ b y a x ?? ?==θ θsin cos b y a x (一象限θ应是属于20π θππ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2 2 21,2b a c c F F -==.⑤准线:c a x 2 ±=或 c a y 2±=.⑥离心率:)10(ππe a c e =.⑦焦半径: i. 设),(00y x P 为椭圆 )0(12 22 2φφb a b y a x =+ 上的一点,21,F F 为左、右焦点,则: 证明:由椭圆第二定义可知:)0()(),0()(0002 200201φπx a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起 来为“左加右减”. ii.设),(00y x P 为椭圆 )0(12 22 2φφb a a y b x =+ 上的一点,21,F F 为上、下焦点,则: ⑧通径:垂直于x 轴且过焦点的弦叫做通径: 2 22b d a =;坐标:22(,),(,)b b c c a a - 4.共离心率的椭圆系的方程:椭圆)0(12 22 2φφb a b y a x =+的离心率是)(22b a c a c e -== ,方程 t t b y a x (2 22 2=+是大于0的参数,)0φφb a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆: 12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为 2 tan 2θ b (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . 1020 ,PF a ex PF a ex =+=-1020 ,PF a ey PF a ey =+=-asin α,)α)

圆锥曲线知识点总结

圆锥曲线 一、椭圆 1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<

二、双曲线 1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于 12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 2、双曲线的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210,0x y a b a b -=>> ()22 2 210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==+ 对称性 关于x 轴、y 轴对称,关于原点中心对称 离心率 ()2 211c b e e a a ==+>,e 越大,双曲线的开口越阔 渐近线方程 b y x a =± a y x b =± 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?? ???>=0e ,e d |PF ||P ,其中F 为定点,d 为P 到定直线的距离,F ?,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 ①定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 ②定量: 椭 圆 双 曲 线 抛 物 线 焦 距 2c 长轴长 2a —— 实轴长 —— 2a 短轴长 2b (双曲线为虚轴) 焦点到对应 准线距离 P=2c b 2 p 通径长 2·a b 2 2p

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

高中数学圆锥曲线的知识点总结

高考数学圆锥曲线部分知识点梳理 一、方程的曲线: 在平面直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程 (,)0f x y =的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标 的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系:若曲线C 的方程是(,)0f x y =,则点000(,)P x y 在曲线C 上?00(,)0f x y =;点000(,)P x y 不在曲线C 上?00(,)0f x y ≠. 两条曲线的交点:若曲线1C ,2C 的方程分别为1(,)0f x y =,2(,)0f x y =,则点000(,)P x y 是1C ,2C 的交点 ?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没 有交点. 二、圆: 1、定义:点集{|}M OM r =,其中定点O 为圆心,定长r 为半径. 2、方程:(1)标准方程:圆心在(,)C a b ,半径为r 的圆方程是2 2 2 ()()x a y b r -+-= 圆心在坐标原点,半径为r 的圆方程是2 2 2x y r += (2)一般方程:①当22 40D E F +->时,一元二次方程2 20x y Dx Ey F ++++=叫做圆的一般方程,圆心为 )2 ,2(E D -- 半径是2. 配方,将方程22 0x y Dx Ey F ++++=化为 22224()()224 D E D E F x y +-+++= ②当2 2 40D E F +-=时,方程表示一个点)2 ,2(E D -- ③当2 2 40D E F +-<时,方程不表示任何图形. (3)点与圆的位置关系 已知圆心(,)C a b ,半径为r ,点M 的坐标为00(,)x y ,则||MC r < ?点M 在圆C 内,||MC r =?点M 在圆C 上,||MC r >?点M 在圆C 外,其中||MC = (4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交?有两个公共点;直线与圆相切?有一个公共点;直线与圆相离?没有公共点. ②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心(,)C a b 到直线0Ax By C ++=的距离 2 2 B A C Bb Aa d +++= 与半径r 的大小关系来判定.

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212 1 2121 2121 ,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:) 0(12 22 2 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:) 0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程: 1 2 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于2 0π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2 ± =或c a y 2 ± =. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12222 b a b y a x =+ 上的一点,2 1,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,2 1,F F 为上、下焦点,则 由椭圆第二定义可知:)0()( ),0()(0002 2 002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+ =归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:) , (22 2 2 a b c a b d -= 和) , (2 a b c ⑶共离心率的椭圆系的方程:椭圆 ) 0(12 22 2 b a b y a x =+ 的离心率是) (2 2 b a c a c e -= = ,方程 t t b y a x (2 22 2=+ 是大于 0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:1 2 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 22 1 =+可得). 若 12, PF PF ⊥此三角形面积为2 b ; 若是双曲线,则面积为 2 cot 2 θ ?b . ? -=+=02 01 ,ex a PF ex a PF ? -=+=02 01,ey a PF ey a PF

圆锥曲线知识点全归纳完整精华版图文稿

圆锥曲线知识点全归纳 完整精华版 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

圆锥曲线知识点全归纳(精华版) 圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到 定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 一、圆锥曲线的方程和性质: 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。 标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1?其中a>b>0,c>0,c^2=a^2-b^ 2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2. 参数方程: X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的 考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常 数e是双曲线的离心率。 标准方程:

1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)- (y^2/b^2)=1? 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)- (x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 参数方程: x=asecθy=btanθ(θ为参数) 3)抛物线 标准方程: 1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px其中p>0 2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px其中p>0 3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py其中p>0 4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py其中p>0 参数方程? x=2pt^2?y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0 直角坐标?

