当前位置:文档之家› AES加密算法的Matlab仿真及应用_王志秦

AES加密算法的Matlab仿真及应用_王志秦

AES加密算法的Matlab仿真及应用_王志秦
AES加密算法的Matlab仿真及应用_王志秦

第27卷第2期 唐山师范学院学报 2005年3月 Vol. 27 No.2 Journal of Tangshan Teachers College Mar. 2005

────────── 收稿日期:2004-09-21

作者简介:王志秦(1979-),女,河北唐山人,唐山学院信息工程系助教。 - 78 -

AES 加密算法的Matlab 仿真及应用

王志秦1,李丽山2

(1.唐山学院 信息工程系,河北 唐山 063000;2.唐山师范学院 物理系,河北 唐山 063000)

摘 要:总结了AES 加密算法的原理,并在MATLAB 环境下编写了通用程序进行仿真,对MATLAB 环境下编写该程序的特点进行了分析,并利用该程序对文件加密和图像处理等领域的应用进行了仿真实验。

关键词:AES ;MATLAB ;加密;仿真

中图分类号:TP309.7 文献标识码:B 文章编号:1009-9115(2005)02-0078-03 1 引言

为适应人类计算能力的飞速增长,提高加密标准的安全性,美国国家标准技术所(NIST) 于1997年1月2日宣布

AES(Advanced Encryption Standard)的研究计划,算法的最低要求是:必须采用对称密钥密码实现的分组密码,并支持

128bit 分组长度和128bit, 192bit, 256bit 密钥长度。[1] AES 可

由任何人免费开发、使用和出售,具有广阔的前景。MATLAB 是国际公认的最优秀的科学计算与数学应用软件之一,针对不同领域的应用,拥有信号处理、控制系统、神经网络、图像处理、通信等50多个具有专门功能的工具箱。本文在MA TLAB 环境下实现对AES 算法进行仿真,并利用工具箱所提供的功能对AES 在文件和图像领域的加密应用进行仿真实验。

2 AES 算法原理

美国国家标准技术所推选的高级加密算法名称为“Rijndael ”

。[2] AES 密码体制对其进行了简化,明文和密文分组长为128比特,密钥长度可以为128, 192和256比特3种。AES 加密算法的数据处理单元是字节,128比特的分组信息被分成16个字节。AES 算法中引入矩阵的概念,分组的16个字节按顺序被复制到一个4*4的矩阵中,称为状态,

AES 的所有变换都是基于状态的变换。AES 变换是由圈函数通过多圈迭代实现的,根据密钥长度的不同,圈函数的迭代次数也不一样,对应上面的3种密钥长度,迭代次数分别为10、12、14圈。圈函数的构成包括非线性、扩散和密钥调度几种元素。非线性变换的目标就是通过较小较简单的非线性元素得到大的复杂化的非线性构件。在圈函数的每一圈迭代中,包括4步变换,分别是字节代换运算、行变换、列混合以及圈密钥的加法变换,其作用就是通过重复简单的非线性变换、混合函数变换,将字节代换运算产生的非线性扩

散,达到充分的混合,使加密后的分组信息统计特性分布更均匀,在每圈迭代中引入不同的密钥,这样便以最简单的运算代价得到最好的加密效果,实现加密的有效性。

3 AES 算法的MATLAB 仿真程序实现 3.1 MATLAB 程序的特点及编程方法

MATLAB 具有强大的数值计算功能尤其是对数组和矩阵的运算,而AES 算法的基础结构正是以矩阵为基本单位,所以在MA TLAB 上实现算法简便易行。但是MATLAB 只提供6种数据类型,即双精度、字符型、稀疏型、8位型、细胞型和结构型;对于需要进行二进制与、或、异或操作的

AES 加密算法来说都是不适合的,数值类型只有双精度和8位型,8位型只用于图像处理,而整数也都是用双精度型表示,因此需要对双精度类型进行处理,通过编写的程序将双精度数

转换为二进制数,用八个由“0”或“1”组成的整数表示。

下面以进行异或操作的子程序为例:输入为两个整数,将其转换为二进制数后,分别按位异或,再转换为整数输出。

function C=xorfun(P,Q) rP1=rem(P,2); cP1=fix(P/2); rQ1=rem(Q,2); cQ1=fix(Q/2); xor1=xor(rP1,rQ1); ……

C=xor1+xor2*2+xor3*4+xor4*8+xor5*16+xor6*32+xor7*64+xor8*128;

