当前位置:文档之家› 《步步高》2014高考物理一轮复习讲义第四章 第4课时 万有引力与航天

《步步高》2014高考物理一轮复习讲义第四章 第4课时 万有引力与航天

《步步高》2014高考物理一轮复习讲义第四章 第4课时 万有引力与航天
《步步高》2014高考物理一轮复习讲义第四章 第4课时 万有引力与航天

第4课时 万有引力与航天

考纲解读 1.掌握万有引力定律的内容、公式及其应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度.

1.[对万有引力定律的理解]关于万有引力公式F =G m 1m 2

r 2,以下说法中正确的是 ( )

A .公式只适用于星球之间的引力计算,不适用于质量较小的物体

B .当两物体间的距离趋近于0时,万有引力趋近于无穷大

C .两物体间的万有引力也符合牛顿第三定律

D .公式中引力常量G 的值是牛顿规定的 答案 C

解析 万有引力公式F =G m 1m 2

r ,虽然是牛顿由天体的运动规律得出的,但牛顿又将它

推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值是卡文迪许在实验室里用实验测定的,而不是人为规定的.故正确答案为C.

2.[万有引力引力场与电场的类比]由于万有引力定律和库仑定律都满足平方反比定律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比,例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E =F

q ,在引力场中可以用一

个类似的物理量来反映各点引力场的强弱.设地球质量为M ,半径为R ,地球表面处重力加速度为g ,引力常量为G ,如果一个质量为m 的物体位于距离地心2R 处的某点,则下列表达式中能反映该点引力场强弱的是

( )

A .G M

(2R )2

B .G m

(2R )2

C .G Mm (2R )2

D.g 4

答案 AD

解析 由万有引力定律知F =G Mm (2R )

2,引力场的强弱F m =GM

(2R )2,A 对;在地球表面附近有

G Mm R 2=mg ,所以F m =g

4

,D 对. 3.[第一宇宙速度的求解]一宇航员在某星球上以速度v 0竖直上抛一物体,经t 秒落回原处,已知该星球半径为R ,那么该星球的第一宇宙速度是

( )

A.v 0t R

B.

2v 0R

t

C.

v 0R t

D.

v 0Rt

答案 B

解析 设该星球表面重力加速度为g ,由竖直上抛知识知,t =2v 0g ,所以g =2v 0

t ;由牛顿

第二定律得:mg =m v 2

R

,所以v =gR =

2v 0R

t

. 4.[应用万有引力定律分析卫星运动问题]天宫一号是中国第一个目标飞行器,已于2011年

9月29日21时16分3秒在酒泉卫星发射中心发射成功,它的发射标志着中国迈入中国航天“三步走”战略的第二步第二阶段.21时25分,天宫一号进入近地点约200公里,远地点约346.9公里,轨道倾角为42.75度,周期为5 382秒的运行轨道.由此可知( ) A .天宫一号在该轨道上的运行周期比同步卫星的运行周期短 B .天宫一号在该轨道上任意一点的运行速率比同步卫星的运行速率小 C .天宫一号在该轨道上任意一点的运行加速度比同步卫星的运行加速度小 D .天宫一号在该轨道上远地点距地面的高度比同步卫星轨道距地面的高度小 答案 AD

解析 由题意知天宫一号的轨道半径比同步卫星要小,由GMm r 2=m v 2

r 知v =

GM

r

,即v 天>v 同.由GMm r 2=mr 4π2

T

2知T =

4π2r 3GM ,知T 天

r

2,从而a 天>a 同.

故选项A 、D 正确.

考点梳理

一、万有引力定律及其应用

1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式:F =Gm 1m 2r 2,G 为引力常量:G =6.67×10-

11 N·m 2/kg 2.

3.适用条件

(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.

(2)质量分布均匀的球体可视为质点,r 是两球心间的距离.

二、环绕速度

1.第一宇宙速度又叫环绕速度.

推导过程为:由mg =m v 21

R =GMm R

2得:

v 1=

GM

R

=gR =7.9 km/s. 2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. 特别提醒 1.两种周期——自转周期和公转周期的不同

2.两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度 3.两个半径——天体半径R 和卫星轨道半径r 的不同 三、第二宇宙速度和第三宇宙速度

1.第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. 2.第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.

5.[卫星变轨问题的分析方法]“天宫一号”被长征二号火箭发射后, 准确进入预定轨道,如图1所示,“天宫一号”在轨道1上运行 4周后,在Q 点开启发动机短时间加速,关闭发动机后,“天宫 一号”沿椭圆轨道2运行到达P 点,开启发动机再次加速,进入 轨道3绕地球做圆周运动,“天宫一号”在图示轨道1、2、3上 图1

正常运行时,下列说法正确的是

( )

A .“天宫一号”在轨道3上的速率大于在轨道1上的速率

B .“天宫一号”在轨道3上的角速度大于在轨道1上的角速度

C .“天宫一号”在轨道1上经过Q 点的加速度大于它在轨道2上经过Q 点的加速度

D .“天宫一号”在轨道2上经过P 点的加速度等于它在轨道3上经过P 点的加速度 答案 D 解析 根据v =

GM

r

,可知v 3

r 3

可知ω3<ω1,选项B 错误;加速度与万有引力大小有关,r 相同,则a 相同,与轨道无关,选项C 错误,选项D 正确. 【规律总结】

卫星变轨问题的判断:

(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大. (2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.

(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.

考点一 天体质量和密度的计算 1.解决天体(卫星)运动问题的基本思路

(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma 向=m v 2r 2=mω2

r =m 4π2r T

2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm

R 2=mg (g 表示天体表

面的重力加速度).

深化拓展 (1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式.

(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:G Mm R 2=mg ,所以g =GM

R

2.

在离地面高为h 的轨道处重力加速度:G Mm (R +h )2=mg h ,所以g h =GM

(R +h )2. 2.天体质量和密度的计算

(1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2G ,

天体密度ρ=M V =M 43

πR 3=3g

4πGR

.

(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .

①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3

GT 2;

②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43

πR 3=3πr 3

GT 2R 3

③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3π

GT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天

体的密度.

例1 (2012·福建理综·16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常量为G ,则这颗行星的质量为

( )

A.m v 2

GN B.m v 4GN C.N v 2

Gm

D.N v 4Gm

解析 设卫星的质量为m ′

由万有引力提供向心力,得G Mm ′R 2=m ′v 2

R

① m ′v 2

R

=m ′g

由已知条件:m 的重力为N 得 N =mg

由③得g =N

m ,代入②得:R =m v 2

N

代入①得M =m v 4

GN ,故B 项正确.

答案 B

突破训练1 (2011·江苏·7)一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则 ( )

A .恒星的质量为v 3T 2πG

B .行星的质量为4π2v 3

GT 2

C .行星运动的轨道半径为v T

D .行星运动的加速度为2πv

T

答案 ACD

解析 由GMm r 2=m v 2

r =m 4π2

T 2r 得M =v 2r G =v 3T 2πG ,A 对;无法计算行星的质量,B 错;r =

v ω

=v 2πT =v T 2π,C 对;a =ω2r =ωv =2π

T v ,D 对. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律

由万有引力提供向心力,G Mm r 2=ma 向=m v 2r =mω2

r =m 4π2r T 2.

2.卫星的各物理量随轨道半径变化的规律

3.极地卫星和近地卫星

(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心.

深化拓展 (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定. (2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.

