当前位置:文档之家› 弹性力学6、7-按位移、应力求解及简化应力函数

弹性力学6、7-按位移、应力求解及简化应力函数

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

《弹性力学》、《岩体力学》复习大纲2015

第一章绪论 1-1弹性力学的内容 1-2弹性力学中的几个基本概念 1-3弹性力学中的基本假定 习题 第二章平面问题的基本理论 2-1平面应力问题与平面应变问题 2-2平衡微分方程 2-3平面问题中一点的应力状态 2-4几何方程刚体位移 2-5物理方程 2-6边界条件 2-7圣维南原理及其应用 2-8按位移求解平面问题 2-9按应力求解平面问题相容方程 2-10常体力情况下的简化应力函数 习题 第三章平面问题的直角坐标解答 3-1逆解法与半逆解法多项式解答 .3-2矩形梁的纯弯曲 3-3位移分量的求出 3-4简支梁受均布荷载 3-5楔形体受重力和液体压力 习题 第四章平面问题的极坐标解答 4-1极坐标中的平衡微分方程 4-2极坐标中的几何方程及物理方程 4-3极坐标中的应力函数与相容方程 4-4应力分量的坐标变换式 4-5轴对称应力和相应的位移 4-6圆环或圆筒受均布压力 4-7压力隧洞 4-8圆孔的孔口应力集中 4-9半平面体在边界上受集中力 4-10半平面体在边界上受分布力 习题 要求:了解弹性力学的基本概念,发展历史与基本假设,理解两类平面问题的解法,掌握三大方程的建立,边界的确定,有限单元法在解弹性力学问题的应用,了解空间问题的求解的方法。

第1章绪论 1.1 岩石与岩体(二者的区别) 1.2 岩体力学的研究任务与内容(岩体的力学特征) 1.3 岩体力学的研究方法 1.4 岩体力学在其他学科中的地位 1.5 岩体力学的发展简史 基本要求:了解岩石力学、岩体力学定义及其它们的联系和区别;理解岩石力学的发展、研究对象和研究方法;了解岩石力学研究现状及热点问题。 重点与难点:岩石力学的定义、任务、研究方法。 第2章岩石的基本物理力学性质 2.1 岩石的基本物理力学性质 2.2 岩石的强度特性 2.3 岩石的变形特性 2.4 岩石的强度理论 基本要求:掌握岩石的成分、结构及其力学性质;了解岩石的变形特征和流变性;理解岩石的各种强度及其测定方法。 重点与难点:岩石的物理指标、强度与变形特征。 第3章岩石动力学基础 3.1 岩石的波动特性 3.2 影响岩体波速的因素 3.3 岩体的其他动力学特性 基本要求:理解岩石的波动特性,了解影响岩体波速的因素,了解岩体的其他动力学特性。重点与难点:岩石的动力学特性。 第4章岩体的基本力学性能 4.1 岩体结构面的分析 4.2 结构面的变形特性 4.3 结构面的力学效应 4.4 碎块岩体的破坏 4.5岩体的应力-应变分析 基本要求:理解岩石和岩体的区别,了解结构面的相关性质,了解岩体的变形特征和强度测定方法,理解岩体的破坏条件及应力-应变分析。 重点与难点:理解岩体的相关特性。

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

弹性力学习题(新)

1-3 五个基本假定在建立弹性力学基本方程时有什么用途? 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应 力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是 相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是 相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的 改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

2-1 已知薄板有下列形变关系:式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。 解: 1、相容条件: 将形变分量带入形变协调方程(相容方程)

其中 所以满足相容方程,符合连续性条件。 2、在平面应力问题中,用形变分量表示的应力分量为 3、平衡微分方程

其中 若满足平衡微分方程,必须有

分析:用形变分量表示的应力分量,满足了相容方程和平衡微分方程条件,若要求出常数A,B,C,D还需应力边界条件。 例2-2 如图所示为一矩形截面水坝, 其右侧面受静水压力(水的密度为ρ), 顶部受集中力P作用。试写出水坝的应 力边界条件。 解: 根据在边界上应力与面力的关系 左侧面:

