当前位置:文档之家› 应用CRISPR技术制备ATG7基因Knockout的N2a细胞的试验研究宋

应用CRISPR技术制备ATG7基因Knockout的N2a细胞的试验研究宋

应用CRISPR技术制备ATG7基因Knockout的N2a细胞的试验研究宋
应用CRISPR技术制备ATG7基因Knockout的N2a细胞的试验研究宋

应用CRISPR 技术制备ATG7基因Knockout的N2a细胞的实验研究

宋福永1小潘美贵2小松雅明2

1山东大学公共卫生学院卫生毒理学系,山东济南 250012

2 新泻大学医学部第一生化研究室,日本新泻 951-8510

(*通讯作者:宋福永,E-mail: fysong3707@https://www.doczj.com/doc/0412578601.html,)

摘要:【目的】Clustered regularly interspaced short palindromic repeats /CRISPR-associated 9 (CRISPR/Cas9) 技术是基因定点修饰的最新技术,它通过crRNA 和Cas 蛋白所形成的核蛋白复合物对靶基因的PAM和protospacer序列进行特异性识别,实现基因组的精确修饰。Neuro-2a (N2a) 细胞是小鼠神经瘤细胞,经诱导能分化成神经元样细胞,且对有机磷毒物具有良好的反应性,因此被作为评价有机磷神经毒性的首选细胞株。本研究拟利用CRISPR-cas 9技术制备ATG7基因Knockout 的自噬缺陷型N2a细胞,以便于深入地探讨细胞自噬与有机磷化合物的神经毒性之间的关系。【材料和方法】⑴设计合成1对ATG7 靶向序列(上链:TGTATGAGACCACGAAGTTGAACAGTACCGCC,下链:AAACGGCGGTACTCGTTCAACTTGTGGTCTCA);⑵ATG7靶向引物变性与Cas9 smart Nuclease Vector的连接;⑶转染E. coli,提取质粒DNA测序验证;⑷将Cas9-ATG7质粒DNA、pBHR-Vector、FuGENE HD按比例混合,转染N2a细胞;⑸荧光显微镜观察N2a细胞GFP表达,利用嘌呤霉素筛选;⑹FACS流式细胞仪单细胞分选培养;⑺提取克隆细胞的DNA,PCR 扩增ATG7 (上游引物为TGTTTTGGTAGGCTGGTAAG;下游引物为CAATATAGAACGGATGCCCT,利用异源双链泳动分析(HMA)技术检测ATG7突变体;⑻将筛选的ATG7突变细胞培养,Western Blot检测ATG7表达,将筛选出的ATG7-/-细胞扩大培养;⑼利用饥饿诱导法验证自噬活性,即EBSS处理细胞4小时,提取细胞蛋白,Western Blot检测LC3的表达。【结果】⑴DNA测序:经DNA测序证实ATG7靶向序列插入到Cas9 smart Nuclease Vector,表明

Cas9-ATG7质粒构建成功。⑵ HMA检测:Cas9-ATG7质粒转染的N2a细胞经过嘌呤霉素筛选,流式细胞仪单细胞分选培养96孔板5个,2周内共生长出 126个细胞克隆中,经HMA检测发现57株ATG7突变细胞。⑶Western Blot检测ATG7表达:ATG7突变细胞扩大培养后,Western Blot检测发现有3株细胞不表达ATG7,即为ATG7-/-的N2a细胞。⑷细胞自噬活性鉴定:上述3株细胞经EBSS处理后,WB检测仅观察到LC3-Ⅰ,未观察到LC3-Ⅱ。在此基础上,我们又利用溶酶体抑制剂(E64d 和pepstatin A,EP)阻断自噬降解途径,进一步观察了细胞自噬流的影响,仍未观察到LC3-Ⅱ。实验结果证实上述3株细胞均为自噬缺陷型细

胞。【结论】ATG7是自噬体形成中ATG12泛素样连接系统的关键酶。它通过激活ATG12,参与Atg12-Atg5-Atg16二聚体的形成,是隔离膜(isolation membrane)延伸并形成自噬体所必需的。在本研究中,我们利用CRISPR/Cas9 技术成功制备了ATG7-/-的N2a细胞,经鉴定为自噬缺陷型细胞。

关键词:自噬,CRISPR,N2a细胞

基因编辑技术

基因编辑技术一、概念 基因编辑是近年来发展起来的可以对基因组完成精确修饰的一种技术,可完成基因定点InDel突变、敲入、多位点同时突变和小片段的删失等,可在基因组水平上进行精确的基因编辑。 二、应用 1.在科研领域,该技术可以快速构建模式动物,节约大量科研时 间和经费; 2.在农业领域,该技术可以人为改造基因序列,使之符合人们的 要求,如改良水稻等粮食作物; 3.在医疗领域,基因编辑技术可以更加准确、深入地了解疾病发 病机理和探究基因功能,可以改造人的基因,达到基因治疗的 目的等。 三、作用机理 基因编辑技术本质上均是利用非同源末端链接途径(NHEJ)修复和同源重组(HR)修复,联合特异性DNA的靶向识别及核酸内切酶完成的DNA序列改变。 注: 非同源末端连接(Non-homologous End Joining-NHEJ)是细胞在不依赖同源性的情况下,而为了避免DNA或染色体断裂(Breaks)的滞留,避免因此造成的DNA降解或对生命力的影响,强行将两个DNA 断端彼此连接在一起的一种特殊的DNA双链断裂修复机制。