例2 (2011·天津·8)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的

( )

A .线速度v =

GM

R

B .角速度ω=gR

C .运行周期T =2π

R g

D .向心加速度a =Gm

R

2

解析 由GMm R 2=m v 2

R =mω2

R =m 4π2T 2R =mg =ma 得v =

GM

R

,A 对;ω=g /R ,B 错;T =2π

R g ,C 对;a =GM

R

2,D 错. 答案 AC

人造天体运行参量的分析与计算方法

分析与计算思路是将人造天体的运动看做绕中心天体做匀速圆周运动,它受 到的万有引力提供向心力,结合牛顿第二定律和圆周运动的规律建立动力学方程, G Mm r 2=ma =m v 2r =mω2

r =m 4π2r T 2,以及利用人造天体在中心天体表面运行时,忽略 中心天体的自转的黄金代换公式GM =gR 2.

突破训练2 如果把水星和金星绕太阳的运动视为匀速圆周 运动,从水星与金星在一条直线上开始计时,如图2所示. 若天文学家测得在相同时间内水星转过的角度为θ1;金星 转过的角度为θ2(θ1、θ2均为锐角),则由此条件可求得

( )

A .水星和金星绕太阳运动的周期之比

B .水星和金星的密度之比

图2

C .水星和金星到太阳的距离之比

D .水星和金星绕太阳运动的向心加速度大小之比 答案 ACD

解析 由ω=ΔθΔt 知,ω1ω2=θ1θ2,又因为ω=2πT ,所以T 1T 2=θ2θ1,A 对;由GMm r 2=mr 4π2

T 2知r 3

=GMT 24π2,既然周期之比能求,则r 之比同样可求,C 对;由a =rω2

知,向心加速度之比同样可求,D 对;由于水星和金星的质量未知,故密度不可求,B 错.

例3 (2011·广东·20)已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是 ( )

A .卫星距地面的高度为 3GMT 24π2

B .卫星的运行速度小于第一宇宙速度

C .卫星运行时受到的向心力大小为G Mm

R

2

D .卫星运行的向心加速度小于地球表面的重力加速度

解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F 引=F 向=m v 2r =4π2mr T 2.当卫星在地表运行时,F 引=GMm

R 2=mg (此时R 为地

球半径),设同步卫星离地面高度为h ,则F 引=GMm

(R +h )2

=F 向=ma 向

D 正确.由GMm

(R +h )2=m v 2R +h

得,v =

GM

R +h

< GM R ,B 正确.由GMm (R +h )2

=4π2

m (R +h )

T 2,得R +h = 3GMT 24π2,即h = 3GMT 2

4π2-R ,A 错误.

答案 BD

同步卫星的六个“一定”

突破训练3 北斗导航系统又被称为“双星定位系统”,具有 导航、定位等功能.“北斗” 系统中两颗工作卫星1和2 均绕地心O 做匀速圆周运动,轨道半径均为r ,某时刻两颗 工作卫星分别位于轨道上的A 、B 两位置,如图3所示. 若卫星均顺时针运行,地球表面处的重力加速度为g ,

图3 地球半径为R ,不计卫星间的相互作用力.以下判断正确的是

( )

A .两颗卫星的向心加速度大小相等,均为R 2g

r 2

B .两颗卫星所受的向心力大小一定相等

C .卫星1由位置A 运动到位置B 所需的时间可能为

7πr 3R

r g

D .如果要使卫星1追上卫星2,一定要使卫星1加速 答案 AC

考点三 卫星变轨问题的分析

当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:

(1)当卫星的速度突然增加时,G Mm r 2

2

r

,即万有引力不足以提供向心力,卫星将做离

心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v = GM

r

可知其运行速度比原轨道时减小. (2)当卫星的速度突然减小时,G Mm r 2>m v

2

r

,即万有引力大于所需要的向心力,卫星将做

近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v = GM

r

可知其运行速度比原轨道时增大. 卫星的发射和回收就是利用这一原理.

例4 北京航天飞行控制中心对“嫦娥二号”卫星实施多次变轨 控制并获得成功.首次变轨是在卫星运行到远地点时实施的, 紧随其后进行的3次变轨均在近地点实施.“嫦娥二号”卫 星的首次变轨之所以选择在远地点实施,是为了抬高卫星近

图4

地点的轨道高度.同样的道理,要抬高远地点的高度就需要在近地点实施变轨.图4为“嫦娥二号”某次在近地点A 由轨道1变轨为轨道2的示意图,下列说法中正确的是

( )

A .“嫦娥二号”在轨道1的A 点处应点火加速

B .“嫦娥二号”在轨道1的A 点处的速度比在轨道2的A 点处的速度大

C .“嫦娥二号”在轨道1的A 点处的加速度比在轨道2的A 点处的加速度大

D .“嫦娥二号”在轨道1的B 点处的机械能比在轨道2的C 点处的机械能大 解析 卫星要由轨道1变轨为轨道2需在A 处做离心运动,应加速使其做圆周运动所需向心力m v 2r 大于地球所能提供的万有引力G Mm r 2,故A 项正确,B 项错误;由G Mm

r 2=ma

可知,卫星在不同轨道同一点处的加速度大小相等,C 项错误;卫星由轨道1变轨到轨道2,反冲发动机的推力对卫星做正功,卫星的机械能增加,所以卫星在轨道1的B 点处的机械能比在轨道2的C 点处的机械能小,D 项错误. 答案 A

处理卫星变轨问题的思路和方法

1.要增大卫星的轨道半径,必须加速; 2.当轨道半径增大时,卫星的机械能随之增大.

突破训练4 2011年9月29日,中国首个空间实验室“天宫一号” 在酒泉卫星发射中心发射升空,由长征运载火箭将飞船送入近 地点为A 、远地点为B 的椭圆轨道上,B 点距离地面高度为h , 地球的中心位于椭圆的一个焦点上.“天宫一号”飞行几周后 进行变轨,进入预定圆轨道,如图5所示.已知“天宫一号”

图5

在预定圆轨道上飞行n 圈所用时间为t ,万有引力常量为G ,地球半径为R .则下列说法正确的是

( )

A .“天宫一号”在椭圆轨道的

B 点的向心加速度大于在预定圆轨道的B 点的向心加速

B .“天宫一号”从A 点开始沿椭圆轨道向B 点运行的过程中,机械能守恒

C .“天宫一号”从A 点开始沿椭圆轨道向B 点运行的过程中,动能先减小后增大

D .由题中给出的信息可以计算出地球的质量M =(R +h )34π2n 2

Gt 2

答案 BD

解析 在B 点,由GMm

r 2=ma 知,无论在哪个轨道上的B 点,其向心加速度相同,A 项

错;“天宫一号”在椭圆轨道上运行时,其机械能守恒,B 项对;“天宫一号”从A 点开始沿椭圆轨道向B 运行中,动能一直减小,C 项错;对“天宫一号”在预定圆轨道上运行,有G Mm (R +h )2=m (R +h )4π2T 2,而T =t

n ,故M =(R +h )34π2n 2Gt 2,D 项对.

考点四 宇宙速度的理解与计算

1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.

2.第一宇宙速度的求法:

(1)GMm R 2=m v 2

1

R

,所以v 1=

GM

R

. (2)mg =m v 2

1R

,所以v 1=gR .

3.第二、第三宇宙速度也都是指发射速度.

例5 2012年6月16日,“神舟九号”宇宙飞船搭载3名航天员飞天,并于6月18日14∶00

与“天宫一号”成功对接.在发射时,“神舟九号”宇宙飞船首先要发射到离地面很近的圆轨道,然后经过多次变轨后,最终与在距地面高度为h 的圆形轨道上绕地球飞行的“天宫一号”完成对接,之后,整体保持在距地面高度仍为h 的圆形轨道上绕地球继续运行.已知地球半径为R ,地面附近的重力加速度为g .求: (1)地球的第一宇宙速度;

(2)“神舟九号”宇宙飞船在近地圆轨道运行的速度与对接后整体的运行速度之比. 解析 (1)设地球的第一宇宙速度为v ,根据万有引力定律和牛顿第二定律得:G Mm

R 2=m v 2R

在地面附近G Mm

R 2=mg

联立解得v =gR .