3.2 加密程序的实现 3.2.1 列混合变换

列混合变换是程序中作用在矩阵的每一列上变换。

function out=Mixcolumns(state) ss=zeros(4,4);

王志秦,李丽山:AES 加密算法的Matlab 仿真及应用

- 79 -

for i=1:4

ss(1,i)=xorfun(xorfun(xorfun(m_Mul2(state(1,i)),m_Mul3(state(2,i))),state(3,i)),state(4,i));

ss(2,i)=xorfun(xorfun(xorfun(state(1,i),m_Mul2(state(2,i))),m_Mul3(state(3,i))),state(4,i));

ss(3,i)=xorfun(xorfun(xorfun(state(1,i),state(2,i)),m_Mul2(state(3,i))),m_Mul3(state(4,i)));

ss(4,i)=xorfun(xorfun(xorfun(m_Mul3(state(1,i)),state(2,i)),state(3,i)),m_Mul2(state(4,i))); end out=ss;

其中,function out=m_Mul2(B)

bit7=0;

if andfun(B,128)>0 bit7=27;

end

out=xorfun(leftroll1(B),bit7); 3.2.2 加密主程序

加密主程序如下所示:

function out=aes_encrypt(state,key,Nk) Nb=4;

if Nk==4 Nr=10; elseif Nk==6 Nr=12; elseif Nk==8 Nr=14; end

w=keyexpansion(key,Nk,Nr); round=0;

state=Addroundkey(state,round,Nb,w); for round=1:Nr-1

state=Subbytes(state,Nb); state=Shiftrows(state); state=Mixcolumns(state);

state=Addroundkey(state,round,Nb,w); end

state=Subbytes(state,Nb); state=Shiftrows(state);

state=Addroundkey(state,round,Nb,w); out=state;

4 AES 算法的MATLAB 仿真应用 4.1 AES 加密算法在文件加密的应用仿真

MATLAB 中提供了对文件进行读写操作的函数,如fopen(),fclose(),fread(),fwrite()等。利用这些函数与编写好的AES 加密算法程序,即可方便的实现对文件内容的加密和解密的应用仿真。加密效果显著,直观。

4.2 AES 加密算法在图像加密领域的应用仿真

MATLAB 提供了图像处理的工具箱,[5]利用imread(),imshow()等函数,可以方便地实现各种图像的读入和显示的

操作。图像经MATLAB 读入后即映射到一个矩阵中,与加密程序相适应,只需转换数据类型即可运行。

仿真程序以256×256象素的lenna 图像(图4.1)为例,加密密钥为“1234567890123456”,

加密后输出图像如图4.2。

(图4.1) (图4.2)

5 结束语

AES 加密算法有运算速度快,代码量少,密钥空间大,无弱密钥等诸多优点,是未来信息加密应用的发展方向。结合MATLAB 在各个领域的工具箱,在MATLAB 环境中对

AES 进行仿真对AES 算法的分析和在嵌入式系统等各个领域的应用有进一步的促进作用,也必将为信息化程度的提高提供强有力的保障和研究依据。

参考文献:

[1] 王先培,等.新一代数据加密标准——AES[J].计算机工程,2003,(3). [2] 黄元飞,等.信息安全与加密解密核心技术[M].上海:浦东电子出版社,2001. [3] 宋震,等.密码学[M].北京:中国水利水电出版社,2002.

[4] 黄智颖,等.高级加密标准AES 及其实现技巧[J].计算机工程与应用,2002,(9). [5] 孙兆林. MATLAB6.x 图像处理[M].北京:清华大学出版社,2002.

(下转第92页)

第27卷第2期唐山师范学院学报 2005年第2期

参考文献:

[1] 卢元镇.体育运动——现代人生命质量的守护神[J].体育科研,1998,(3).

[2] 国家体育总局群体司,国家体育总局体育信息研究所.国际大众体育现状及发展趋势[C].国家体育总局体育信息研究所编

印发行,2001.

[3] 朱慕菊.走进新课程[M].北京:北京师范大学出社,2002.

[4] 赵建英.2000年全国学生体质健康调研结果公布[J].中国学校体育,2001.

[5] 颜军.心理学在体育教学中的运用[R].江苏省新体育课程培训班讲话稿,2002.

[6] 季浏,胡增荦.体育教育展望[M].上海:华东师范大学出版社,2001.