同源重组(HR)修复即双链DNA中的一条链发生损伤,在DNA 进行复制时,由于该损伤部位不能成为模板,不能合成互补的DNA 链,所以产生缺口,而从原来DNA的对应部位切出相应的部分将缺口填满,从而产生完整无损的子代DNA的这种修复现象。 四、类别 ZFN、TALEN、CRISPR/Cas9是三大基因编辑技术,这三种编辑工具的共同点是:含有靶点DNA序列的识别区域及DNA剪切功能区域。 1.ZFN技术具有锌指结构域能够识别靶点DNA 2.TALEN的DNA识别区域是重复可变双残基的重复,DNA剪切 区域都是一种名为Fokl的核酸内切酶结构域 3.CRISPR的DNA识别区域是crRNA或向导RNA,Cas9蛋白负责 DNA的剪切 四、传统技术的优缺点 1.ZFN?的基因打靶效率能够达到30%左右,已经可以做到针对某 些特定的序列来设计ZFN实现靶基因的修饰,但也有其发展的 局限性,ZFN?的识别结构域中存在上下文依赖效应,使得?ZFN 设计和筛选效率大大降低,所以目前尚无法实现对任意一段序 列均可设计出满足要求的?ZFN,也无法实现在每一个基因或其 他功能性染色体区段都能够顺利找到适合的?ZFN作用位点,并 且在已经成功运用的?ZFN的报道中,大多数研究者并不公布 其?ZF?序列。所以,在?ZFN的筛选和设计方面还存在较大技术

基因组编辑技术的应用

基因组编辑技术的应用 基因编辑技术是指在基因组水平上对目的基因序列甚至是单个核苷酸进行替换、切除,增加或插入外源DNA序列的基因工程技术,经典的基因组编辑技术主要依赖于同源重组及干细胞全能性来完成对个体特定基因的改造。因为其在生物医学和工农业生产中发挥着重要作用,所以相关的早期开创性工作被授予2007 年诺贝尔生理医学奖。但是经典的方法存在效率低、技术要求高和成本高等缺点,严重制约了相关的研究和工农业生产。但是当2013年CRISPR-Cas9系统的诞生,使基因定位、精准修改变得更加容易,CRISPR文库的应用也让基础研究中大规模的基因组编辑和筛选成为现实。 基因定位和精准修改意味着该技术可以人为控制基因表达,目前CRISPR-Cas9基因编辑技术可被广泛地应用于动物模型构建、遗传疾病治疗、农业育种等方面。 动物模型构建 CRISPR-Cas9 系统作为最新一代基因编辑技术,能够简便高效地实现基因组精确修饰,是制备哺乳动物疾病模型的重要工具。目前科学家利用CRISPR-Cas9 技术在动物模型,如小鼠、大鼠、猪和猴等研制方面做出一系列重要工作。如科学家们将CRISPR-Cas9 系统导入小鼠受精卵,成功获得了有特定基因突变的小鼠模型,并获得近乎100% 的基因靶向突变效率,极大地降低了基因编辑小鼠模型制备的难度和成本,有望被广泛应用。 遗传疾病治疗及药物靶点筛选 作为一种简便高效的基因编辑技术,CRISPR-Cas9 技术自问世以来就被认为具有治疗遗传疾病的巨大潜力。科学家们选择小鼠白内障遗传疾病模型进行研究。对携带显性突变引发晶状体混浊的Crygc 基因进行定点修正。发现有1/3 的新生小鼠白内障症状被治愈,并通过生殖细胞将修复的Crygc基因传递到下一代,证明白内障遗传疾病得到了根治。CRISPR-Cas9技术更大的一项突破是CRISPR文库在药物靶点筛选中的应用。有科学家通过构建全基因组CRISPR文库,使全基因组中18000个基因形成缺失突变,结合相关的药物筛选手段最终对细胞进行筛选,最终对筛选存活的细胞进行NGS测序,即可推断出药物靶点相关基因。 农业育种 对于农业来说,基因编辑技术的兴起为培育新品种带来了更多的可能性。对于一些农作物来说,抗旱、抗虫、抗病等特性不再是遥不可及的梦想;对于另外一些作物,基因编辑技术能够使它们更好地适应消费者的需求。科学家利用CRISPR技术对双孢菇(一种常见的食用菇)进行了基因组编辑,培育出一种不会变褐的蘑菇。这样的蘑菇更宜于消费者储存,因此可以减少因蘑菇变色而带来的浪费。2016年4月,这种蘑菇成为了美国第一个被批准上市的基因编辑农产品。 CRISPR-Cas9作为一种新型的基因编辑技术,可以在不引入外源基因的情况下进行基因编辑,同时又能够精准的进行并在各个领域取得了一系列的成果,具有十分广阔的应用前景。 苏州泓迅科技利用独创的“GPS”(Genotype,Phenotype,Synotype)平台,提供基于CRISPR-Cas9 sgRNA文库的一站式基因功能筛选服务。