(2)根据题意可知,设“神舟九号”宇宙飞船在近地圆轨道运行的速度为v 1 v 1=v =gR

对接后,整体的运行速度为v 2,根据万有引力定律和牛顿第二定律得G Mm (R +h )2=m v 22

R +h

解得v 2=

gR 2

R +h

,所以v 1∶v 2= R +h

R

. 答案 (1)gR (2)

R +h

R

突破训练5 宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 落到月球表面(设月球半径为R ).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为

( )

A.2Rh t

B.

2Rh t

C.

Rh t

D.

Rh 2t

答案 B

解析 设在月球表面处的重力加速度为g 则h =12gt 2,所以g =2h t

2

飞船在月球表面附近绕月球做匀速圆周运动时有 mg =m v 2

R

所以v =gR =

2hR t 2=2Rh

t ,选项B 正确.

22.双星系统模型问题的分析与计算

1.双星系统模型的特点:

(1)两星都绕它们连线上的一点做匀速圆周运动,故两星的角速度、周期相等. (2)两星之间的万有引力提供各自做匀速圆周运动的向心力,所以它们的向心力大小相等;

(3)两星的轨道半径之和等于两星间的距离,即r 1+r 2=L . 2.双星系统模型的三大规律: (1)双星系统的周期、角速度相同. (2)轨道半径之比与质量成反比.

(3)双星系统的周期的平方与双星间距离的三次方之比只与双星的总质量有关,而与双星个体的质量无关.

例6 如图6所示,质量分别为m 和M 的两个星球A 和B 在 引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中 心之间的距离为L .已知A 、B 的中心和O 三点始终共线, A 和B 分别在O 的两侧.引力常量为G . (1)求两星球做圆周运动的周期;

图6

(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为5.98×1024 kg 和7.35×1022 kg.求T 2与T 1两者平方之比.(结果保留3位小数)

解析 (1)设两个星球A 和B 做匀速圆周运动的轨道半径分别为r 和R ,相互作用的万有引力大小为F ,运行周期为T .根据万有引力定律有:F =G Mm (R +r )2

由匀速圆周运动的规律得 F =m (2πT )2r

② F =M (2πT

)2R

③ 由题意有L =R +r

④ 联立①②③④式得T =2π

L 3

G (M +m )

(2)在地月系统中,由于地月系统旋转所围绕的中心O 不在地心,由题意知,月球做圆周

运动的周期可由⑤式得出 T 1=2π

L ′3

G (M ′+m ′)

式中,M ′和m ′分别是地球与月球的质量,L ′是地心与月心之间的距离.若认为月球在地球的引力作用下绕地心做匀速圆周运动,则 G M ′m ′L ′2

=m ′(2πT 2)2L ′

式中,T 2为月球绕地心运动的周期.由⑦式得 T 2=2π

L ′3

GM ′

由⑥⑧式得(T 2

T 1)2=1+m ′M ′

代入题给数据得(T 2

T 1)2=1.012

答案 (1)2π

L 3

G (M +m )

(2)1.012

突破训练6 (2012·重庆·18)冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的( ) A .轨道半径约为卡戎的17

B .角速度大小约为卡戎的1

7

C .线速度大小约为卡戎的7倍

D .向心力大小约为卡戎的7倍 答案 A

解析 本题是双星问题,设冥王星的质量、轨道半径、线速度分别为m 1、r 1、v 1,卡戎的质量、轨道半径、线速度分别为m 2、r 2、v 2,由双星问题的规律可得,两星间的万有引力分别给两星提供做匀速圆周运动的向心力,且两星的角速度相等,故B 、D 均错;由G m 1m 2L 2=m 1ω2r 1=m 2ω2r 2(L 为两星间的距离),因此r 1r 2=m 2m 1=17,v 1v 2=ωr 1ωr 2=m 2m 1=1

7,故A

对,C 错.

高考题组

1.(2012·广东理综·21)如图7所示,飞船从轨道1变轨至轨道2.若 飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于 在轨道1上,飞船在轨道2上的

( )

A .动能大

B .向心加速度大

图7

C .运行周期长

D .角速度小 答案 CD

解析 飞船绕中心天体做匀速圆周运动,其万有引力提供向心力,即F 引=F 向,所以GMm r 2

=ma 向=m v 2r =4π2mr T 2=mrω2,即a 向=GM r 2,E k =12m v 2=GMm

2r

,T =

4π2r 3

GM

,ω= GM r 3

(或用公式T =2π

ω求解).因为r 1E k2,a 向1>a 向2,T 1ω2,选项C 、D

正确.

2.(2012·北京·18)关于环绕地球运动的卫星,下列说法正确的是

( )

A .分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期

B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率

C .在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同

D .沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合 答案 B

解析 根据开普勒第三定律,a 3

T 2=恒量知,当圆轨道的半径R 与椭圆轨道的半长轴a 相

等时,两卫星的周期相等,故选项A 错误;卫星沿椭圆轨道运行且从近地点向远地点运行时,万有引力做负功,根据动能定理知,动能减小,速率减小;从远地点向近地点移动时动能增加,速率增大,且两者具有对称性,故选项B 正确;所有同步卫星的运行周期相等,根据G Mm r 2=m (2π

T )2r 知,同步卫星轨道的半径r 一定,故选项C 错误;根据卫

星做圆周运动的向心力由万有引力提供,可知卫星运行的轨道平面过某一地点时,轨道平面必过地心,但轨道平面不一定重合,故北京上空的两颗卫星的轨道平面可以不重合,选项D 错误.

3.(2012·山东理综·15)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成

功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.则v 1

v 2等于

( )

A.

R 31

R 32

B. R 2R 1

C.R 22

R

21

D.R 2

R 1

答案 B

解析 “天宫一号”运行时所需的向心力由万有引力提供,根据G Mm R 2=m v 2

R 得线速度v

GM

R ,所以v 1v 2

= R 2

R 1

,故选项B 正确,选项A 、C 、D 错误. 4.(2011·北京理综·15)由于通信和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的

( )

A .质量可以不同

B .轨道半径可以不同

C .轨道平面可以不同

D .速率可以不同

答案 A

解析 同步卫星运行时,万有引力提供向心力,GMm r 2=m 4π2T 2r =m v 2r ,故有r 3T 2=GM

4π2,v =

GM

r

,由于同步卫星运行周期与地球自转周期相同,故同步卫星的轨道半径大小是确定的,速度v 也是确定的,同步卫星的质量可以不同.要想使卫星与地球自转同步,轨道平面一定是赤道平面.故只有选项A 正确. 模拟题组

5.如图8所示,某颗天文卫星飞往距离地球约160万千米的 第二拉格朗日点(图中L 2),L 2点处在太阳与地球连线的外 侧,在太阳和地球引力的共同作用下,卫星在该点能与地 球同步绕太阳运动(视为圆周运动),且时刻保持背对太阳 和地球的姿势,不受太阳的干扰而进行天文观测.不考虑

图8

其他星球影响,下列关于工作在L 2点的天文卫星的说法中正确的是

( )

A .将它从地球上发射到L 2点的发射速度大于7.9 km/s

B .它绕太阳运行的周期比地球绕太阳运行的周期长

C .它绕太阳运行的线速度比地球绕太阳运行的线速度大

D .它绕太阳运行的向心加速度比地球绕太阳运行的向心加速度大 答案 ACD

解析 卫星的发射速度一定大于7.9 km/s ,选项A 对.由于卫星和地球同步,因此它们

的周期相同,角速度ω相同,由v =rω知,v 卫>v 地,选项C 对,B 错.由a =rω2知选项D 对.

6.国防科技工业局在2012年7月30日宣布,“嫦娥三号”将于2013年下半年择机发射.我国已成功发射了“嫦娥二号”探月卫星,该卫星在环月圆轨道绕行n 圈所用的时间为t ;月球半径为R 0,月球表面处重力加速度为g 0.