Health First in New Courses of Physical Education

LI Shu-li

(School of Primary Education, Tangshan Teachers College, Hebei Tangshan 063000, China)

Abstract: The evaluation of health should not be limited in the fieleds of medicine and biology, but should be expanded to the fields of psychology and sociology. Health means perfect condition in such aspects as the body, mind and society. So physical education should be put into practice together in these aspects.

Key words: physical education; health first; psychology; social adaptabilities

责任编辑、校对:孙海祥

(上接第79页)

Emulation and Application of the AES Encryption Algorithm in

MATLAB

WANG Zhi-qin1, LI Li-shan2

(1. Department of Communication Engineering, Tangshan College, Hebei Tangshan 063000, China;

2. Physics Department, Tangshan Teachers College, Hebei Tangshan 063000, China)

Abstract: This paper summarizes the principle of the AES(Advanced Encryption Standard) encryption algorithm, and compiles the currency program in the MATLAB environment for emulation, and analyzes the characteristics of programming in MATLAB environment, and emulates the application in the field of file-encryption and management of image.

Key words: AES; MATLAB; encryption; emulation

责任编辑、校对:田敬军

- 92 -

神经网络学习算法matlab仿真(借鉴参照)

东南大学自动化学院 智能控制概论 神经网络学习算法研究 学院: 姓名: 学号: 日期:

目录 1 任务要求叙述 ..................................................... 错误!未定义书签。 2 系统分析及设计原理 ......................................... 错误!未定义书签。 3 设计实现.............................................................. 错误!未定义书签。4仿真验证.. (6) 5 讨论与分析.......................................................... 错误!未定义书签。

一.任务要求叙述 (1)任务 (a) 运行算法,观察和分析现有学习算法的性能; clear all;close all; nu=20;pi=3.1415926; for i=1:nu p(i)=2*pi*i/nu; t(i)=0.5*(1+cos(p(i))); end minmax=[min(p(:)) max(p(:))] net = newff([ 0 7],[6 1],{'logsig' 'purelin'},'traingd');% traingd traingdm trainlm net.trainParam.epochs = 10000; net.trainParam.goal = 0.0001; net.trainParam.show=200; net.trainParam.lr=0.1; net.trainParam.mc=0.6; %0.9 default value; available for momentum net = train(net,p,t); y1 = sim(net,p); figure(2); plot(p,t,'*-',p,y1,'r--') %************** test data ****************** nu2=nu*3/2; for i=1:(nu2) p2(i)=2*pi*i/(nu2); t2(i)=0.5*(1+cos(p2(i))); end y2 = sim(net,p2); figure(3); plot(t2,'*-');hold on; plot(y2,'r'); xlabel('times');ylabel('outputs'); figure(4); plot(t2-y2); xlabel('times');ylabel('error'); (b) 为了进一步提高学习逼近效果,可以采取那些措施,调节规律如何?根据所提的每种措施,修改算法程序,给出仿真效果验证、过程以及相应的曲线图,给出适当的评述;(c) 联系、结合前向神经网络的算法样本学习、测试等过程,谈谈本人对神经网络系统的一些认识和看法。

AES加密算法的实现及应用

AES加密算法的实现及应用 摘要:AES加密算法具有安全性高,运行速度快,对硬件配置要求低,算法属于对称算法等优点,非常适合硬件的实现。课题对于AES加密算法进行改进,提高程序运行效率进行了研究。研究主要包括AES加密算法的改进,C语言实现,以及完成对数据流的加密和解密过程,同时对AES加密算法的应用进行了简单介绍。 关键词:AESC语言加密 前言: AES加密算法作为DES加密算法的替代品,具有安全、高效以及在不同硬件和软件[6]运行环境下表现出的始终如一的良好性能,因此该算法具有较高的开发潜力和良好的实用价值。本研究主要包括AES加密算法的改进,C语言实现,以及完成对数据流的加密和解密过程,同时对AES加密算法的应用进行了简单介绍。 一、AES加密算法的改进及实现 (1)AES加密算法的流程图 在图1.1中,Round代表加密的轮数,即程序循环次数。State代表状态矩阵,一个存储原始数据的数组。RoundKey代