基因编辑技术的方法、原理及应用

Hans Journal of Biomedicine 生物医学, 2015, 5, 32-41 Published Online July 2015 in Hans. https://www.doczj.com/doc/0412578601.html,/journal/hjbm https://www.doczj.com/doc/0412578601.html,/10.12677/hjbm.2015.53005 Methods, Principles and Application of Gene Editing Yuchang Zhu1, Xiaojiang Zheng1, Yibing Hu2* 1School of Biological Science and Technology, Hubei University for Nationalities, Enshi Hubei 2College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing Jiangsu Email: *huyb@https://www.doczj.com/doc/0412578601.html, Received: Jul. 1st, 2015; accepted: Jul. 24th, 2015; published: Jul. 27th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/0412578601.html,/licenses/by/4.0/ Abstract Fast development of gene editing technologies provides more powerful tools for gene function analysis. Now researchers can easily manipulate targeted gene with the Zinc Finger Nuclease (FZN), Transcription Activation Like Effector Nuclease (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins (CRISPR) technologies emerged in the last dec-ade. These technologies revolutionized gene functional analysis and medical treatment. In this re-view, several typical gene editing technologies were listed, and their principles, characteristics and application were discussed. Keywords Gene Editing, Methods, Principles, Application 基因编辑技术的方法、原理及应用 朱玉昌1,郑小江1,胡一兵2* 1湖北民族学院生物科学与技术学院,湖北恩施 2南京农业大学资源与环境科学学院,江苏南京 Email: *huyb@https://www.doczj.com/doc/0412578601.html, 收稿日期:2015年7月1日;录用日期:2015年7月24日;发布日期:2015年7月27日 *通讯作者。

TALEN基因编辑技术

前言 转录激活样效应因子核酸酶(transcription activator-like effector nuclease, TALEN)技术与锌指核酸酶(Zinc-finger nuclease, ZFN)技术组成了一大类强有力的基因组编辑工具,这一大类技术的发展重新划定了生物学研究的边界。这些嵌合核酸酶由两部分组成——一个可编码的序列特异性DNA结合模块与一个非特异性的DNA切割结构域。通过诱导DNA双链断裂(DNA double-strand break)来刺激容易出错的非同源末端连接或在特定基因所在的位置进行的同源定向修复,TALEN和ZFN能够完成一系列遗传学编辑修饰操作。 成簇规律间隔短回文重复(clustered regulatoryinterspaced short palindromic repeat, CRISPR)技术是最新出现的一种基因组编辑工具,它能够完成RNA导向的DNA识别及编辑。与其它基因组编辑工具相比,CRISPR技术更易于操作,具有更强的可扩展性。 本文将以上述三种技术为例,介绍并探讨新一代位点特异性基因组工程技术的生物学原理、未来发展趋势,及其在遗传学研究领域的作用和潜在的医学应用前景。 一、TALEN技术 TAL效应因子(TAL effector, TALE)最初是在一种名为黄单胞菌(Xanthomonas sp.)的植物病原体中作为一种细菌感染植物的侵袭策略而被发现的。这些TALE 通过细菌 III类分泌系统(bacterial type III secretion system)被注入植物细胞中,通过靶定效应因子特异性的基因启动子来调节转录,来促进细菌的集落形成。由于TALE具有序列特异性结合能力,研究者通过将FokI核酸酶与一段人造TALE连接起来,形成了一类具有特异性基因组编辑功能的强大工具,即TALEN。 近年来, TALEN已广泛应用于酵母、动植物细胞等细胞水平基因组改造,以及拟南芥、果蝇、斑马鱼及小鼠等各类模式研究系统。2011年《自然·方法》(Nature Methods)将其列为年度技术,而2012年的《科学》(Science)则将TALEN技术列入了年度十大科技突破,针对该文的评论更是给予它基因组的巡航导弹技术的美誉。 1. TALEN结构及技术原理 1.1 TALEN的典型结构 如前文所述,典型的 TALEN由一个包含核定位信号(Nuclear localization signal, NLS)的N端结构域、一个包含可识别特定 DNA序列的典型串联TALE 重复序列的中央结构域,以及一个具有FokI核酸内切酶功能的C端结构域组成。不同类型的TALEN元件识别的特异性DNA 序列长度有很大区别。一般来说,天然的TALEN元件识别的特异性DNA序列长度一般为17-18bp;而人工TALEN元件识别的特异性DNA序列长度则一般为14-20bp。

基因编辑技术简介

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN ——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内切酶是否可以应用于基因编辑技术,韩春雨团队发表文章,利用NgAgo蛋白实现了格DNA引导的基因组编辑,但其实验结果目前依然存在争议。