(1)请推导出“嫦娥二号”卫星离月球表面高度的表达式;

(2)地球和月球的半径之比为R R 0=4,表面重力加速度之比为g

g 0=6,试求地球和月球的密

度之比.

答案 (1) 3g 0R 20t

24π2n 2-R 0 (2)32

解析 (1)由题意知,“嫦娥二号”卫星的周期为 T =t n

设卫星离月球表面的高度为h ,由万有引力提供向心力得: G Mm (R 0+h )

2=m (R 0+h )(2πT )2 又:G Mm ′R 2

0=m ′g 0

联立解得:h = 3g 0R 20t 2

4π2n 2

-R 0

(2)设星球的密度为ρ,由G Mm ′

R 2=m ′g 得GM =gR 2

ρ=M V =M 43πR 3

联立解得:ρ=3g

4G πR

设地球、月球的密度分别为ρ0、ρ1,则: ρ0ρ1=g ·R 0g 0·R

将R R 0=4,g

g 0=6代入上式,解得: ρ0ρ1=32

(限时:45分钟)

?题组1 天体质量和密度的计算

1.(2012·福建理综·13)“嫦娥二号”是我国月球探测第二期工程的先导星.若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期为T ,已知引力常量为G ,半径为R 的球体体积公式V =4

3πR 3,则可估算月球的

( )

A .密度

B .质量

C .半径

D .自转周期

答案 A

解析 对“嫦娥二号”由万有引力提供向心力可得:GMm R 2=m 4π2

T 2R ,故月球的质量M =

4π2R 3

GT 2

,因“嫦娥二号”为近月卫星,故其轨道半径为月球的半径R ,但由于月球半径未知,故月球质量无法求出,月球质量未知,则月球的半径R 也无法求出,故B 、C 项均错;月球的密度ρ=M V =4π2R 3

GT 2

43

πR 3=3π

GT

2,故A 正确.

2.银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动. 由天文观测得其周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知万有引力常量为G .由此可求出S 2的质量为

( )

A.4π2r 2(r -r 1)GT 2

B.4π2r 31GT 2

C.4π2r 3

GT 2

D.4π2r 2r 1GT 2

答案 D

解析 设S 1、S 2两星体的质量分别为m 1、m 2,根据万有引力定律和牛顿第二定律得 对S 1有G m 1m 2r 2=m 1(2π

T )2r 1

解得m 2=4π2r 2r 1

GT 2

所以正确选项是D.

题组2 卫星运行参量的分析与计算

3.(2012·江苏·8)2011年8月“嫦娥二号”成功进入了环绕“日地拉格 朗日点”的轨道,我国成为世界上第三个造访该点的国家.如图1 所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处 于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动, 则此飞行器的

( ) 图1

A .线速度大于地球的线速度

B .向心加速度大于地球的向心加速度

C .向心力仅由太阳的引力提供

D .向心力仅由地球的引力提供 答案 AB

解析 飞行器与地球同步绕太阳做圆周运动,所以ω飞=ω地,由圆周运动线速度和角速度的关系v =rω得v 飞>v 地,选项A 正确;由公式a =rω2知,a 飞>a 地,选项B 正确;飞行器受到太阳和地球的万有引力,方向均指向圆心,其合力提供向心力,故C 、D 选项错.

4.(2012·四川·15)今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×107 m .它与另一颗同质量的同步轨道卫星(轨道半径为4.2×107 m)相比 ( )

A .向心力较小

B .动能较大

C .发射速度都是第一宇宙速度

D .角速度较小 答案 B

解析 由题知,中圆轨道卫星的轨道半径r 1小于同步卫星的轨道半径r 2,卫星运行时的向心力由万有引力提供,根据F 向=G Mm

r 2知,两卫星的向心力F 1>F 2,选项A 错误;根

据G Mm r 2=m v 2

r =mω2r ,得环绕速度v 1>v 2,角速度ω1>ω2,两卫星质量相等,则动能E k1>E k2,

故选项B 正确,选项D 错误;根据能量守恒,卫星发射得越高,发射所需速度越大,第一宇宙速度是发射卫星的最小速度,因此两卫星的发射速度都大于第一宇宙速度,且v 01

5.(2012·天津理综·3)一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的1

4,不考虑卫星质量的变化,则变轨前、后卫星的( )

A .向心加速度大小之比为4∶1

B .角速度大小之比为2∶1

C .周期之比为1∶8

D .轨道半径之比为1∶2 答案 C

解析 根据E k =1

2

m v 2得v =

2E k m ,所以卫星变轨前、后的速度之比为v 1v 2=21.根据G Mm

r

2=m v 2r ,得卫星变轨前、后的轨道半径之比为r 1r 2=v 2

2

v 21=14,选项D 错误;根据G Mm r 2=ma ,

得卫星变轨前、后的向心加速度大小之比为a 1a 2=r 2

2

r 21

=161,选项A 错误;根据G Mm r 2=mω2r ,

得卫星变轨前、后的角速度大小之比为ω1

ω2

r 32

r 31=81,选项B 错误;根据T =2πω

,得卫星变轨前、后的周期之比为T 1T 2=ω2ω1=1

8

,选项C 正确.

6.(2010·北京理综·16)一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面的压力恰好为零,则天体自转周期为( ) A.????4π3Gρ12 B.????34πGρ12 C.????πGρ12

D.????3πGρ12

答案 D

解析 物体随天体一起自转,当万有引力全部提供向心力时,物体对天体的压力恰好为零,则G Mm R 2=m 4π2T 2R ,又ρ=M 43πR 3

,所以T =????3πGρ12,D 正确. 题组3 宇宙速度和重力加速度的求解

7.假设地球同步卫星的轨道半径是地球半径的n 倍,则

( )

A .同步卫星运行速度是第一宇宙速度的1

n 倍

B .同步卫星的运行速度是第一宇宙速度的

1n

倍 C .同步卫星的向心加速度是地球表面重力加速度的1

n

D .同步卫星的运行速度是地球赤道上物体随地球自转速度的n 倍 答案 BD

解析 对卫星都有:GMm

r 2=m v 2

r

,v =

GM

r

,所以v 同v = R r 同= 1

n

,B 对,A 错;因为GMm r 2=ma 向,所以a 向=GM (nR )2,而mg =GMm R 2,g =GM R 2,故a 同g =R 2(nR )2=1

n 2,C 错;由v =rω知,v 同v 地=nR

R

=n ,故D 对.

8.2011年9月29日,“天宫一号”顺利升空,在离地面高度343 km 的轨道上做匀速圆周运动.2012年2月25日,我国在西昌卫星发射中心用长征三号丙运载火箭,成功将第十一颗北斗导航卫星送入太空预定轨道.这是一颗地球静止轨道卫星,是我国当年发射的首颗北斗导航系统组网卫星.下列关于这两颗卫星的说法正确的是

( )

A .“天宫一号”的运行周期大于北斗导航卫星的运行周期

B .“天宫一号”和北斗导航卫星上携带的物体都处于完全失重状态

C .“天宫一号”的环绕速度大于第一宇宙速度

D .北斗导航卫星的向心加速度比地球赤道表面的重力加速度小 答案 BD

解析 “天宫一号”的轨道半径要小于同步卫星的轨道半径,因此T 天

r 2知D 对.

