当前位置:文档之家› 2.5KW电磁感应加热电源使用手册

2.5KW电磁感应加热电源使用手册

2.5KW电磁感应加热电源使用手册
2.5KW电磁感应加热电源使用手册

电磁感应加热系统电路设计_宋国梅

电磁感应加热系统电路设计 * 宋国梅,王永涛 (潍坊学院,山东 潍坊 261061)摘 要:电磁感应加热技术在家电等行业具有广泛的应用。分析了电磁感应加热技术的工作原理,对系统整体功能构成框图进行了研究,设计了主电路结构图和EM I 滤波器电路;系统设计完成了电磁感应加热系统的基本功能,实现了系统的性能设定指标。 关键词:单片机;电磁感应;EM I 滤波 中图分类号:T P212 文献标识码:A 文章编号:1671-4288(2010)04-0034-03 电磁感应加热技术是一种新型的加热技术,它利用高频电加热原理,将交流电转化为高频电流,产生高频磁场,当磁场内磁力线通过绝缘板作用在铁质容器外壳时,磁力线被切割,产生大量小涡流,使铁质容器的自身迅速发热,从而达到加热的目的。它较目前家电中常用的电热丝加热技术、远红外加热技术、微波加热技术等具有无可比拟的优越性。 电磁感应加热技术在热效率、功能、高效节能、电磁辐射等方面是当今家电设计领域中新型的技术。它弥补了电热丝加热技术和微波加热技术不能用在烹饪等领域的不足,也弥补了微波加热技术辐射强的缺点。 1 电磁感应加热的基本原理 图1是最简单的一种变压器电路模型,其初级线圈和次级线圈间功率、电压和电流关系分别满足公式 (1)、公式(2)和公式(3),其中符号P 表示系统的总功率,U 1、I 1、N 1分别表示初级线圈的电压、电流和匝数,U 2、I 2、N 2分别表示次级线圈的电压、电流和匝数。这里,忽略漏磁电流的影响,初级线圈与次级线圈的损耗均由绕组的电阻引起,当次级绕组为短路时,由于负载电流(次级绕组的电流)增大而产生热损耗,如图2所示。由能量守恒定律可知,电源提供的能量与初级线圈和次级线圈的总损耗相等。 图1 一般形式的变压器 图2 次级短路的变压器 P 1=U 1*I 1=U 2*I 2 (1)U 1U 2=N 1N 2 (2)I 1I 2=-N 2N 1(3) 由于电磁感应加热的基本目的是使次级线圈产生的热量最大,因此,感应加热线圈与负载之间的缝隙要设计的足够小,次级线圈要由低阻抗且高渗透性特性的材料制成。非铁金属或不含铁的金属由于其高阻抗和低渗透性会破坏能量的功效,通常不被采用。因此,对于电磁感应加热系统,铸铁、不锈钢等材料能满足上述要求,而陶瓷、玻璃、铝、铜等材料则不能满足要求。 34 第10卷第4期 潍坊学院学报 V ol.10N o.42010年8月 Jo ur nal of W eifang U niv ersity A ug.2010 *收稿日期:2009-12-16 作者简介:宋国梅(1963-),女,山东潍坊人,潍坊学院研究实习员。

新型高效变频电磁感应加热技术

新型高效变频电磁感应加热技术 一、所属行业:塑料橡胶制造行业等 二、技术名称:新型高效变频电磁感应加热技术 三、适用范围:工业领域加热,特别适用于塑料橡胶制造加工,石油化工、医药食品、染整服装等加热。 四、技术内容: 1.技术原理 通过内部整流滤波电路将市电(50Hz/220v/380v)的交流电变成直流电,再经过PWM(技术核心)控制电路将直流电转换成频率为20-30KHz的高频高压电,高速变化的电流通过加热线圈会产生高速变化的磁场,当磁场内的磁力线通过被加热金属物体(导磁导电物体)时,会在被加热金属物体内产生无数的小涡流,从而使被加热体自身高速发热。是一种新型高效、环保节能的加热方式。 2.关键技术 PWM控制电路及大功率IGBT元器件。 3.工艺流程 五、主要技术指标:

变频电磁加热器与传统加热器比较: 1、热效率95%以上,节电30%-60%。 2、装机容量(功率)可减少40%,大大减少电网负荷。 3、功率密度不受限制,加热温度可以达到600度以上,甚至可达上千度。 4、加热迅速及时,温度控制实时准确。 六、技术应用情况: XX电磁科技有限公司自主开发“工业微电脑变频电磁加热器”已被国家知识产权局授予实用新型专利技术。这一技术已在全国各地推广应用3年,节能效果较为明显。 七、典型用户及投资效益: XX科技有限公司、XX GROUP CO.LTD等。 八、推广前景和节能潜力: 就塑料加工行业而言,中国目前已经成为仅次于美国的第二大国,2008年规模以上企业塑料制品年生产量达37138Kt(2009中国塑料工业年鉴),全国现有塑料生产机械约160万套,加热部分的电容量就达2000万千瓦,全年用电量为600亿千瓦时,且每年仍以15%速度递增。若所有的设备都采用该项节能技术,按最少节能30%计算,全国每年可节约用电180亿千瓦时。

中频电磁感应加热器设计

摘要 本文以感应加热为研究对象,简要介绍了感应加热的基本原理和特点,阐述了感应加热技术的现状及其发展趋势。本文主要研究了感应加热器的设计方法。感应加热器是利用工件中的涡流的焦耳效应将工件加热,这种加热方式具有效率高、控制精确、污染少等特点,在工业生产中得到了广泛的应用。如何设置感应线圈的参数使之满足被加热工件中性能要求普遍关注的问题。 传统的设计方法是利用线圈在整个电路中的等效电阻地位,利用一系列电磁学公式计算出线圈的性能参数。然而这种基于实验的系统设计方法却耗时费力,并且测量成本高。因此,近似模拟方法对于感应加热器的设计和研究具有重要意义。 本文的主要工作是建立感应加热器的近似设计方法。从感应加热理论的一系列经过实验数据修正过的理论曲线为依据,根据工艺要求得出相关物理参数,并通过计算得到感应器的设计参数。 关键词: 第一章绪论 1.1 国内外感应加热的发展与现状 随着现代科学技术的发展,对机械零件的性能和可靠性要求越来越高,金属零件的性能和质量除材料成分特新外,更与其加热技术密不可分。例如,加热速度的快慢不仅影响生产效率而且影响产品的氧化程度,局部温度过冷或过热可能导致产品变形甚至损坏等。由于感应加热具有热效率高,便于控制等优点,目前在金属材料加工,处理等方面得到广泛应用。 在工业发达国家,感应加热研究起步较早,应用也更为广泛。1890年瑞士技术人员发明了第一台感应熔炼炉——开槽式有芯炉,1916年美国人发明了闭槽式有芯炉,感应加热技术开始进入实用化阶段。1966年,瑞士和西德开始利用可控硅半导体器件研制感应加热装置。从此感应加热技术开始飞速发展,并且被广泛用于生产活动中。 在我国,感应加热技术起步比较晚,与世界发达国家相比存在较大的差距。直到80年代

SG3525调频控制的感应加热电源

SG3525调频控制的感应加热电源 文件大小:更新时间:2012.08.11 下载地址:DOWNLOAD 感应加热技术具有加热温度高、加热效率高、速度快、加热温度容易控制、易于实现机械化、自动化、无空气污染等优点,现在感应加热电源已广泛用于金属熔炼、透热、热处理和焊接等工业过程。 根据功率调节量的不同感应加热电源有多种调功方式,调频调功是通过改变逆变器工作频率从而改变负载输出阻抗以达到调节输出功率的目的[1]。这种调功方式控制比较简单,可以对电路的工作频率进行直接控制,而且能对功率连续调整。本文正是基于调频调功这种方式,由PWM控制芯片SG3525控制实现的加热电源。 2.主电路拓扑结构和控制原理: 2.1 主电路结构: 本文设计的感应加热电源为串联谐振式全桥IGBT逆变电源,其逆变主电路结构如图1所示。输入采用三相AC/DC不控整流,输出采用负载串联谐振式全桥DC/AC逆变电路。整流输出的电压经高压大电容C1滤波,逆变器主开关器件Q1、Q2、Q3、Q4为IGBT,D1、D2、D3、D4为反并联二极管。

图1 主电路结构图 2.2控制原理 调频控制的原理就是:通过改变逆变器开关频率来改变输出阻抗以达到调节输出功率的目的。串联谐振等效电路图如图2所示。 图2 负载等效电路图

负载等效阻抗为Z=1/jωC +jωL+R ;则|Z|= = ,其中f=1/(2 π)谐振频率。f=f0时,负载等效阻抗最小,|Z|=R,此时功率输出最大;f >f0时,负载呈感性,且频率越大感抗越大,功率减小;f