基因编辑技术

生物学研究最具影响力技术:“基因编辑技术”大盘点 2014年10月29日,Nature杂志上发布了名为”Promoterless gene targeting without nucleases ameliorates haemophilia B in mice”的研究论文,据悉,该文章发布了一种超越CRISPR 的基因组编辑新技术,而CRISPR技术在今年被《Nature Methods》评为在过去十年中对生物学研究影响最深的十大技术之一。 新方法不需要内切酶在特异位点剪切DNA,也不需要使用启动子,大大降低了新基因自身插入到基因组中随机位置而引起癌症的机会。该技术使用一种常用的病毒——改良的腺相关病毒(AAV)。改良的病毒载体中,所有的病毒基因被删除,只保留了治疗基因。再利用同源重组,将目标基因插入,达到基因编辑的目的。 在了解这项新技术有点之后,有必要了解什么是基因编辑技术及基因编辑的三大利器:ZFN(锌指核酸酶)、TALEN(转录激活样效应因子核酸酶)和CRISPR/Cas9(成簇规律间隔短回文重复技术)。 基因编辑是近年来发展起来的可以对基因组完成精确修饰的一种技术,可完成基因定点InDel突变、敲入、多位点同时突变和小片段的删失等,可在基因组水平上进行精确的基因编辑。在科研领域,该技术可以快速构建模式动物,节约大量科研时间和经费;在农业领域,该技术可以人为改造基因序列,使之符合人们的要求,如改良水稻等粮食作物;在医辽领域,基因编辑技术可以更加准确、深入地了解疾病发病机理和探究基因功能,可以改造人的基因,达到基因治疗的目的等。因此,基因组编辑具有极其广泛的发展前景和应用价值。 ZFN、TALEN和CRISPR/Cas9是三大基因编辑技术,基因编辑技术本质上均是利用非同源末端链接途径(NHEJ)修复和同源重组(HR)修复,联合特异性DNA的靶向识别及核酸内切酶完成的DNA序列改变。因此,这三种编辑工具的共同点是:含有靶点DNA序列的识别区域及DNA剪切功能区域,其中ZFN技术具有锌指结构域能够识别靶点DNA,而TALEN的DNA识别区域是重复可变双残基的重复,DNA剪切区域都是一种名为Fokl的核酸内切酶结构域。CRISPR的DNA识别区域是crRNA或向导RNA,Cas9蛋白负责DNA的剪切。当DNA 结合域识别靶点DNA序列后,核酸内切酶或Cas9蛋白将DNA剪切,靶DNA双链断裂,再启动DNA损伤修复机制,实现基因敲除、插入等。 基因编辑技术优缺点: 1)ZFN 的基因打靶效率能够达到30%左右,已经可以做到针对某些特定的序列来设计

浅谈基因编辑技术在农作物领域中的应用与问题探究

现代农业研究 近年来,农作物转基因技术得到了快速发展,将基因编辑技术应用在农作物育种上,能得到多个新的生物品种,尤其在玉米、大豆、棉花等农作物上有着较好应用。转基因技术的应用,一定程度推动了农业领域发展,但是还存在一定安全问题,要想充分利用作物转基因技术,还要注重基因编辑农作物的管理和检测,以便能发挥基因编辑技术在研发新品种上的作用,尽可能提高农作物营养价值。 1基因编辑技术在农作物领域的应用 1.1ZFN 技术 ZFN 主要负责识别和结合特定的核苷酸序列,将ZFN 技术应用到作物育种中,可对植物基因进行重新编辑。锌指核酸酶由锌脂蛋白和核酸酶结构域组成,其中核酸酶结构域对切割点不具有识别特异性,只有在二聚体情况下可使其具备酶活性。因此,需要对任一靶位点设置一对ZFN,以便形成核酸酶二聚体,从而进行DNA 链的切割。有研究学者采用该技术,替换掉烟草中乙酰乳酸酶基因的三个核苷酸点,进而得到抗除草剂的作物[1]。另外,将ZFN 技术应用在玉米作物 中,能合成磷酸酶基因,使得玉米具有抗除草剂性能,同时还能减少玉米中的肌醇六磷酸含量,提高了作物营养品质。尽管当前ZFN 技术在多种植物中取得较好运用,但是由于锌指单元对切割点识别性不高,因此在不同基因改造上的识别差异较大,限制了该技术的广泛使用。 1.2TALEN 技术 该技术是一种基于核苷酸的编辑技术,是由核酸内切酶和DNA 结构域共同组成的,其中DNA 结构域主要是由多个氨基酸序列构成的,重复序列能识别相应的碱基。TALEN 技术运用原理为:结合靶位点两端的序列设置一对TALEN,与识别位点结合后,两个核酸内切酶结合起到形成二聚体,在切割DNA 链后可完成基因编辑。有学者将该技术运用到水稻中,破坏了细菌性病原菌效应蛋白在作物基因组上的位点,进而提高了水稻抗百叶枯病。另外,在这一技术作用下,还能破坏水稻甜菜碱乙醛脱氢酶结合位点,能起到提高水稻品质的作用。而将该转基因技术运用到小麦育种中,能得到抗性较强的小麦,相对于传统育种技术来讲有 浅谈基因编辑技术在农作物领域中的 应用与问题探究 (威海海洋职业学院 264300) 【摘要】随着ZFN 、CPISPR/Cas9等基因编辑技术的发展和运用,大量基因编辑作物生产出来,这种背景下,基因编辑作物的检测及安全成为重点研究问题。本文主要围绕基因编辑技术在农作物领域的应用、针对基因编辑农作物的安全评价监管、基因编辑农作物的检测等方面展开讨论,具体分析了基因编辑技术在农业领域的应用现状,并以保障农作物食用安全为主,加强基因编辑作物有关问题的研究,促进农业领域良好发展。【关键词】基因编辑技术;农作物领域;应用分析 邹丹丹 Discussion on the Application and the Problem of the Gene Editing Technology in the Field of Crop Zou Dandan [Abstract]With the development and application of gene editing technology such as ZFN,CPISPR/Cas9,a large number of gene editing crops have been produced.Under this background,the detection and safe?ty of gene editing crops has become a key research issue.In this paper,the application of gene editing technology in agriculture was analyzed in detail,and the main purpose was to ensure the food safety of crops,to strengthen the research on related problems of gene editing crops,and to promote the good de?velopment of agricultural field. [Keywords]gene editing technology;crop field;application analysis (Weihai Marine V ocational College 264300) 农业经济