题组4 卫星变轨问题的分析

9.如图2所示,将卫星发射至近地圆轨道1,然后再次点火,将 卫星送入同步轨道3.轨道1、2相切于Q,2、3相切于P 点, 则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的 是

( )

A .卫星在轨道2上经过Q 点时的速度小于它在轨道2上经过

图2

P 点时的速度

B .卫星在轨道1上经过Q 点时的加速度等于它在轨道2上经过Q 点时的加速度

C .卫星在轨道1上的向心加速度小于它在轨道3上的向心加速度

D .卫星在轨道3上的角速度小于在轨道1上的角速度 答案 BD

解析 本题考查人造卫星的知识.由开普勒第二定律可知,卫星在椭圆轨道的近地点速度大,A 错;卫星在同一点受到的万有引力相同,加速度也相同,B 对;由a =G M

r 2,r

越小,a 越大,C 错;由G Mm

r

2=mω2r ,卫星在轨道3上的半径大,故角速度小,D 对.

高考物理万有引力与航天专题训练答案

高考物理万有引力与航天专题训练答案 一、高中物理精讲专题测试万有引力与航天 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

(完整版)万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

万有引力与航天试题附答案

万有引力与航天单元测试题 一、选择题 1.关于日心说被人们接受的原因是( ) A.太阳总是从东面升起,从西面落下 B.若以地球为中心来研究的运动有很多无法解决的问题 C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单 D.地球是围绕太阳运转的 2.有关开普勒关于行星运动的描述,下列说法中正确的是( ) A.所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上 B.所有的行星绕太阳运动的轨道都是圆,太阳处在圆心上 C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等 D.不同的行星绕太阳运动的椭圆轨道是不同的 3.关于万有引力定律的适用范围,下列说法中正确的是( ) A.只适用于天体,不适用于地面物体 B.只适用于球形物体,不适用于其他形状的物体 C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间 4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的是( ) A.地球公转的周期及半径B.月球绕地球运行的周期和运行的半径 C.人造卫星绕地球运行的周期和速率D.地球半径和同步卫星离地面的高度 5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度和周期变化情况是( ) A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小 C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大 6.一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( ) A.6倍B.4倍C.25/9倍D.12倍 7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )

届高中高考物理一轮总结复习计划规划方案.doc

云师大附属丘北中学2018 年高考物理一轮复习计划 高三物理组 2018 届高三复习,结合我校驾驭式自主高效课堂的教学实际,计划划分为 三轮。第一轮地毯式复习,第二轮板块复习(专题)60 天集训,第三轮“强化1+1 ”高考仿真大综合套题复习、第四轮模块短板补缺。 第一轮地毯式复习:以考点过关为目标,并构建单元知识网络,主要使学生 能掌握基本概念、基本规律、基本物理现象、基本实验、基本题型和基本的分析 问题和解决问题的方法。 第二轮板块复习60 天集训:以高中物理的重点专题为主线,通过力与运动,功与能,动量和能量,电磁场,电路与电磁感应,原子物理,实验,热学等专题,主要侧重于综合分析和训练,使学生能对各板块知识间联系和各种综合题型进行全 面复习和训练,进一步提高解决综合问题的能力。 第三轮“强化1+1 ”高考仿真大综合套题复习 第四轮:“调整1+1 ”旨在查漏补缺和调整应试状态。 一、高考物理一轮复习目标、宗旨 1、通过复习帮助学生建立并完善高中物理学科知识体系,构建系统知识网络; 2、深化概念、原理、定理定律的认识、理解和应用,促成学科科学思维, 培养物理学科科学方法。 3、结合各知识点复习,加强习题训练,提高分析解决实际问题的能力,训 练解题规范和答题速度; 4、提高学科内知识综合运用的能力与技巧,能灵活运用所学知识解释、处 理现实问题。 5、最终高考目标:1、 2 班平均分达到60 分 3、 4 班平均分达到50 分

二、第一轮复习时间具体分配(自2017.6.18-2018.1.18 ) 周次复习内容具体时间 1 第一讲 : 直线运动、第二讲匀变速直线运动2017.06.18 1. 关于运动的描述 (2 课时 ) 至 2. 匀变速运动的规律 (5 课时 ) 2017.06.28 3. 用图象描述直线运动 (3 课时 ) 4 章节检测( 4 课时 ) 2 第三讲 : 研究物体间的相互作用2017.06.29 至 1 两种常见的力 (4 课时 ) 2017.07.06 1

高中物理万有引力与航天专题训练答案及解析

高中物理万有引力与航天专题训练答案及解析 一、高中物理精讲专题测试万有引力与航天 1.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求: (1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期. 【答案】(1) R=m M M +L, r=m M m +L,(2)()3L G M m + 【解析】 (1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+ 两星做圆周运动时的向心力由万有引力提供,则有:22 22244mM G mR Mr L T T ππ== 可得 R M r m = ,又因为L R r =+ 所以可以解得:M R L M m = +,m r L M m =+; (2)根据(1)可以得到:2222244mM M G m R m L L T T M m ππ==?+ 则:()()233 42L L T M m G G m M π= =++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径. 2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ; (3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .

万有引力定律与航天练习题

万有引力定律与航天 练习题 Revised on November 25, 2020

万有引力定律与航天章节练习题 一、选择题 1.如图所示,火星和地球都在围绕太阳旋转,其运行轨道是椭圆,根据开普 勒行星运动定律可知( ) A. 火星绕太阳运动过程中,速率不变 B. 火星绕太阳运行一周的时间比地球的长 C. 地球靠近太阳的过程中,运行速率将减小 D. 火星远离太阳的过程中,它与太阳的连线在相等时间内扫过的面积逐渐增大 2.经国际小行星命名委员会命名的“神舟星”和“杨利伟星”的轨道均处在 火星和木星轨道之间,它们绕太阳沿椭圆轨道运行,其轨道参数如下表。 注:AU 是天文学中的长度单位,1AU=149 597 870 700m (大约是地球到太阳的平均距离)。“神舟星”和“杨利伟星”绕太阳运行的周期分别为T 1和T 2,它们在近日点的加速度分别为a 1和a 2。则下列说法正确的是( ) A. 1212,T T a a >< B. 1212,T T a a << C. 1212,T T a a >> D. 1212,T T a a 3.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“31peg b” 的发现拉开了研究太阳系外行星的序幕。“31peg b”绕其中心恒星做匀速圆周运 动,周期大约为4天,轨道半径约为地球绕太阳运动半径的1 20,该中心恒星 与太阳的质量比约为( ) A. 1 10 B. 1 C. 5 D. 10 4.2013年6月13日,“神舟十号”与“天空一号”成功实施手控交会对接,下列关于“神舟十号”与“天空一号”的分析错误的是( ) A .“天空一号”的发射速度应介于第一宇宙速度与第二宇宙速度之间

曲线运动万有引力与航天测试题带答案

第4章曲线运动万有引力与航天 一、选择题(本大题共15小题) 1.一个物体受到恒定的合力作用而做曲线运动,则下列说法正确的是 A.物体的速率可能不变 B.物体一定做匀变速曲线运动,且速率一定增大 C.物体可能做匀速圆周运动 D.物体受到的合力与速度的夹角一定越来越小,但总不可能为零 2.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动,下列说法正确的是 图1 A.物体做曲线运动 B.物体做直线运动 C.物体运动的初速度大小是50 m/s D.物体运动的初速度大小是10 m/s 3.小船过河时,船头偏向上游与水流方向成α角,船相对静水的速度为v,其航线恰好垂直于河岸.现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是 A.增大α角,增大船速v B.减小α角,增大船速v C.减小α角,保持船速v不变 D.增大α角,保持船速v不变 4.(2011·上海市闸北调研)质量为2 kg的质点在x-y平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图2所示,下列说法正确的是

图2 A .质点的初速度为5 m/s B .质点所受的合外力为3 N C .质点初速度的方向与合外力方向垂直 D .2 s 末质点速度大小为6 m/s 5.如图3所示,甲、乙、丙三个轮子依靠摩擦转动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为 图3 A.r 1ω1r 3 B.r 3ω1 r 1 C. r 3ω1r 2 D.r 1ω1 r 2 6.如图4所示,轻杆的一端有一个小球,另一端有光滑的固定轴O.现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力.则F 图4 A .一定是拉力 B .一定是推力 C .一定等于0 D .可能是拉力,可能是推力,也可能等于0