表经过扩展运算后的密钥数组。ByteSub()代表置换函数,对状态矩阵State中的数据进行置换。ShiftRow()代表移位函数,对状态矩阵State中的数据进行移位运算。MixColumn()代表列混合运算函数,对状态矩阵State中的数据进行列混合运算。AddRoundKey()代表异或运送函数,对数组State和数组RoundKey进行异或运算。由上图可以看出,最后一次轮变换比前几次轮变换少执行一次MixColumn()函数。 (2)AES解密算法的流程图 在图1.2中,Round代表加密的轮数,即程序循环次数。State代表状态矩阵,一个存储原始数据的数组。RoundKey代表经过扩展运算后的密钥数组。InvByteSub()代表置换函数,对状态矩阵State中的数据进行置换。InvShiftRow()代表移位函数,对状态矩阵State中的数据进行移位运算。InvMixColumn()代表列混合运算函数,对状态矩阵State中的数据进行列混合运算。由上图可以看出,最后一次轮变换比前几次轮变换少执行一次MixColumn()函数。 二、AES加密算法复杂度分析 下面对改进前的算法和改进后的算法进行复杂度分析[8]以及程序执行效率的分析。 设b为0x00―0xff中的任意常数,以0x09*b为例进行讨

(实例)matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B], 如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

AES算法加解密原理及安全性分析

AES算法加解密原理及安全性分析 刘帅卿 一、AES算法简介 AES算法是高级加密标准算法的简称,其英文名称为Advanced Encryption Standard。该加密标准的出现是因为随着对称密码的发展,以前使用的DES(Data Encryption Standard数据加密标准)算法由于密钥长度较小(56位),已经不适应当今数据加密安全性的要求,因此后来由Joan Daeman和Vincent Rijmen提交的Rijndael算法被提议为AES的最终算法。 AES是一个迭代的、对称密钥分组的密码,它可以使用128、192和256位密钥,并且用128位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换(permutations)和替换(substitutions)输入数据。加之算法本身复杂的加密过程使得该算法成为数据加密领域的主流。 二、AES算法的基本概念 1、有限域(GF) 由于AES算法中的所有运算都是在有限域当中进行的,所以在理解和实现该算法之前先得打好有限域这一基石才行。通常的数学运算都是在实数域中进行,而AES算法则是在有限域中进行,我们可以将有限域看成是有确定边界范围的正整数集合,在该集合当中,任意两个元素之间的运算结果都仍然落在该集合当中,也即满足运算封闭性。 那么如何才能保证这样的“有限性”(也即封闭性)呢? GF(2w)被称之为伽罗华域,是有限域的典型代表。随着w(=4,8,16,…)的取值不同所形成的有限域范围也不同。AES算法中引入了GF域当中对数学运算的基本定义:将两数的加减法定义为两者的异或运算;将两数的乘法定义为多

电力电子技术MatLab仿真

本文前言 MA TLAB的简介 MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。随着版本的升级,内容不断扩充,功能更加强大。近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。 MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。MATLAB语言的难点是函数较多,仅基本部分就有七百多个,其中常用的有二三百个。 MATLAB在国内外的大学中,特别是数值计算应用最广的电气信息类学科中,已成为每个学生都应该掌握的工具。MATLAB大大提高了课程教学、解题作业、分析研究的效率。

遗传算法的MATLAB程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

AES加密解密与代码实现详解

先搞定AES算法,基本变换包括SubBytes(字节替代)、ShiftRows(行移位)、MixColumns(列混淆)、AddRoundKey(轮密钥加) 其算法一般描述为 明文及密钥的组织排列方式

ByteSubstitution(字节替代) 非线性的字节替代,单独处理每个字节: 求该字节在有限域GF(28)上的乘法逆,"0"被映射为自身,即对于α∈GF(28),求β∈GF(28), 使得α·β=β·α=1mod(x8+x4+x2+x+1)。 对上一步求得的乘法逆作仿射变换 y i=x i + x(i+4)mod8 + x(i+6)mod8 + x(i+7)mod8 + c i (其中c i是6310即011000112的第i位),用矩阵表示为 本来打算把求乘法逆和仿射变换算法敲上去,最后还是放弃了...直接打置换表

下面是逆置换表,解密时使用 这里遇到问题了,本来用纯c初始化数组很正常,封装成类以后发现不能初始化,不管是声明、构造函数都无法初始化,百歌谷度了一通后没有任何答案,无奈只能在构造函数中声明一个局部变量数组并初始化,然后用memcpy,(成员变量名为Sbox/InvSbox,局部变量名sBox/invsBox)