基因编辑技术简介

基因编辑技术简介-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA 序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI 形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内

比较基因编辑技术

比较基因编辑技术(NgAgo-gDNA)和(CRISPR-Cas9)的原理,并阐述二者在分子遗传学中的应用或前景 CRISPR-Cas系统[Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)& CRISPR-associated genes (Cas) ]:一个有效的CRISPR/Cas系统包括3个部分: CRISPR位点上游的前导序列,由高度保守的重复序列(repeat)和各不相同的间隔序列(spacer)有规则排列的CRISPR簇及Cas基因。CRISPR位点上游存在一段( A + T) 富集的前导序列,其在CRISPR/Cas系统转录过程中起启动子的作用。CRISPR-Cas系统能够将短序列的外源基因整合到CRISP R的2个重复序列中,当有外源基因入侵时,间隔序列转录并加工成非编码RNA与特异的Cas蛋白组成复合物,结合并剪切与之匹配的外源基因。Cas9蛋白中含有的结构域,包括核酸内切酶核酸外切酶解旋酶聚合酶和RNA结合蛋白,Cas蛋白参与CRISPR的转录加工等过程。 作用机制: (1)新的间隔序列的获取:间隔序列的获取大概分成3个步骤: 对入侵核酸的识别和扫描,寻找潜在的PAM( protospacer adjacent motifs) 序列并通过PAM序列来决定间隔序列前体( protospacer) 的具体位置;通过对入侵核酸中所决定的间隔序列前体的切割产生新的间隔序列; 将间隔序列插入靠近CRISPR引导序列的2个重复序列之间 (2)CRISPR系统的表达:整合后的间隔序列首先被转录为蛋白结合形成CRISPR相关核糖核蛋白复合物( CRISPR-associated ribonucleo protein complexes) ,通过扫描外源基因的PAM序列,crRNA与外源基因的相应靶位碱基互补配对结合,最后复合物所含的核酸酶将外源DNA降解。 (3)基因的敲除或敲入:CRISPR/Cas系统对外源基因的切割和降解,需要crRNA和tracrRNA 介导tracrRNA 的5'端序列和crRNA的3'端保守序列通过碱基互补配对形成一个杂交的分子,这个杂交的分子通过其特殊的空间结构和Cas9相互结合形成一个蛋白-RNA复合物,该复合物通过crRNA的5' 端特异性的20个碱基与靶标基因相结合,从而指引Cas9的2个内切酶活性中心切断双链的DNA,造成双链断裂。

一口气告诉你,基因编辑技术的“前世今生”

一口气告诉你,基因编辑技术的“前世今生” (作者:吴剑锋,厦门大学生命科学学院博士,科普中国微平台原创首发)DNA是绝大部分生物的遗传信息的储存介质,由腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)四种核苷酸组成,并且严格遵守A-T,C-G的碱基互补配对原则,DNA链上这四种核苷酸的排列信息就是生物体的主要遗传信息。基因是控制生物性状的基本遗传单位,即一段携带特定遗传信息的DNA序列,主要通过翻译出对 应的效用蛋白发挥功能。图1. DNA的结构示意图(图 片来自网络)基因异常往往导致各种疾病的发生:如在超过50%的人类肿瘤中都能检测到编码p53蛋白的基因的 突变(丧失活性);Rag1等基因的突变会导致重症联合免疫缺陷,患儿终生不能接触外界空气,只能终生生活在隔绝容器内(图2)。图2. 终生生活在隔离容器内的美国男孩大卫·维特(图片来自网络)什么是基因编辑技术? 基因编辑技术是指特异性改变目标基因序列的技术。目前主要的基因编辑技术都是基于如下原理发展而来的:在细胞内利用外源切割复合体特异性识别并切割目的基因序列,在目的基因序列上制造断裂端,这种断裂端随即会被细胞内部的DNA损伤修复系统修复,重新连接起来。在此修复过程中,当有修复模板存在时,细胞会以修复模板为标准进行修复,

从而实现对基因序列的特异性改变,即基因编辑(图3)。图3 基因编辑技术的基本原理示意图要实现基因编辑,外源切割复合体必须满足两个条件:① 切割复合体必须可以特异性地识别和结合至目的基因DNA序列上,这是各种基因编辑技术的主要差异所在,也是发展基因编辑技术的最大困难所在;② 切割复合体必须具有切割DNA,制造断裂端的功能;基因编辑技术的简要发展历史 自1953年沃森和克里克两位科学家提出DNA的双螺旋结构以来,人们一直都在积极探索着高效便利的基因编辑技术:上世纪80年代,科学家在小鼠胚胎干细胞中通过基因打靶技术实现了基因编辑(2007年诺贝尔生理医学奖),但此技术在其余细胞内效率极低,应用受到了极大的限制;上世纪90年代,基于细胞内不同锌指蛋白可特异性识别DNA 上3联碱基的特征以及核酸酶FokI二聚化后可以切割DNA 的特点,人们通过锌指蛋白偶联Fokl的策略逐渐发展出了一种新的基因编辑技术--锌指蛋白核酸酶技术(Zinc Finger Nucleases, ZFNs)。但此技术专利被公司垄断,且锌指蛋白数量有限,可以识别的DNA序列数量有限,其应用也受到了很大的限制。随后,基于改造后的植物病原菌中黄单胞菌属的TAL蛋白可以特异性识别DNA中一个碱基的特性,人们又发展出了新的基因组编辑技术--转录激活样因子核酸酶技术(Transcription activator-like effector nucleases,