备战2021新高考物理-重点专题-万有引力与航天(三)(含解析)

备战2021新高考物理-重点专题-万有引力与航天(三) 一、单选题 1.三颗人造地球卫星绕地球做匀速圆周运动,运行方向如图所示.已知 ,则关于三颗卫星,下列说法错误的是() A.卫星运行线速度关系为 B.卫星轨道半径与运行周期关系为 C.已知万有引力常量G,现测得卫星A的运行周期T A和轨道半径R A,可求地球的平均密度 D.为使A 与B同向对接,可对A适当加速 2.如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是() A.B,C的角速度相等,且小于A的角速度 B.B,C的线速度大小相等,且大于A的线速度 C.B,C的向心加速度相等,且大于A的向心加速度 D.B,C的周期相等,且小于A的周期 3.2020年4月24日,国家航天局宣布,我国行星探测任务命名为“天问”,首次火星探测任务命名为“天问一号”。已知万有引力常量,为计算火星的质量,需要测量的数据是() A.火星表面的重力加速度和火星绕太阳做匀速圆周运动的轨道半径 B.火星绕太阳做匀速圆周运动的轨道半径和火星的公转周期 C.某卫星绕火星做匀速圆周运动的周期和火星的半径 D.某卫星绕火星做匀速圆周运动的轨道半径和公转周期 4.一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上.用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,F N表示人对秤的压力,下面说法中正确的是()

A.g′=0 B.g′= C.F N=0 D.F N= 5.2019年11月23日8时55分,我国在西昌卫星发射中心用“长征三号“乙运载火箭,以“一箭双星”方式成功发射第50、51颗北斗导航卫星。两颗卫星均属于中圆轨道(MEO)卫星,是我国的“北斗三号”系统的组网卫星。这两颗卫星的中圆轨道(MEO)是一种周期为12小时,轨道面与赤道平面夹角为60°的圆轨道。是经过GPS和GLONASS运行证明性能优良的全球导航卫星轨道。关于这两颗卫星,下列说法正确的是() A.这两颗卫星的动能一定相同 B.这两颗卫星绕地心运动的角速度是长城随地球自转角速度的4倍 C.这两颗卫星的轨道半径是同步卫星轨道半径的 D.其中一颗卫星每天会经过赤道正上方2次 6.如图所示,a、b、c是地球大气层外圆形轨道上运行的三颗人造地球卫星,a、b质量相等且小于c的质量,则下列判断错误的是() A.b所需向心力最小 B.b、c周期相等,且大于a的周期 C.b、c向心加速度大小相等,且大于a的向心加速度 D.b、c线速度大小相等,且小于a的线速度 7.将地球看成质量均匀的球体,假如地球自转速度增大,下列说法中正确的是() A.放在赤道地面上的物体所受的万有引力增大 B.放在两极地面上的物体所受的重力增大 C.放在赤道地面上的物体随地球自转所需的向心力增大 D.放在赤道地面上的物体所受的重力增大 8.太阳系中有一颗绕太阳公转的行星,距太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是() A.2年 B.4年 C.8年 D.10年 9.若将八大行星绕太阳运行的轨迹可粗略地认为是圆,各星球半径和轨道半径如下表所示:从表中所列数据可以估算出海王星的公转周期最接近( )

第六章《万有引力与航天》测试题(含详细解答)

《万有引力与航天》测试题 一、选择题(每小题4分,全对得4分,部分对的得2分,有错的得0分,共48分。) 1.第一次通过实验比较准确的测出引力常量的科学家是( ) A . 牛顿 B . 伽利略 C .胡克 D . 卡文迪许 2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( ) A .b 、c 的线速度大小相等,且大于a 的线速度; B .b 、c 的向心加速度大小相等,且大于a 的向心加速度; C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ; D .a 卫星由于某种原因,轨道半径变小,其线速度将变大 3.宇宙飞船为了要与“和平号“轨道空间站对接,应该:( ) A.在离地球较低的轨道上加速 B.在离地球较高的轨道上加速 C.在与空间站同一高度轨道上加速 D.不论什么轨道,只要加速就行 4、 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火, 使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( ) A .卫星在轨道3上的速率大于在轨道1上的速率。 B .卫星在轨道3上的角速度小于在轨道1上的角速度。 C .卫星在轨道1上经过Q 点时的速度大于它在轨道2 上经过Q 点时的速度。 D .卫星在轨道2上经过P 点时的加速度等于它在轨道3 b a c 地球 图1

上经过P 点时的加速度 5、 宇航员在围绕地球做匀速圆周运动的空间站中会处于完全失重中,下列说法中正确的是 ( ) A.宇航员仍受重力的作用 B.宇航员受力平衡 C.宇航员受的重力正好充当向心力 D.宇航员不受任何作用力 6.某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10 m/s 的初 速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2 )( ) A .1s B . 91s C .18 1 s D . 36 1 s 7.假如地球自转速度增大,关于物体重力,下列说法正确的是( ) A 放在赤道地面上的万有引力不变 B 放在两极地面上的物体的重力不变 C 放在赤道地面上物体的重力减小 D 放在两极地面上的物体的重力增加 8、设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( ) A.零 B.无穷大 C.2 GMm R D.无法确定 9.对于质量m 1和质量为m 2的两个物体间的万有引力的表达式12 2m m F G r ,下列说法正确的是 ( ) 和m 2所受引力总是大小相等的 B 当两物体间的距离r 趋于零时,万有引力无穷大 C.当有第三个物体m 3放入之间时,m 1和m 2间的万有引力将增大 D.所受的引力性质可能相同,也可能不同 10地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物 体“飘” 起来,则地球的转速应为原来转速的( )