ShiftRows(行移位变换) 行移位变换完成基于行的循环位移操作,变换方法: 即行移位变换作用于行上,第0行不变,第1行循环左移1个字节,第2行循环左移2个字节,第3行循环左移3个字节。 MixColumns(列混淆变换)

逐列混合,方法: b(x) = (03·x3 + 01·x2 + 01·x + 02) · a(x) mod(x4 + 1)

人工鱼群算法的仿真程序-matlab

tic figure(1);hold on ezplot('x*sin(10*pi*x)+2',[-1,2]); %% 参数设置 fishnum=50; %生成50只人工鱼 MAXGEN=50; %最多迭代次数 try_number=100;%最多试探次数 visual=1; %感知距离 delta=0.618; %拥挤度因子 step=0.1; %步长 %% 初始化鱼群 lb_ub=[-1,2,1]; X=AF_init(fishnum,lb_ub); LBUB=[]; fori=1:size(lb_ub,1) LBUB=[LBUB;repmat(lb_ub(i,1:2),lb_ub(i,3),1)]; end gen=1; BestY=-1*ones(1,MAXGEN); %每步中最优的函数值 BestX=-1*ones(1,MAXGEN); %每步中最优的自变量 besty=-100; %最优函数值 Y=AF_foodconsistence(X); while gen<=MAXGEN fprintf(1,'%d\n',gen) fori=1:fishnum %% 聚群行为 [Xi1,Yi1]=AF_swarm(X,i,visual,step,delta,try_number,LBUB,Y); %% 追尾行为 [Xi2,Yi2]=AF_follow(X,i,visual,step,delta,try_number,LBUB,Y); if Yi1>Yi2 X(:,i)=Xi1; Y(1,i)=Yi1; else X(:,i)=Xi2; Y(1,i)=Yi2; end end [Ymax,index]=max(Y); figure(1); plot(X(1,index),Ymax,'.','color',[gen/MAXGEN,0,0]) ifYmax>besty besty=Ymax; bestx=X(:,index); BestY(gen)=Ymax;

各种BP学习算法MATLAB仿真

3.3.2 各种BP学习算法MATLAB仿真 根据上面一节对BP神经网络的MATLAB设计,可以得出下面的通用的MATLAB程序段,由于各种BP学习算法采用了不同的学习函数,所以只需要更改学习函数即可。 MATLAB程序段如下: x=-4:0.01:4; y1=sin((1/2)*pi*x)+sin(pi*x); %trainlm函数可以选择替换 net=newff(minmax(x),[1,15,1],{'tansig','tansig','purelin'},'trainlm'); net.trainparam.epochs=2000; net.trainparam.goal=0.00001; net=train(net,x,y1); y2=sim(net,x); err=y2-y1; res=norm(err); %暂停,按任意键继续 Pause %绘图,原图(蓝色光滑线)和仿真效果图(红色+号点线) plot(x,y1); hold on plot(x,y2,'r+'); 注意:由于各种不确定因素,可能对网络训练有不同程度的影响,产生不同的效果。如图3-8。 标准BP算法(traingd)

图3-8 标准BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)增加动量法(traingdm) 如图3-9。 图3-9 增加动量法的训练过程以及结果(原图蓝色线,仿真图+号线)弹性BP算法(trainrp)如图3-10 图3-10 弹性BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)

动量及自适应学习速率法(traingdx)如图3-11。 图3-11 动量及自适应学习速率法的训练过程以及结果(原图蓝色线,仿真图+号线)共轭梯度法(traincgf)如图3-12。

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

matlab自带优化工具箱遗传算法中文解释

matlab自带优化工具箱遗传算法中文解释 problem setup and results设置与结果 problem fitness function适应度函数 number of variable变量数 constraints约束 linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量 linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量 bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量 nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式 integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码 run solver and view results求解 use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果 population population type编码类型 double vector实数编码,采用双精度 bitstring二进制编码对于生成函数和变异函数,只能选用uniform和custom,对于杂交函数,只能使用 scattered singlepoint,twopoint或custom不能使用hybrid function和nonlinear constraint function custom 自定义 population size:种群大小 creation function:生成函数,产生初始种群 constraint dependent:约束相关,无约束时为uniform,有约束时为feasible population uniform:均匀分布 feasible population :自适应种群,生成能够满足约束的种群 initial population:初始种群,不指定则使用creation function生成,可以指定少于种群数量的种群,由creation function完成剩余的 initial scores:初始值,如果不指定,则有计算机计算适应度函数作为初始值,对于整型约束不可用,使用向量表示 initial range:初始范围,使用向量矩阵表示,第一行表示范围的下限,第二行表示上限 fitness scaling:适应度尺度 rank:等级。将适应度排序,然后编号 proportional:按比例 top:按比例选取种群中最高适应度的个体,这些个体有等比例的机会繁衍,其余的个体被淘汰 shift linear:线性转换