基因组编辑三大技术

基因组编辑三大技术:CRISPR、TALEN和ZFN[创新技巧] 摘要: 最近出现的新工具让研究人员能够在几乎任何物种中实现精确的修饰,有着核苷酸水平的精确度,也有着令人难以置信的速度。大部分是在特定的位置引入双链DNA断裂,然后由细胞进行修复。区别在于如何引入断裂,以及新序列靶定的难易程度。 在过去,如果你想在模式生物中进行复杂的基因组修饰,你几乎只能选择小鼠。 首先,你要设计一个打靶载体,将其引入小鼠胚胎干细胞,并将这些经过修饰的细胞注射到小鼠囊胚。接着是孕育、出生、筛选,等待所需的幼崽成长到性成熟,交配和杂交,之后是更多孕育、更多筛选,一直下去。 复杂的项目也许需要一年或更长时间才能完成。它几乎只对小鼠起作用。原因还不是很清楚,也许小鼠胚胎干细胞有着特别活跃的同源重组系统。大鼠和人类则不是这样。 不过好消息是,最近出现的新工具让研究人员能够在几乎任何物种中实现精确的修饰,有着核苷酸水平的精确度,也有着令人难以置信的速度。大部分是在特定的位置引入双链DNA 断裂,然后由细胞进行修复。区别在于如何引入断裂,以及新序列靶定的难易程度。 锌指核酸酶(ZFN) 第一个使用定制DNA核酸内切酶的基因组编辑策略就是锌指核酸酶(zinc-finger nucleases,简称ZFN)。 锌指蛋白是转录因子;每个指模块识别3-4个碱基的序列,将这些模块混合搭配,研究人员或多或少能靶定他们希望的任何序列。Sigma-Aldrich公司将ZFN技术商业化,推出CompoZr ZFN试剂平台。 ZFN是异源二聚体,其中每个亚基含有一个锌指结构域和一个FokI核酸内切酶结构域。FokI 结构域必须二聚化才有活性,确保必须存在两个相邻的DNA结合事件才能实现双链断裂,从而增加了目标特异性。 切割事件使得大部分基因组编辑技术得以实现。在双链断裂后,细胞试图修复它。最简单的方法是非同源末端接合(NHEJ),其中细胞基本上磨平断裂DNA的两端,再将其彼此拉近,这往往产生移码。另一种方法是同源定向修复(HDR)。细胞试图利用另一条染色体上对应的DNA序列作为模板来修复断裂。通过提供自己的模板,用户可促使系统在不经意间插入所需的序列。 ZFN技术由Sangamo生物科学公司所拥有,被用来开发治疗产品。不过,对于科研方面的应用,Sangamo则授权给了Sigma-Aldrich。

三种基因编辑工具的比较

比较三种基因编辑技术 一、基因编辑的概念 基因编辑就是指对基因组进行定点修饰的一项新技术。利用该技术,可以精确地定位到基因组的某一位点上, 在这位点上剪断靶标 DNA 片段并插入新的基因片段。此过程既模拟了基因的自然突变, 又修改并编辑了原有的基因组, 真正达成了“编辑基因” 。目前主要有 3 种基因编辑技术, 分别为: a)人工核酸酶介导的锌指核酸酶(zinc- finger nucleases,ZFN)技术;b) 转录激活因子样效应物核酸酶(transcription activator- like effector nucleases,TALEN)技术;c) RNA 引导的 CRISPR- Cas 核酸酶技术(clustered regulatory interspaced short palindromic repeat /Cas-based RNA-guided DNA endonucleases,CRISPR/Cas )。 二、三种基因编辑技术的介绍 1、ZFN基因编辑技术 ZFN 技术就是第一代基因组编辑技术,其功能的实现就是基于具有独特的DNA序列识别的锌指蛋白发展起来的。ZFN 由特异性识别序列的锌指蛋白(ZFP)与 FokⅠ核酸内切酶组成。其中,由 ZFP 构成的 DNA 识别域能识别特异位点并与之结合,而由FokⅠ构成的切割域能执行剪切功能,两者结合可使靶位点的双链DNA 断裂(DSB)。于就是, 细胞可以通过同源重组(HR)修复机制与非同源末端连接(NHEJ)修复机制来修复 DNA。HR 修复有可能会对靶标位点进行恢复修饰或者插入修饰,而 NHEJ 修复极易发生插入突变或缺失突变。两者都可造成移码突变,因此达到基因敲除的目的。 2、TALEN基因编辑技术 TALE(Transcription activator -like effectors):一种源于植物致病菌Xanthomonas sp、的靶向基因操作技术。 TALENs 包含两个 TALEN 蛋白, 每个 TALEN 都就是由TALE array 与 FokⅠ融合而成、其中一个 TALEN 靶向正义链上靶标位点, 另一个则靶向反义链上的靶标位点、然后 FokⅠ形成二聚体, 在靶向序列中间的 spacer 处切割DNA, 造成双链 DNA 断裂, 随后细胞启动 DNA 损伤修复机制、针对不同的TALEN 骨架, 其最适宜的spacer长度不同, 其长度范围一般为12~20 bp、实验结果表明, TALENs在靶向DNA时, 第一个碱基为 T 时其结合效果更佳。