圆锥曲线常用结论整理

圆 锥 曲 线 常 用 结 论 整 理 椭圆问题小结论: 1.与椭圆22 221x y a b +=共焦点的椭圆的方程可设为()222221,0x y b a b λλλ+=+>++ 2.与椭圆22 221x y a b +=有相同的离心率的椭圆可设为()2222,0x y a b λλ+=> 或()22 22,0x y b a λλ+=> 3.(中点弦结论)直线l 与椭圆22 221x y a b +=相交与()()1122,y ,,A x B x y 两点,其中点 (),P x y 为线段AB的中点,则有:2 2AB OP b K K a ?=-;若000(,)P x y 在椭圆 22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+ 若椭圆方程为22221y x a b +=时,2 2AB OP a K K b ?=-; 4.(切线结论)若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是 00221x x y y a b +=.以000(,)P x y 为切点的切线斜率为20 20 b x k a y =-; 5.(切点弦结论)若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为 P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 6. 椭圆的方程为22 221x y a b +=(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆 上异于,A B 两点的任一点,则有2 2PA PB b K K a =-

圆锥曲线知识点总结

椭圆 双曲线 焦点在x 轴上 焦点在y 轴上 焦点在x 轴上 焦点在y 轴上 定 义 a ||PF ||PF 221=+,c F F 2||21= 不存在线段,椭圆,c a c a c a <=> a ||PF ||PF 2||21=-,c F F 2||21= 不存在射线,双曲线c a c a c a >=<, 标准方程 12 222=+b y a x ; 122 22=+b x a y 122 22=-b y a x 122 22=-b x a y *参数方程 ?? ?==θ θsin cos b y a x ?? ?==θ θsin cos a y b x ?? ?==θ θtan sec b y a x ?? ?==θ θsec tan a y b x 图 形 x .y 范 围 b y b a x a ≤≤-≤≤- a y a b x b ≤≤-≤≤- R y a x a x ∈≥-≤或 a y a y R x ≥-≤∈或 顶点坐标 长轴顶点 )0,)(0,(a a - 短轴顶点 ),0)(,0(b b - 长轴顶点 ),0)(,0(a a - 短轴顶点 )0,)(0,(b b - 顶点)0,)(0,(a a - 顶点),0)(,0(a a - 对称 性 对称轴:x 轴,y 轴, 对称中心:坐标原点 各 个 轴 长轴2a ,短轴2b ,焦距2c 实轴2a ,虚轴2b ,焦距2c 恒 等 式 222c b a += 222b a c += 焦点坐标 左右 )0,(),0,(21c F c F - 上下 ),0(),,0(21c F c F - 左右 )0,(),0,(21c F c F - 上下 ),0(),,0(21c F c F - *准线方程 c a x 2 ±= c a y 2 ±= c a x 2 ±= c a y 2 ±=

高考—圆锥曲线知识点总结

2019年高考专题-圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或122 22=+b x a y (0a b >>)(焦点在y 轴 上)。 注:①以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; ②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和2y 的分 母的大小。例如椭圆 22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令 0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中, 2||OB b =,2||OF c =,22||B F a =,且2 2 2 2222||||||OF B F OB =-,即222 c a b =-; ④离心率:椭圆的焦距与长轴的比c e a = 叫椭圆的离心率。∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时 椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222 x y a +=。 2.双曲线 (1)双曲线的概念 平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PF PF a -=)。 注意:①式中是差的绝对值,在1202||a F F <<条件下;12||||2PF PF a -=时为双曲线的一支; 21||||2PF PF a -=时为双曲线的另一支(含1F 的一支);②当122||a F F =时,12||||||2PF PF a -=表示两条射 线;③当122||a F F >时,12||||||2PF PF a -=不表示任何图形;④两定点12,F F 叫做双曲线的焦点,12||F F 叫做焦距。

高考中圆锥曲线常见结论

高考中解析几何有用的经典结论 一、椭 圆 1. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 2. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 3. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 4. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 5. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 6. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 7. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 8. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b +=+. 二、双曲线 1. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程 是00221x x y y a b -=. 2. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线

最新完美版圆锥曲线知识点总结

圆锥曲线的方程与性质 1. 椭圆 (1)椭圆概念 平面内与两个定点Fi、F2的距离的和等于常数2a (大于厅店2丨)的点的轨迹叫做椭圆。这两个定点叫做椭圆 的焦点,两焦点的距离2c叫椭圆的焦距。若M为椭圆上任意一点,则有|MF1 | ? |MF2 |=2a。 一、、、X y2y2 x2、 椭圆的标准方程为: 2 2=1 (a b 0)(焦点在x轴上)或 r 2 = 1(a b 0)(焦点在y轴 a b a b 上)。 注:①以上方程中a,b的大小a b ? 0 ,其中b2=a2 -c2; X2 y2y2 x222 ②在二2 =1和—=1两个方程中都有a b 0的条件,要分清焦点的位置,只要看x和y的分 a b a b 2 2 母的大小。例如椭圆——=1 (m 0,n?0 , m = n )当m时表示焦点在x轴上的椭圆;当m :::n时 m n 表示焦点在y轴上的椭圆。 (2)椭圆的性质 x2y2 ①范围:由标准方程—2二1知|x^a ,|y亞b,说明椭圆位于直线x=「a,y 所围成的矩形里; a b ②对称性:在曲线方程里,若以-y代替y方程不变,所以若点(x, y)在曲线上时,点(x,-y)也在曲线上, 所以曲线关于x轴对称,同理,以-x代替x方程不变,则曲线关于y轴对称。若同时以-x代替x,-y代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x轴、y轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。在椭圆的标准方程中,令 x =0,得y =「b,则B/O, -b),B2(0,b)是椭圆与y轴的两个交点。同理令y =0得x -二a,即A(-a,0),A?(a,0)是椭圆与x轴的两个交点。所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

相关主题
文本预览
相关文档 最新文档