AES加密算法原理(图文)

AES加密算法原理(图文) 随着对称密码的发展,DES数据加密标准算法由于密钥长度较小(56位),已经不适应当今分布式开放网络对数据加密安全性的要求,因此1997年NIST公开征集新的数据加密标准,即AES[1]。经过三轮的筛选,比利时Joan Daeman和Vincent Rijmen提交的Rijndael算法被提议为AES的最终算法。此算法将成为美国新的数据加密标准而被广泛应用在各个领域中。尽管人们对AES还有不同的看法,但总体来说,AES作为新一代的数据加密标准汇聚了强安全性、高性能、高效率、易用和灵活等优点。AES设计有三个密钥长度:128,192,256位,相对而言,AES的128密钥比DES的56密钥强1021倍[2]。AES算法主要包括三个方面:轮变化、圈数和密钥扩展。 AES 是一个新的可以用于保护电子数据的加密算法。明确地说,AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和256 位密钥,并且用128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换(permutations )和替换(substitutions)输入数据。Figure 1 显示了AES 用192位密钥对一个16位字节数据块进行加密和解密的情形。

Figure 1 部分数据 AES算法概述 AES 算法是基于置换和代替的。置换是数据的重新排列,而代替是用一个单元数据替换另一个。AES 使用了几种不同的技术来实现置换和替换。为了阐明这些技术,让我们用Figure 1 所示的数据讨论一个具体的AES 加密例子。下面是你要加密的128位值以及它们对应的索引数组: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 192位密钥的值是: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 170 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23

自适应滤波器MATLAB仿真

自适应滤波器 MATLAB仿真 摘要 : 本文介绍了自适应滤波器的工作原理,以及推导了著名的LMS( Least mean squares )算法。以一个例子演示了自适应滤波器的滤波效果。实验结果表明,该滤波器滤波效果较好。 关键词:自适应滤波器 MATLAB7.0 LMS 算法 Simulate of adaptive filter based on MATLAB7.0 Abstract: This article described the working principle of adaptive filter and deduced the well-known LMS algorithm. Take an example to demonstrate the adaptive filters filtering effects. The results show that the filter has an effective way to filter single. Key words: LMS algorithm Adaptive Filter Matlab7.0 1引言 由 Widrow B 等提出的自适应滤波理论,是在维纳滤波、卡尔曼滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能,从而广泛应用于通信、系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测和自适应天线阵等诸多领域[1]。自适应滤波器最大的优点在于不需要知道信号和噪声的统计特性的先验知识就可以实现信号的最佳滤波处理。本文通过一个具体例子和结果论证了自适应滤波器的滤波效果。 2自适应滤波原理及 LMS算法 2.1 自适应滤波原理 图 1 自适应滤波原理图 在自适应滤波器中,参数可调的数字滤波器一般为 FIR 数字滤波器, IIR 数字滤波器或格型数字滤波器。自适应滤波分 2 个过程。第一,输入信号想 x(n) 通过参数可调的数字滤波器后得输出信号 y(n) ,y(n) 与参考信号 d(n) 进行比较得误差信号 e(n) ;第二,通过一种自适应算法和 x(n) 和 e(n) 的值来调节参数可调的数字滤波器的参数,即加权系

手把手教你学matlab遗传算法

基于遗传算法求解函数最优值 1.选择函数形式:y=10*sin(5*x)+7*abs(x-5)+10 2.函数直观图像: 3.函数理论最大值: X=0.286,Y=52.8990 4.Matlab函数实现: the best X is--->>0.32 the best Y is--->>52.73

5.Matlab程序 5.1-------------------------------------------------------------- %-------------函数说明---------------- % %主函数 %--------------------------------------- function main() clear clc popsize=100;%种群大小 chromlength=10;%二进制编码长度 pc=0.6;%交叉概率 pm=0.001;%变异概率 pop=initpop(popsize,chromlength);%初始种群 for i=1:100 [objvalue]=cal_objvalue(pop);%计算适应度值(函数值)fitvalue=objvalue; [newpop]=selection(pop,fitvalue);%选择操作