同济大学弹性力学往年试题

同济大学本科课程期终考试(考查)统一命题纸 A 卷 2006—2007学年第 一 学期 课程名称:弹性力学 课号: 任课教师: 专业年级: 学号: 姓名: 考试(√)考查( ) 考试(查)日期: 2007 年1月 22 日 出考卷教师签名:朱合华、许强、王君杰、李遇春、陈尧舜、邹祖军、赖永瑾、蔡永昌 教学管理室主任签名: 1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)薄板小挠度弯曲时,体力可以由薄板单位面积内的横向荷载q 来等代。 ( ) (2)对于常体力平面问题,若应力函数),(y x ?满足双调和方程02 2 =???,那 么由),(y x ?确定的应力分量必然满足平衡微分方程。 ( ) (3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的 结 果 会 有 所 差 别 。 ( ) (4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。 ( ) (5)无论是对于单连通杆还是多连通杆,其截面扭矩均满足如下等式: ??=dxdy y x F M ),(2,其中),(y x F 为扭转应力函数。 ( ) (6)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。 ( ) (7)平面应力问题和平面应变问题的应变协调方程相同,但应力协调方程不同。 ( ) (8)对于两种介质组成的弹性体,连续性假定不能满足。 ( ) (9)位移变分方程等价于以位移表示的平衡微分方程及以位移表示的静力边界条件。( ) (10)三个主应力方向一定是两两垂直的。 ( ) 2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。)(共20分,每小 题2分) (1)弹性力学是研究弹性体受外界因素作用而产生的 的一门学科。 (2)平面应力问题的几何特征是: 。

第二章弹性力学基础

第二章弹性力学基础 弹性力学又称弹性理论,它是固体力学的一个分支。弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。 弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。 材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。 弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。对杆状构件作较精确的分析,也需用弹性力学。 结构力学-----研究杆状构件所组成的结构。例如桁架、刚架。

第一节弹性力学假设 在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。 1. 假设物体是线弹性的 假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。即该比例关系不随应力、应变的大小和符号而变。 由材料力学已知: 脆性材料的物体:在应力?比例极限以前,可作为近似的完全弹性体; 韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。 这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。 2. 假设物体是连续性的 假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。 注:实际上,一切物体都是由微粒组成的,都不能符合该假定。但是由于物体粒子的尺寸以及相邻粒子间的距离,

都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。 3. 假设物体是均匀性、各向同性的 整个物体是由同一材料组成的。这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。 各向同性是指物体内一点的弹性在所的各个方向上都是相同的,故物体的弹性常数不随方向而变化。 对于非晶体材料,是完全符合这一假定。而由木材,竹材等做成的构件,就不能作为各向同性体来研究;钢材构件基本上是各向同性的。 弹性常数? 凡是符合以上三个假定的物体,就称为理想弹性体。 4. 假设物体的位移和应变是微小的 假定物体在载荷或温度变化等外界因素的作用下所产生的位移远小于物体原来的尺寸,应变分量和转角都远小于1。 因此 ①在建立物体变形以后的平衡方程时,可用变形前的尺寸代替变形后的尺寸,而不至于引起显著的误差。