基因编辑技术

基因组工程学里的三大利器——ZFN、TALEN和CRISPR/Cas 在过去,如果你想在模式生物中进行复杂的基因组修饰,你几乎只能选择小鼠。首先,你要设计一个打靶载体,将其引入小鼠胚胎干细胞,并将这些经过修饰的细胞注射到小鼠囊胚。接着是孕育、出生、筛选,等待所需的幼崽成长到性成熟,交配和杂交,之后是更多孕育、更多筛选,一直下去。复杂的项目也许需要一年或更长时间才能完成。它几乎只对小鼠起作用。原因还不是很清楚,也许小鼠胚胎干细胞有着特别活跃的同源重组系统。大鼠和人类则不是这样。不过好消息是,最近出现的新工具让研究人员能够在几乎任何物种中实现精确的修饰,有着核苷酸水平的精确度,也有着令人难以置信的速度。大部分是在特定的位置引入双链DNA断裂,然后由细胞进行修复。区别在于如何引入断裂,以及新序列靶定的难易程度。 锌指核酸酶(Zinc-finger nucleases, ZFN)和转录激活因子样效应因子核酸酶(transcription activator-like effector nucleases, TALEN)这两种新型的核酸酶重新定义了传统生物学研究的界限和范畴。这两种核酸酶都是嵌合体,都

是由经过设计的、序列特异性的DNA结合元件(programmable, sequence-specific DNA-binding modules)和非特异性的DNA切割结构域结合而成的。ZFN和TALEN都可以对DNA进行各种遗传修饰,这两种核酸酶的作用机制都是先对DNA双链分子进行切割,形成DNA双链断裂切口(DNA double-strand break),然后激活细胞内的非同源末端连接修复机制(nonhomologous end joining,这是一种非保真的、容易出现遗传突变的修复机制),或者同源重组修复机制(homology-directed repair,这是一种高保真的修复机制,不容易出现突变),利用细胞自身的修复机制对DNA进行遗传学修饰。接下来,我们就将为读者介绍这种新型的、序列特异性的核酸酶,看看它们在遗传分析和遗传改造工作中都能发挥哪些功用。此外,我们还会重点介绍ZFN和TALEN在临床治疗方面的潜力,以及这些核酸酶,与包括最新出现的RNA介导的、基于成簇的规律间隔的短回文重复序列和Cas蛋白的DNA核酸内切酶(clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas-based RNA-guided DNA endonucleases)在内的其它核酸酶在未来的发展潜力。 了解基因功能的传统方法和现代方法 随着全基因组测序技术(whole-genome sequencing)的不断发展和完善,以及大型基因组注释项目(genome annotation projects)的实施,科研人员们已经开始跃跃欲试,想要将基因组研究的成果尽早地运用到基础科学研究的各个领域,以及个性化医疗(personalized medicine)工作当中。不过海量的基因组信息也给科研人员们出了一个不小的难题,那就是该如何将这些枯燥的数据转换成有意义的基因组功能,或者与临床相关的信息呢?解决这个问题的核心就在于尽快开发出一种高效率的、可靠的方法,来帮助科研人员研究基因型(genotype)对表型(phenotype)的影响作用。利用同源重组机制(homologous recombination)对基因进行定向失活(Targeted gene inactivation)就是这样一种好方法,可以帮助科研人员明确基因的功能。不过在实际工作中使用这种方法也会受到好几个因素,比如存在效率太低、费时费力、而且有可能导致突变等的限制。而 RNAi(详见名词解释)等基因靶向敲除技术则为科学家们提供了一种快捷、廉价而且可以开展高通量研究的新方法。不过RNAi这种基因敲除技术的敲除效果还不够彻底,每次试验以及每个实验室的试验结果都会有差异,另外还存在不可预知的脱靶情况(off-target effect),所以只能够用于需要暂时抑制基因功能的试验当中。这些研究手段的种种不足都严重限制了科学家们在探索基因型和表型关系的科研道路上前进的步伐,也妨碍了RNAi技术的实际应用。 近十年来出现了一种新的研究手段,可以帮助科研人员对各种细胞和各种生物体内的几乎任意基因进行人工操作。这种新技术就是我们常说的“基因组编辑技术(genome editing)”,而前面介绍过的由序列特异性的DNA结合结构域与非特异性的DNA切割结构域组合而成的人工核酸酶就是这种基因组编辑技术的重要组成部分。这些嵌合式的核酸酶能够以极高的效率、极高的精确度对基因组进行人工修饰,其机制就是我们前面介绍过的切割DNA产生DSB,然后利用NHEJ 或 HDR等 DSB修复机制完成我们所需要的各种人工修饰。由于科研人员们对锌指蛋白和TALE蛋白等蛋白的DNA结合结构域的设计能力越来越强,所以这种基

基因编辑技术最新进展

基因编辑技术最新进展 人体内已命名的基因共有25000多条,目前已知一部分基因(3000)的突变会引起各类疾病。对于此类疾病的治疗,最本质的手段是通过一些方法将突变后的遗传物质矫正回原来的状态。这类方法被称为遗传疗法(genetic therapies)。目前最广泛的遗传疗法手段为:1. 以病毒载体感染方式引导的源基因导入;2. 以RNA干扰方式引导的目的基因表达下调。这些手段在治疗严重复合型免疫缺陷疾病(SCID)以及Wiskott-Aldrich综合征方面获得了成功。尽管如此,RNAi 技术在应用的广泛性上还存在局限。 基因编辑技术(genome editing technologies)是针对DNA本身进行的操作手段。最近应用型基因编辑领域的"鼻祖",美国麻省理工学院张锋教授等人发表在《Nature Medicine》杂志上的一篇综述详细介绍了这些技术的原理以及在临床上的应用前景。 基因编辑技术的基本原理