[newpop]=crossover(newpop,pc);%交叉操作 [newpop]=mutation(newpop,pm);%变异操作 pop=newpop;%更新种群 [bestindividual,bestfit]=best(pop,fitvalue);%寻找最优解x2=binary2decimal(bestindividual); x1=binary2decimal(newpop); [y1]=cal_objvalue(newpop); if mod(i,10)==0 figure; fplot('10*sin(5*x)+7*abs(x-5)+10',[010]); hold on; title(['迭代次数为n='num2str(i)]); plot(x1,y1,'*'); end end fprintf('the best X is--->>%5.2f\n',x2); fprintf('the best Y is--->>%5.2f\n',bestfit); 5.2----------------------------------- %-------------函数说明---------------- %初始化种群大小 %输入变量: %popsize:种群大小 %chromlength:染色体长度--》转化的二进制长度 %输出变量: %pop:种群 %--------------------------------------- function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); 5.3-------------------------------------- %-------------函数说明---------------- %二进制转化十进制函数 %输入变量: %二进制种群 %输出变量: %十进制数值 %--------------------------------------- function pop2=binary2decimal(pop)

用Matlab实现遗传算法

用GA找到函数最小值 x = ga(fitnessfcn,nvars) 局部无约束最小值,x是目标函数的适应度函数,nvars是适应度函数的尺寸(设计变量的数量)。目标函数和适应度函数接受了1×N大小的x矢量,在x返回一个标量的计算值。 x = ga(fitnessfcn,nvars,A,b) 在线性不等式约束下,适应度函数的局部最小值。如果这个问题有m个线性不等式和n个变量,则A是m×n矩阵,b是m×1矩阵。 注意:当人口类型选项设置为“位串”或者“自定义”,线性约束不满足。x = ga(fitnessfcn,nvars,A,b,Aeq,beq) 存在线性等式约束下,适应度函数的局部最小值。如果没有不等式存在,设置A=[] 和 b=[]。如果问题存在r个线性等式约束和n个变量,那么Aeq 是r ×n矩阵的大小,beq是r大小的矢量。 注意:当人口类型选项设置为“位串”或者“自定义”,线性约束不满足。x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB) 定义了一系列设计变量x的最小和最大边界。以至于在范围内找到一个解。如果没有边界存在,LB 和 UB设置为空矩阵。如果x(i)无下界,设置LB(i) = -Inf;如果x(i)无上界,设置UB(i) = Inf。 x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon) 服从在非线性约束条件下的最小值,非线性函数接收x,返回C和Ceq向量,分别代表非线性的不等式和等式。GA最小化适应度函数,在C(x)≤0和 Ceq(x)=0的条件下。如果无边界存在,设置 LB=[] 和 UB=[]。 注意:当人口类型选项设置为“位串”或者“自定义”,非线性约束不满足。 x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options) 用在结构选项中的值代替默认的优化参数来进行最小化,它也可以用gaoptimset函数来创建,具体参考gaoptimset的用法。 x = ga(problem) 在problem下找到最小值,problem是包含下表的结构。