基于弹性力学理论和有限元法分析应力集中问题的讨论

基于弹性力学理论和有限元法分析应力集中问题的讨论 材料在外形急剧变化的部位,局部应力可以超出名义应力的数倍,对于脆性材料局部过早开始破坏,从而,削弱了构件的强度,降低了构件的承载能力。因此在工程實际中,为了确保构件的安全使用,必须科学合理的分析计算应力集中现象,以便找寻到更好的避免措施。本文首先基于弹性力学理论分析带孔无限宽板的应力分布情况,将对象的受力转化成数学表达,结论应证了应力集中的几个特性。 标签:应力集中系数;有限元分析;无限宽板;弹性力学;Inventor运用;ANSYS 1、应力集中 1.1弹性力学中概念,指物体形状、材料性质不均匀导致的局部应力急剧增高的现象。 1.2应力集中系数 最大局部应力与名义应力的比值称为理论应力集中系数ɑ。可以明确地反应应力集中的程度。 最大局部应力σmax可根据弹性力学理论、有限元法计算得到,也可由实验方法测得;名义应力σn是假设构件的应力集中因素(如孔、缺口、沟槽等)不存在,构件截面上的应力。 2、孔周应力在理想状态下的弹性力学理论分析 2.1定义受单向均匀拉伸荷载的无限宽平板,孔径2α圆孔,建立如图一理想模型。 由于结构的对称性,仅分析图一上半段1/4部分x轴正向的状态: 1)圆孔右顶点单元,即当θ=0,r=α时,代入式(2)解算得σy=3σ; 2)距孔0.2倍孔半径外,即当θ=0,r=1.2α时,代入式(2)解算得σy=2.071σ; 3)距孔1倍孔半径外,即当θ=0,r=2α时,代入式(2)解算得σy=1.221σ; 4)距孔1.5倍孔半径外,即当θ=0,r=2.5α时,代入式(2)解算得σy=1.122σ; 5)距孔2倍孔半径外,即当θ=0,r=3α时,代入式(2)解算得σy=1.074σ;

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:

弹性力学--纳维解法(板壳理论)

板壳理论课程设计 对工科各专业说来,弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。然而,它们之间还存在着一些不同。材力中,基本上只研究杆状结构,即长度远大于高度和宽度的构件。而材料力学中主要研究的是这种构件在拉压、剪切、弯曲、扭转作用下的应力和位移。结构力学中,主要是在材料力学的基础上研究杆状构件所组成的结构,即杆件系统。至于非杆状结构,则是弹性力学的主要研究内容。在弹性力学中,研究杆状结构一般都不用诸如一些关于构建的形变状态或应力分布的假定,因而得到的结果就比较精确。 从8个方程8个未知量,到圣维南原理、相容方程;从逆解法、半逆解法到差分法、变分法,邱老师的课讲的十分生动,同学们也听得十分认真。到弹性力学下册,也就是板壳理论,主要是研究薄板的小挠度变形及其应力、应变。求解四边简支矩形薄板在载荷下的挠度,以及矩形薄板的莱维法解及一般解法。另外,变厚度矩形和圆形薄板的挠度求解问题。差分法中引进了较为精确的边界条件以及在均布载荷和集中载荷下的不同解法。 在课程设计的过程中,在自学Matlab 的过程中完成了纳维解法中挠度表达式的表示和循环收敛过程,并且完成了差分法中不同网格划分下的差分方程化为矩阵形式后的求解过程。除此之外,还学会了使用ABAQUS 创建板并定义厚度以减少同等情况下创建实体添加边界条件不准确对计算结果产生的影响。尽管和差分法与精确解的误差分析相比,误差还是比较大,但相比于创建三维实体并在底边添加约束条件相比,误差还是减少了很多。 在计算过程中,先是采用厚度0.2m 薄板,有限元方法的误差过大,而当把薄板的厚度改为0.1m 时,误差变小。两种厚度的薄板都进行了同样的计算。 四边简支的薄板在均布载荷作用下位移的最大值,薄板的尺寸为长宽高: 110.1??,均布载荷为21000/q N m =,弹性模量E=205GPa ,泊松比=0.3μ, 分别用:纳维法、差分法以及有限元方法进行求解并比较求得的结果。 得到结果如下:

弹性力学模拟练习题

一、判断题 1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任 何空隙。 (√) 2、如果某一问题中,0===zy zx z ττσ,只存在平面应力分量x σ,y σ,xy τ,且它 们不沿z 方向变化,仅为x ,y 的函数,此问题是平面应力问题。 (√) 3、如果某一问题中,0===zy zx z γγε,只存在平面应变分量x ε,y ε,xy γ,且它们 不沿z 方向变化,仅为x ,y 的函数,此问题是平面应变问题。 (√) 4、当物体的形变分量完全确定时,位移分量却不能完全确定。 (√) 5、当物体的位移分量完全确定时,形变分量即完全确定。 (√) 6、在有限单元法中,结点力是指结点对单元的作用力。 (√) 7、在平面三结点三角形单元的公共边界上应变和应力均有突变。 (√) 10、体力作用于物体部的各个质点上,所以它属于力。 (×) 解答:外力。它是质量力。 11、在弹性力学和材料力学里关于应力的正负规定是一样的。 (×) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 12、当问题可当作平面应力问题来处理时,总有 0===yz xz z ττσ。 (√) 解答:平面应力问题,总有0===yz xz z ττσ 13、当物体可当作平面应变问题来处理时,总有 0===yz xz z γγε。 (√) 解答:平面应变问题,总有0 ===yz xz z γγε 14、已知位移分量函数() xy k v y x k u 2221,=+=,21,k k 为常数,由它们所求得形变分量不一定能满足相容方程。 (×) 解答:由连续可导的位移分量按几何方程求得的形变分量也一定能满足相 容方程。因为几何方程和相容方程是等价的。 15、形变状态()()0,2,,222≠==+=k kxy ky y x k xy y x γεε是不可能存在的。 (×) 解答:所给形变分量能满足相容方程,所以该形变分量是可能存在的。 16、在y 为常数的直线上,如0=u ,则沿该线必有0=x ε。 (√)

弹性力学 第四章 应力和应变关系

第四章应力和应变关系知识点 应变能原理 应力应变关系的一般表达式完全各向异性弹性体 正交各向异性弹性体本构关系弹性常数 各向同性弹性体应变能格林公式 广义胡克定理 一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系 一、内容介绍 前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。 本章的任务就是建立弹性变形阶段的应力应变关系。 二、重点 1、应变能函数和格林公式; 2、广义胡克定律的一般表达式; 3、具 有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系; 5、材料的弹性常数。 §4.1 弹性体的应变能原理 学习思路: 弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求

解方法和思路简化,因此能量原理是一个有效的分析工具。 本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。 根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。 探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。 如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。 学习要点:1、应变能;2、格林公式;3、应变能原理。 1、应变能 弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。本节通过热力学的观点,分析弹性体的功能变化规律。 根据热力学的观点,外力在变形过程中所做的功,一部分将转化为内能,一部分将转化为动能;另外变形过程中,弹性体的温度将发生变化,它必须向外界吸收或释放热量。设弹性体变形时,外力所做的功为d W,则 d W=d W1+d W2 其中,d W1为表面力F s所做的功,d W2为体积力F b所做的功。变形过程中,由外界输入热量为d Q,弹性体的内能增量为d E,根据热力学第一定律, d W1+d W2=d E - d Q 因为 将上式代入功能关系公式,则

弹性力学题

一、单项选择题 1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。 A.相容方程 B.近似方法 C.边界条件 D.附加假定 2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。 A.几何上等效 B.静力上等效 C.平衡 D.任意 3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。 A.平衡方程、几何方程、物理方程完全相同 B.平衡方程、几何方程相同,物理方程不同 C.平衡方程、物理方程相同,几何方程不同 D.平衡方程相同,物理方程、几何方程不同 4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A ) ①区域内的相容方程;②边界上的应力边界条件;③满足变分方程; ④如果为多连体,考虑多连体中的位移单值条件。 A.①②④ B. ②③④ C. ①②③ D. ①②③④ 5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm对应的整体编码,以下叙述正确的是( D )。

① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 图1 A. ①③ B. ②④ C. ①④ D. ③⑤ 6.平面应变问题的微元体处于( C ) A.单向应力状态 B.双向应力状态 C.三向应力状态,且z σ是一主应力 D.纯剪切应力状态 7.圆弧曲梁纯弯时,( C ) A.应力分量和位移分量都是轴对称的 B.应力分量和位移分量都不是轴对称的 C.应力分量是轴对称的,位移分量不是轴对称的 D.位移分量是轴对称的,应力分量不是轴对称的 8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C ) 相同,B 也相同 不相同,B 也不相同 相同,B 不相同 不相同,B 相同

弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理 一.内容介绍 通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。 弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。根据这一要求,本章的主要任务有三个: 一是综合弹性力学的基本方程,并按边界条件的性质将问题分类; 二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。应该注意的是对于应力解法,基本方程包括变形协调方程。 三是介绍涉及弹性力学求解方法的一些基本原理。主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。 如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。 二. 重点 1.弹性力学基本方程与边界条件分类; 2.位移解法与位移表示的平衡微分方程; 3. 应力解法与应力表示的变形协调方程; 4. 混合解法; 5. 逆解法和半逆解法; 6. 解的唯一性原理、叠加原理和圣维南原理 知识点 弹性力学基本方程边界条件位移表示的平衡微分方程应力解法 体力为常量时的变形协调方程物理量的性质逆解法和半逆解法 解的迭加原理弹性力学基本求解方法位移解法位移边界条件 变形协调方程混合解法应变能定理解的唯一性原理圣维南原理

§5.1 弹性力学的基本方程及其边值问题 学习思路: 通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。 弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。 由于基本方程与15个未知量的内在联系,例如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量;反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。基于上述的理由,为简化求解的难度,可以选取部分未知量作为基本未知量求解。 根据基本未知量,弹性力学问题可以分为应力解法、位移解法和混合解法。 上述三种求解方法对应于偏微分方程的三种边值问题。 学习要点: 1. 弹性力学基本方程; 2. 本构方程; 3. 边界条件; 4. 弹性力学边值问题; 首先将弹性力学基本方程综合如下: 1. 平衡微分方程 用张量形式描述 2. 几何方程

弹性力学

1平面应变问题的无限长柱形体,以任一横截面为xy面,任 一纵向为z轴,试简述z面上的应力情况及原因。 Z面上由于z方向的伸缩杯阻止,所以所有一切应力分量,形变分量和位移分量都不沿z方向变化,所以σz不等于0,由于对称条件τzx=0,τzy= 0. 2、在什么条件下平面应力问题和平面应变问题的3个应力分 量σxσy和τxy与材料特性无关?并简述原因 当体力为常量事,在单连体的应力边界问题中,如果两个弹性体具有相同边界形状,收到同样的分布外力,那么句不管这两个弹性体的材料是否相同,在平面应力或平面应变情况下σxσy 和τxy的分布是相同的,因为在体力为常量的情况下,平衡微分方程,相容方程,和应力便捷条件中都不包含弹性常数 3、弹性力学平面问题的求解中,平面应力问题与平面应变问 题的三类基本方程(平衡方程、几何方程、物理方程)哪些相同,哪些不同?并简述原因 平衡方程,几何方程相同,物理方程不同。在平面问题中,因为物体的搜有各点都不沿z方向移动即w=0,多亿z方向的线段都没有伸缩,即εz=0, σz=μ(σx+σy)带入其中可得 4、在建立弹性力学平衡微分方程、几何方程、物理方程时分 别应用了哪些基本假定? 连续性、均匀性、完全弹性、各向同性、小变形 5、有限单元法中,位移模式应满足什么条件?下列位移函数 甜=aix+a2y+a3x2v=blx+b2y+b3y2能否作为三结点三角形单元

的位移模式?简要说明理由。 位移模式必须能反应单元的钢铁位移, 6弹性力学建立的基本方程多是偏微分方程,最后需结合(B.边界条件)求解这些微分方程,以求得具体问题的应力、 应变、位移。 7弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系(平衡方程、几何方程相同,物理方程不同) 8根据圣维南原理,作用在物体一小部分边界上的力系可以用下列( A.静力上等效)的力系代替,则仅在近处应力分布有改变, 而在远处所受的影响可以不计 9三结点三角形单元中的位移分布为( B.线性分布)。 10在什么条件下,平面应力问题的仃。,仃,,T_与平面应变问题的仃。,a,,T可是相同的? 边界相同,外力相同 11有限单元法中选取单元位移模式应满足什么条件? 反应刚体位移,反应应力常量,反应位移连续性。