高考:怎样做好高考物理一轮复习及准备

高考:怎样做好高考物理一轮复习及准备 计划先搁一边,我们得先谈谈物理。 如果你都不知道物理,不懂物理,不爱物理,那你肯定也就学不好物理。 所以,我们得先谈谈怎么爱上物理。 生活处处都是物理,你要是不懂她,那你就是个土星人了,比喵星人还可怕。 初中阶段我们就学习过浮力,原来我们要是安静的躺在上海的海上,我们是沉不下去的,所以落水的你和不会游泳的你不用慌,你只需要保证美美的脸蛋露出水面朝着天看就好了,保你不死。那你要是不小心挂了呢,那只能怪你不会游泳了。“啊啊啊,老师,我要学游泳。”哈哈,把物理学好!要学会游泳,一定要向牛顿老爷爷讨教他的第三运动定律。 依然记得你很小的时候,很喜欢玩四个轮的滑轮鞋。那种踩着火轮般的翱翔,已经让你难以抑制内心的激情,加速,转弯,摔倒,呜呜呜,膝盖好疼哦。小朋友,转弯的时候,身体一定要往内倾斜哦。高一时,学了匀速圆周运动后你才发现自己膝盖上的疤留得还是有点原因的,多么痛的领悟。 感觉上面讲的都好傻。 眨巴眼,高一高二就这样过去了,感觉好对不起物理。没事,你这不还有高三么?经过高一高二基础知识的学习,想必你对高中物理所要求的核心知识都有所了解。高三还是蛮紧张的,内容多要求高,所以我们还是得做好充足的工作,来迎接即将到来的疯狂。接下去我们就来好好研究一下应该如何做好高考物理的第一轮复习及准备。 1.夯实基础,抓好基本概念和基本规律的复习。 高三物理第一轮复习要着眼于基础知识部分的理解和掌握。通过第一轮的复习和训练,全面系统地复习高中物理基本概念和规律,掌握物理概念和规律的一般应用。要严把基础关,就要认真研读课本,仔细阅读和理解课本上的每一个字、每一句话和每一幅图,认真做好每一道题。当然,打好基础并不是对概念和公式的死记硬背,而是要在理解的基础之上去记忆。在逐章逐节复习全部知识时,要注意深入理解和体会各个知识点之间的内在联系,建立知识体系,形成知识网络,使自己具备丰富、系统地物理知识,逐步体会各个知识点的地位和作用,分清主次,理解物理理论的实质。对物理概念应该从定义式、变形式、物理意义、单位、矢量性等方面进行讨论。弄清楚高中物理各个部分所涉及到的力、运动、能量的相关问题。总之,基础知识是本,是解题的依据,否则,高三物理复习将寸步难行。 2.加强练习,实现物理知识在实际情境中的应用。 同学们除了掌握基础知识基础理论之外,还需要能够运用所学的知识快速准确的解题,这就要求学生必须具备较强的分析问题和解决问题的能力。首先,同学们需要把教材中的典型例题和课后典型习题都做一遍,清楚自己所学的知识是如何在习题中使用的,掌握基本的情境分析能力和公式灵活运用的能力。审题是解题的关键一步,实际上是一个审视题意、分析解题条件的思维过程。因此,通过多解题,可以形成良好的思维习惯,如通过题意如何正确选择研究对象,如何分析并提炼出题目中所给出的物理过程、情境、模型,再去找相应的物理规律、定理、定律解答。在对状态、过程分析时一定需要画出状态过程的示意图,将抽象的文字条件形象化、具体化。这一点对于解决复杂情境物理过程时,将是一个非常重要的能力。所以,为了尽量减少错误,培养出良好的习惯,解题时可以遵循这样的思路。首先画图,把题目告诉我们的物理量分别代入情境中,建立基本物理模型,然后通过题目要求的物理量与已经构建的过程进行联系,寻找规律,思考相关的物理基础表达式,最后列出式子进行求解。适当的做题在物理学习的过程中是至关重要的,通过做题,实现对物理基础知识的深刻理解。 3.不懂就问,不给知识盲点留下任何存在的空间。 在学习物理的过程中,你不可能会一帆风顺。在你研读教材的时候,对于出现的任何一句你无法理解的表述,你都应该把它圈出来作为问题向老师问清楚。在你做练习做错了时候,而且实在是百思不得解的情况下,你也应该把试题圈好拿去问老师。学习需要一种专研精神,不懂就问就是这样一种精神,它会带动你学习的积极性,更重要的是,通过问老师,你最后成功解决了自己的理解误区或盲点,这可以算作上是一种小小的成功,它会提高你对物理的进一步的理解,更会给你带来学习物理的信心。当然,学无止境,在自己对基础知识的灵活运用之后,你应该朝着更高的方向进发,多去做做难一点综合一些的试题,就是这样,做着问,问着做,一

万有引力与航天专题

A O 万有引力与航天专题 1.【2012?湖北联考】经长期观测发现,A 行星运行的轨道半径为R 0,周期为T 0但其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔t 0时间发生一次最大的偏离.如图所示,天文学家认为形成这种现象的原因可能是A 行星外侧 还存在着一颗未知行星B ,则行星B 运动轨道半径为( ) A . 030002()2t R R t T =- B .T t t R R -=000 C . 3 20000)(T t t R R -= D .300200T t t R R -= 2.【2012?北京朝阳期末】2011年12月美国宇航局发布声明宣布,通过开普勒太空望远镜项目证实了太阳系外第一颗类似地球的、可适合居住的行星。该行星被命名为开普勒一22b (Kepler 一22b ),距离地球约600光年之遥,体积是地球的2.4倍。这是目前被证实的从大小和运行轨道来说最接近地球形态的行星,它每290天环绕着一颗类似于太阳的恒星运转一圈。若行星开普勒一22b 绕恒星做圆运动的轨道半径可测量,万有引力常量G 已知。根据以上数据可以估算的物理量有( ) A.行星的质量 B .行星的密度 C .恒星的质量 D .恒星的密度 3.【2012?江西联考】如右图,三个质点a 、b 、c 质量分别为m 1、m 2、 M (M>> m 1,M>> m 2)。在c 的万有引力作用下,a 、b 在同一平面内 绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a ∶T b =1∶k ; 从图示位置开始,在b 运动一周的过程中,则 ( ) A .a 、b 距离最近的次数为k 次 B .a 、b 距离最近的次数为k+1次 C .a 、b 、c 共线的次数为2k D .a 、b 、c 共线的次数为2k-2 4.【2012?安徽期末】2011年8月26日消息,英国曼彻斯特大学的天文学家认为,他们已经在银河系里发现一颗由曾经的庞大恒星转变而成的体积较小的行星,这颗行星完全

必修二万有引力与航天知识点总结完整版

第六章 万有引力与航天知识点总结 一. 万有引力定律: ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们 之间的距离r 的二次方成反比。即: 其中G =6. 67×10 -11N ·m 2/kg 2 ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 二. 重力和地球的万有引力: 1. 地球对其表面物体的万有引力产生两个效果: (1)物体随地球自转的向心力: F 向=m ·R ·(2π/T 0)2,很小。 由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。 (2)重力约等于万有引力: 在赤道处:mg F F +=向,所以R m R GMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m R GMm 22自ω>>,所以2R GM g =。 地球表面的物体所受到的向心力f 的大小不超过重力的0. 35%,因此在计算中可以认为万有引力和重 力大小相等。如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小, 就不能再认为重力等于万有引力了。如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰 好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。 在地球的同一纬度处,g 随物体离地面高度的增大而减小,即21)('h R Gm g += 。 强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。 2. 绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。 即:G ·M ·m /R 2=m ·a 向=mg ∴g =a 向=G ·M /R 2 122 m m F G r =2 R Mm G mg =

高考物理一轮复习资料.doc

高考物理一轮复习资料 对于高考物理的复习,你有什么好方法呢?下面是我网络整理的以供大家学习。 (一) 一、动能 如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能. Ek=mv2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。 二、动能定理 做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量。 1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2."增量"是末动能减初动能.EK>0表示动能增加,EK<0表示动能减小。 3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等。 4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和。

5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理。 6.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用。 7.对动能定理中的位移与速度必须相对同一参照物。 (二) 一、弹性势能 1、定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,叫做弹性势能。 说明: 1、弹性形变弹力的相互作用 2、由于整个物体都发生了形变,各部分之间都有弹力 3、这种能量归结为势能 对比:重力势能是由于有重力的相互作用,具有对外做功本领而具有的一种能量 引导:弹性势能和重力势能一样大小都和相对位置有关。下面我们就来研究弹性势能的大小,我们研究最简单的,弹簧的弹性势能大小。 2、研究弹性势能的出发点 弹性势能与重力势能都是物体凭借其位置而具有的能。在讨论重力势能

万有引力与航天公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二. 1.2/三.1. 2.1687⑴.⑵.⑶.a. b.当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c.认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物 体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的 性质无关,与周期及有无其它物体无关. (5)引力常数G :

①大小:kg m N G 2 2 11 /67.610??=-,由英国科学家卡文迪许利用扭秤测出 ②意义: 表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 1011 67.6-? 四.两条思路:即解决天体运动的两种方法 1.万有引力提供向心力:F F 向万=即:22 2224n Mm v F G ma m mr mr r r T πω=====万 2.天体对其表面物体的万有引力近似等于重力: 即2gR GM =(又叫黄金代换式) 注意: 五.1.a.c. 2.3.方法一:根据转动天体运动周期T 、转动半径r 和中心天体半径R 计算: R T r G 3 2 33πρ= (适合于有行星、卫星转动的中心天体) 方法二:根据中心天体半径R 和其表面的重力加速度g 计算: GR g πρ43=(适合于没有行星、卫星转动的天体) 4.计算第一宇宙速度(环绕速度) 简单说就是卫星或行星贴近中心天体表面的飞行速度,这时卫星或行星高度忽略r ≈R 方法一。根据中心天体质量M 和半径R 计算: 由→=R m Mm G v R 2 2 R GM v =

2019-2020高考物理一轮复习专题1

——教学资料参考参考范本——2019-2020高考物理一轮复习专题1 ______年______月______日 ____________________部门 一.