AES加密算法的实现及应用

现代经济信息 前言: AES加密算法作为DES加密算法的替代品,具有安全、高 效以及在不同硬件和软件[6]运行环境下表现出的始终如一的良好性 能,因此该算法具有较高的开发潜力和良好的实用价值。本研究主要 包括AES加密算法的改进,C语言实现,以及完成对数据流的加密和 解密过程,同时对AES加密算法的应用进行了简单介绍。 一、AES加密算法的改进及实现 (1)AES加密算法的流程图 在图1.1中,Round代表加密的轮数,即程序循环次数。State代 表状态矩阵,一个存储原始数 据的数组。RoundKey代表经 过扩展运算后的密钥数组。 ByteSub()代表置换函数,对 状态矩阵State中的数据进行 置换。ShiftRow()代表移位函 数,对状态矩阵State中的数据 进行移位运算。MixColumn() 代表列混合运算函数,对状态 矩阵State中的数据进行列混合 运算。AddRoundKey()代表异 或运送函数,对数组State和数 组RoundKey进行异或运算。由 上图可以看出,最后一次轮变 换比前几次轮变换少执行一次 MixColumn()函数。 (2)A E S解密算法的流 程图 在图1.2中,Round代表加 密的轮数,即程序循环次数。 State代表状态矩阵,一个存储 原始数据的数组。RoundKey 代表经过扩展运算后的密钥 数组。InvByteSub()代表置换 函数,对状态矩阵State中的数据进行置换。InvShiftRow()代表移位函 数,对状态矩阵State中的数据进行移位运算。InvMixColumn()代表列 混合运算函数,对状态矩阵State中的数据进行列混合运算。由上图可 以看出,最后一次轮变换比前几次轮变换少执行一次MixColumn()函 数。 二、AES加密算法复杂度分析 下面对改进前的算法和改进后的算法进行复杂度分析[8]以及程序 执行效率的分析。 设b为0x00—0xff中的任意常数,以0x09*b为例进行讨论。该算式 分解如下: 0x09*b=(0x08+1)*b =0x08*b+b =(0x06+0x02)*b+b =0x06*b+0x02*b+b =(0x04+0x02)*b+0x02*b+b =0x04*b+0x02*b+0x02*b+b =(0x02+0x02)*b+0x02*b+0x02*b+b =0x02*b+0x02*b+0x02*b+0x02*b +b 将上述算式进行C语言实现得到以下程序: (1)程序1 int i,t; t=b; t=t<<2; for(i=0;i<3;i++){ t=t^t; } t=t^b; 由此可见,该程序的 时间复杂度为O(n)。将上 述程序做一改进可得到如 下程序: (2)程序2 int i,t; t=b; t=t<<2; t=t^t; t=t^t; t=t^t; t=t^t; t=t^b; 由此可见,该程序的 时间复杂度为O(1)。 若通过表格法对公式进行编成,可以得到如下程序: (3)程序3 int t; t=Tab0e[0x0e][b]; 由此可见,该程序的时间复杂度为O(1)。 通过上述程序可以发现,程序2与程序3的时间复杂度相同。但这 只能说明两程序的时间效率相似,并不一定相同,具体判断还要看程 序的规模。 虽然程序之间的规模只有几行代码的差距,但如果将这些程序放 在循环体中执行,程序之间在时间上的执行效率就会表现出较大的差 距,循环次数越多,循环层数越多,效率差距就越明显。AES加密算 法本身是一种非常适用于硬件加密的算法,因此当该算法应用于硬件 编程时,就更要把算法的时间效率考虑在内,否则很可能由于算法执 行时间过长,导致尚未加密的数据被新加入的数据冲掉,造成数据的 遗失,如此一来也就失去了数据加密的意义。这也是为什么要对算法 的程序实现进行效率考察的主要原因。 AES加密算法的实现及应用 赵雪梅 盐城工学院,江苏 盐城 224003 图1.1 AES加密算法流程图图1.2 AES解密算法流程图

matlab基本遗传算法应用实例

基本遗传算法应用实例。用基本遗传算法求下面函数的最大值 10090060)(23++-=x x x x f 300≤≤x 个体数目取50,最大进化代数取100,离散精度取0.001,杂交概率取0.9,变异概率取0.004 1、在editor 中建立基本遗传算法函数:GA 程序如下: function[xv,fv]=GA(fitness,a,b,NP,NG,pc,pm,eps) %待优化的目标函数:fitness %自变量下界:a %自变量上界:b %种群个体数:NP %最大进化代数:NG %杂交概率:pc %自变量概率:pm %自变量离散精度:eps %目标函数取最小值时的自变量值:xm %目标函数的最小值:fv L=ceil(log2((b-a)/eps+1)); %根据离散精度,确定二进制编码需要的码长 x=zeros(NP,L); for i=1:NP x(i,:)=Initial(L);%种群初始化 fx(i)=fitness(Dec(a,b,x(i,:),L)); %个体适应值 end for k=1:NG sumfx=sum(fx); %所有个体适应值之和 px=fx/sumfx; %所有个体适应值的平均值 ppx=0; ppx(1)=px(1); for i=2:NP %用于轮盘赌策略的累加 ppx(i)=ppx(i-1)+px(i); end for i=1:NP sita=rand(); for n=1:NP if sita<=ppx(n) SelFather=n; %根据轮盘赌策略确定的父亲 break; end end Selmother=floor(rand()*(NP-1))+1; %随机选择母亲 posCut=floor(rand()*(L-2))+1; %随机选择交叉点 r1=rand(); if r1<=pc %交叉

相关主题
文本预览
相关文档 最新文档