弹性力学边值问题

第五章弹性力学边值问题 本章任务 总结对弹性力学基本方程 讨论求解弹性力学问题的方法

目录 §5.1弹性力学基本方程 §5.2问题的提法 §5.3弹性力学问题的基本解法 解的唯一性 §5.4圣维南局部影响原理 §5.5叠加原理

§5.1弹性力学基本方程 ?总结弹性力学基本理论; ?讨论已知物理量、基本未知量;以及物理量之间的关系——基本方程和边界条件。

弹性力学基本方程 1.平衡微分方程 000=+??+??+??=+??+??+??=+??+??+??bz z yz z by zy y xy bx zx yx x F z y x F z y x F z y x στττστττσ0 ,=+bj i ij F σ2.几何方程 x w z u z v y w y u x v z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,,,),,(2 1i j j i ij u u +=ε

3.变形协调方程 y x z y x z z x z y x y z y z y x x z x x z z y z y y x y x z xy xz yz y xy xz yz x xy xz yz xz z x yz y z xy x y ???=??-??+???????=??+??-???????=??+??+??-?????=??+?????=??+?????=??+??εγγγεγγγεγγγγεεγεεγεε2222222222222222222)(2)(2)(位移作为基本未知量时,变形协调方程自然满足。

【精品版】弹性力学在工程中的应用

弹性力学在土木工程中的应用 摘要:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产的应力、弹性力学,应变和位移,从而解决结构或设计中所提生出的强度和刚度问题。在土木工程方面,建筑物能够通过有效的弹性可以抵消部分晃动,从而减少在地震中房屋倒塌的现象;对于水坝结构来说,弹性变化同样具有曲线性,适合不断变化的水坝内部的压力,还有大型跨顶建筑、斜拉桥等等。弹性力学在土木工程中还有一些重要应用实例,如:地基应力与沉降计算原理、混凝土板的计算方法、混凝土材料受拉劈裂试验的力学原理、混凝土结构温度裂缝分析、工程应变分析、结构中的剪力滞后问题等。 关键词:弹性力学、力学、弹性变形、有限元法、强度、土木工程

正文: 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。 弹性力学弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。 对于物体弹性变形,变形的机理,应从材料内部原子间里的作用来分析。实际上,固体材料之所以能保持其内部结构的稳定性是由于组成该固体材料(如金属)的原子间存在着相互平衡的力,吸力使原子间密切联系在一起,而短程排斥力则使各原子间保持一定的距离在正常情况下,这两种力保持平衡,原子间的相对位置处于规则排列的稳定状态。受外力作用时,这种平衡被打破,为了恢复平衡,原子便需产生移动和调整,使得吸力、斥力和外力之间取得平衡。因此,如果知道了原子之间的力相互之间的定律,原则上就能算出晶体在一定弹性力作用下的反应。实际上,固体结构的内部是多样的、复杂的。例如:夹杂、微孔、晶

弹性力学基础知识归纳知识讲解

弹性力学基础知识归 纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时,应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。

4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号? 由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。 平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。

弹性力学 第二章 应力状态分析

第二章应力状态分析 一、内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二、重点 1、应力状态的定义:应力矢量;正应力与切应力;应力分量; 2、平衡微分方程与切应力互等定理; 3、面力边界条件; 4、应力分量的转轴公式; 5、应力状态特征方程和应力不变量; 知识点: 体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力 分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质; 截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量; 切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态 特征方程;应力不变量;最大切应力;球应力张量和偏应力张量 §2.1 体力和面力 学习思路:

本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。 应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。 体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。 面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。 体力和面力分量的方向均规定与坐标轴方向一致为正,反之为负。 学习要点: 1、体力; 2、面力。 1、体力 作用于物体的外力可以分为两种类型:体力和面力。 所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。 面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V,如图所示 设△V 的体力合力为△F,则P点的体力定义为 令微小体积元素△V趋近于0,则可以定义一点P的体力为

相关主题
文本预览
相关文档 最新文档