归巢酶,ZFN,TALEN以及CRISPR/cas9四种核酸内切酶均能够特异性地识别与切割特定的DNA序列,引起DNA双链断裂(DSB)。根据其识别方式的不同可以分为:蛋白质与DNA的识别与切割,包括归巢酶,ZFN,TALEN; RNA与DNA的识别与蛋白质介导的切割,即CRISPR/cas9。在特异性方面,归巢酶具有一个较大的DNA识别结构域,此结构同时负责DNA的切割;ZFN与TALEN是由多个酶亚基组成的复合体,分别具有特异性识别DNA的能力与 DNA内切活性。在应用方面,归巢酶及ZFN需要通过人工突变的方式构造切割不同DNA序列的工程酶,LALEN则需要复杂的分子克隆达到此目的。与之不同,在CRISPR/cas9系统中,可以通过简单的sgRNA的变化达到切割不同的基因片段的目的。切割完成后,目的位点会出现双链断裂(DSB)的结果并引起生物体的主动修复。NHDJ修复以另外一条未被切割的DNA链为模板,从而保证修复结果的准确。在反复不断地断裂-修复过程中,容易在切割位点造成插入或缺失突变,这样就达到了造成基因紊乱的目的。另外,研究人员利用HDR的修复机制可以人为制造想要得到的突变结果,从而达到基因修复的效果。 基因编辑疗法简介 基因编辑在疾病治疗方面的应用模式主要为:矫正/沉默有害突变,插入保护性突变,加入治疗性基因以及敲除病毒DNA。对于突变引起的有害基因的活化,可以通过简单的沉默或敲除的方式达到治疗的目的,如亨廷顿氏舞蹈症(一种显性突变引起的家族性遗传病),但是对于突变引起的正常基因的失活,则需要通过HDR的方式对目的序列进行编辑,使其恢复到原有的健康状态,如泰萨氏病(一种隐性基因突变引起的遗传性疾病)。 基因编辑的效率 基因编辑的效率受到编辑方式,细胞类型,位点序列等多个因素的影响。总体上来讲,NHEJ要比HDR效率更高。对于我们更关心的HDR方式,主要受到4个因

《“基因编辑”可能的前景和问题》阅读练习及答案

阅读下面的文字,完成下列小题。 (材料一) 在重构孩子基因一事上,个体父母的自由抉择究竟会带来什么样 的危害?根据经济学理论,只有当个人选择导致“负外部性”时——也就是说,当危害带来的代价由完全没有参与交易的第三方来承担时,社会危害才会形成集成式影响,举个例子,一家公司可能通过向当地的河流倾倒有毒废料而获益,但它会影响到附近社区成员的利益,类似的效果已经在Bt转基因玉米上体现出来:它能够制造毒素杀死一 种欧洲当地的害虫玉米螟,然而,它也会因此误杀帝王蝶。这里需要 考虑的问题是,是否会出现这样的情况,即由生物技术方面的个人选择带来负外部性,因而导致整个社会受累? ——摘编自福山《我们为什么担忧“基因编辑”》(材料二) 这种类似的基因“军备竞赛”会对下面一类人产生特定的负担, 这些人,由于宗教或其他原因,不愿对孩子进行基因改造;如果周围 的人都在这么做,对他们而言想要坚持放弃的决定就会愈加艰难,因为担心会阻挡孩子的前程,尽管人们在担忧未曾意想的结局和不可预见的代价,人们心中所隐藏的深层的对于生物技术的忧虑却一点儿也 不是功利主义的。终极意义上,毋宁说人们担心的是,生物技术会让 人类丧失人性——正是这种根本的特质不因世事斗转星移,支撑我们成为我们、决定我们未来走向何处。更糟糕的是,生物技术改变了人性,但我们却丝毫没有意识到我们失去了多么有价值的东西。

——材料来源同上(材料三) ——《中国公众对基因编辑技术的认知与态度研究报告》(材料四) 我们以遗传技术再造自己,是为了活得更久、更健康,超过我们 与生俱来的DNA容许的寿限。首先我们会重新安排基因来减少疾病,培养替换器官,并普遍迟滞高龄带来的众多折磨。这就会把我们带往21世纪20年代晚期,那时我们就能创造出分子尺度的纳米机器,编程运用来弥补我们的自然演化局限,投入应付DNA始终无力处理的工作。 一旦这些进展到位,我们就不只会延缓衰老,还能逆转其进程, 逐一处理每颗分子来清理、重建我们的身体。我们还会把这些机器,安顿在我们脑中现有的数十亿神经元当中,借助它们来强化我们的智慧,我们的记忆力会得以改良,我们会发令创造出崭新的虚拟经验,把人类的想象力提升到我们现有未强化的脑部连想都无法想的水平。一段(相当短暂的)时间之后,我们就会借助逆向工程,改造人脑创

相关主题
文本预览
相关文档 最新文档