二.选择题 1.汽车刹车后做匀减速直线运动,经3s后停止,对这一运动过程,下列说法正确的有 A. 这连续三个1s的初速度之比为 B. 这连续三个1s的平均速度之比为 C. 这连续三个1s发生的位移之比为 D. 这连续三个1s的速度改变量之比为 【参考答案】ACD 2.如图所示,完全相同的三个木块并排固定在水平面上,一子弹以速度v水平射入,若子弹在木块中做匀减速运动,且穿过第三块木块后速度恰好为零则子弹依次射入每块木块时的速度比和穿过每块木块所用的时间比正确的是

A. :::2:1 B. :::: C. :::: D. ::::1 【参考答案】D 则:子弹依次穿过321三木块所用时间之比::::: 得:子弹依次穿过123三木块所用时间之比:::::1 设子弹穿过第三木块所用时间为1秒,则穿过3,2两木块时间为:, 穿过3,2,1三木块时间为: 则:子弹依次穿过3,2,1三木块时速度之比为:1::,所以,子弹 依次穿过1,2,3三木块时速度之比为:::1; 故D正确,ABC错误;. 3.小物块以一定的初速度自光滑斜面的底端a点上滑,最远可达b点,

e为ab的中点,如图所示,已知物体由a到b的总时间为,则它从a 到e所用的时间为 A. B. C. D. 【参考答案】D

4.如图所示,一小滑块沿足够长的斜面以初速度v向上做匀减速直线运动,依次经A,B,C,D到达最高点E,已知,,滑块从A到C和从C到D所用的时间都是设滑块经C时的速度为,则 A. 滑块上滑过程中加速度的大小为 B. C. D. 从D到E所用时间为4s 【参考答案】AD 5.一小物体以一定的初速度自光滑斜面的底端a点上滑,最远可达b 点,e为ab的中点,已知物体由a到e的时间为t0,则它从e经b再返回e所需时间为()

万有引力与航天重点知识归纳

r G Mm = mg ? g = GM ;在地球表面高度为 h 处: (R + h) 2 (R + h) 2 Mm = mg ? g = = 4 , r 万有引力与航天重点知识归纳 考点一、万有引力定律 1. 开普勒行星运动定律 (1)第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2)第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3)第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: a 3 T 2 = k 。其中 k 值与太阳有关,与行星无关。 (4)推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星 旋转时, a 3 = k ,但 k 值不同,k 与行星有关,与卫星无关。 T 2 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为 v 与ω不变,行星或卫星做匀速圆周运动; ③ R 3 = k ,R ——轨道半径。 T 2 2. 万有引力定律 (1)内容:万有引力 F 与 m 1m 2 成正比,与 r 2 成反比。 (2)公式: F = G m 1m 2 ,G 叫万有引力常量, G = 6.67 ? 10 -11 N ? m 2 / k g 2 。 r 2 (3)适用条件:①严格条件为两个质点;②两个质量分布均匀的球体, 指两球心间的距离;③一个均匀 球体和球外一个质点,r 指质点到球心间的距离。 (4)两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力 mg ,另一个是 物体随地球自转所需的向心力 f ,如图所示。 ①在赤道上,F=F 向+mg ,即 mg = G Mm - m ω 2 R ; R 2 ②在两极 F=mg ,即 G Mm = mg ;故纬度越大,重力加速度越大。 R 2 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上, R 2 R 2 G GM ,所以 g = h h h R 2 (R + h ) 2 g ,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法: G Mm = mr ( 2π ) 2 ? M = 4π 2 r 3 ,再根据 r 2 T GT 2 V M 3πr 3 π R 3 , ρ = ? ρ = 3 V GT 2 R 3 ,当 r=R 时, ρ = 3π GT 2 2.g 、R 法: G Mm = mg ? M = R 2 g R 2 G ,再根据V = 4 πR 3 ρ = M ? ρ = 3g 3 V 4πGR 3.v 、r 法: G Mm = m v 2 ? M = rv 2 r 2 r G 4.v 、T 法: G Mm = m v 2 , G Mm = mr ( 2π ) 2 ? M = v 3 T r 2 r 2 T 2πG

《万有引力与航天》测试题含答案#(精选.)

《万有引力与航天》单元测试 一、选择题 1.星球上的物体脱离星球引力所需的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的1 6 ,不计其他星球的影响,则该星球的第二宇宙速度为( ) A.gr B. 16 gr C. 1 3 gr D.13 gr 解析:由题意v 1=g ′r = 1 6 gr ,v 2=2v 1= 1 3 gr ,所以C 项正确. 答案:C 2.太阳能电池是将太阳能通过特殊的半导体材料转化为电能,在能量的利用中,它有许多优点,但也存在着一些问题,如受到季节、昼夜及阴晴等气象条件的限制.为了能尽量地解决这些问题,可设想把太阳能电池送到太空中并通过一定的方式让地面上的固定接收站接收电能,太阳能电池应该置于( ) A .地球的同步卫星轨道 B .地球大气层上的任一处 C .地球与月亮的引力平衡点 D .地球与太阳的引力平衡点 解析:太阳能电池必须与地面固定接收站相对静止,即与地球的自转同步.

答案:A 3.据媒体报道,“嫦娥”一号卫星绕月工作轨道为圆轨道,轨道距月球表面的高度为200 km ,运行周期为127 min.若要求出月球的质量,除上述信息外,只需要再知道( ) A .引力常量和“嫦娥”一号的质量 B .引力常量和月球对“嫦娥”一号的吸引力 C .引力常量和地球表面的重力加速度 D .引力常量和月球表面的重力加速度 解析:对“嫦娥”一号有G Mm (R +h )2=m 4π2T 2(R +h ),月球的质量为M =4π2GT 2(R +h )3,在月球表面g =G M R 2,故选项D 正确. 答案:D 4.地球同步卫星轨道半径约为地球半径的6.6倍,设月球密度与地球相同,则绕月心在月球表面附近做圆周运动的探月探测器的运行周期约为( ) A .1 h B .1.4 h C .6.6 h D .24 h 解析:因月球密度与地球的相同,根据ρ=m 4πR 3/3,可知m 地m 月=R 3 地R 3月 , 又Gm 地m 卫(6.6R 地)2 =m 卫4π2T 2卫×6.6R 地,Gm 月m 探R 2月=m 探4π2 T 2探R 月,已知T 卫=24 h ,联立解得T 探≈1.4 h. 答案:B 5.

万有引力与航天专题复习

万有引力与航天专题 复习 Revised on November 25, 2020

万有引力与航天 一、行星的运动 1、 开普勒行星运动三大定律 ①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 ②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 推论:近日点速度比较快,远日点速度比较慢。 ③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等。 即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。 推广:对围绕同一中心天体运动的行星或卫星,上式均成立。K 取决于中心天体的质量 例1. 据报道,美国计划从2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球沿椭圆轨道运行时,在近地点A 的速率 (填“大于”“小于”或“等于”)在远地点B 的速率。 例2、宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( ) 年 年 年 年 二、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正 比,与它们之间的距离r 的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 例3.设地球的质量为M ,赤道半径R ,自转周期T ,则地球赤道上质量为m 的物体所受重力的大小为(式中G 为万有引力恒量) (2)计算重力加速度 3 2a k T =2Mm F G r =1122 6.6710/G N m kg -=??12 2m m F G r =2R Mm G mg =

相关主题
文本预览
相关文档 最新文档