电磁感应加热技术的发展

电磁感应加热技术的发展 磁感应加热来源于法拉第发现的电磁感应现象,也就是交变的电流会在导体中产生感应电流,从而导致导体发热。1890年瑞典技术人员发明了第一台感应熔炼炉——开槽式有芯炉,1916年美国人发明了闭槽有芯炉,从此感应加热技术逐渐进入实用化阶段。 20世纪电力电子器件和技术的飞速发展,极大地促进了感应加热技术的发展。 1957年,美国研制出作为电力电子器件里程碑的晶闸管,标志着现代电力电子技术的开始,也引发了感应加热技术的革命。1966年,瑞士和西德首先利用晶闸管研制感应加热装置,从此感应加热技术开始飞速发展。 20世纪80年代后,电力电子器件再次快速发展,GTO、MOSFET、IGBT、M CT及SIT等器件相继出现。感应加热装置也逐渐摒弃晶闸管,开始采用这些新器件。现在比较常用的是IGBT和MOSFET,IGBT用于较大功率场合,而MOSFET用于较高频率场合。据报道,国外可以采用IGBT将感应加热装置做到功率超过1000kW ,频率超过50kHz。而MOSFET较适用高频场合,通常应用在几千瓦的中小功率场合,频率可达到500kHz以上,甚至几兆赫兹。然而国外也有推出采用MOSFET的大功率的感应加热装置,比如美国研制的2000kW /400kHz的装置。

我国感应热处理技术的真正应用始于1956年,从前苏联引入,主要应用在汽车工业。随着20世纪电源设备的制造,感应淬火工艺装备也紧随其后得到发展。现在国内感应淬火工艺装备制造业也日益扩大,产品品种多,原来需要进口的装备,逐步被国产品所取代,在为国家节省外汇的同时,发展了国内的相关企业。目前感应加热制造业的服务对象主要是汽车制造业,今后现代冶金工业将对感应加热有较大需求。 一、感应加热特点 感应加热技术具有快速、清洁、节能、易于实现自动化和在线生产、生产效率高等特点,是内部热源,属非接触加热方式,能提供高的功率密度,在加热表面及深度上有高度灵活的选择性,能在各种载气中工作(空气、保护气、真空),损耗极低,不产生任何物理污染,符合环保和可持续发展方针,是绿色环保型加热工艺之一。它与可控气氛热处理、真空热处理少无氧化技术已成为热处理技术的发展主流。 其主要应用有: (1)冶金有色金属的冶炼,金属材料的热处理,锻造、挤压、轧制等型材生产的透热,焊管生产的焊缝。 (2)机械制造各种机械零件的淬火,以及淬火后的回火、退火和正火等热处理的加热;压力加工前的透热。 (3)轻工罐头以及其他包装的封口,比如着名的利乐砖的封口包装。

电磁感应加热

电磁感应加热 一、前言网络的普及,及物流运输业的发展,传统行业的地区性慢慢打破,用户通过网络可以寻找更多的提供商,随着近几年物价的上涨,人工费的上涨,而市场竞争越来越激烈,产品利润越来越低,热加工企业生存压力越来越大,怎样降低产品成本,提高产品的竞争力,是每个企业面临的一个核心问题。随着电磁加热技术的出现以及这几年的实际应用,大量的数据证明,通过电磁加热节能改造后的机器设备,生产效率、产品质量、节省能源方面大大优于传统电阻丝加热的模式。传统的加热方式存在的主要问题:塑料行业,如吹膜机、拉丝机、注塑机、造粒机等生产企业的生产设备大部分是采用电热圈对料筒和模头进行加热,存在以下问题:目前在 1、热损失大: 绕制在料筒上的电阻丝加热圈内外都发热,而只有紧贴在料筒内面的热,大约50%传递到料筒上,同时,外面的热量,约50%散失到空气中,热损失大,传导在现有企业采用的加热方式,是由电阻丝绕制的加热圈,加热圈的内外双面均发热,其内面(紧贴熔胶筒部分)的热传导到溶胶筒上,而外面的热量大部分散失到空气中,造成电能的浪费。 2、车间环境温度上升:由于热量大量散失,周围环境温度升高,尤其是夏季对生产环境影响很大,现场工作温度甚至超过了

45℃,有些企业不得不采用空调降低温度,这又造成能源的二次浪费。 3、传统发热圈使用寿命短、维修量大:由于采用电阻丝发热,其加热温度长时间高达300多度,电阻丝容易因高温老化而烧断,常用电热圈使用寿命不长,多为6个月左右。因此,维修保养的工作量相对较大,而且更换的费用也相对很高。 4、由于车间内温度高,机器油温升高,大大缩短油封、油泵使用寿命,出现漏油和压力不稳定现象 二、电磁感应加热电磁感应加热节能系统,是将电磁感应加热原理应用于塑料、橡胶等行业的节能系统,替代塑料、橡胶等行业中电阻丝加热工艺的节能系统,它解决了塑料行业长期以来使用电阻加热方式进行塑料原料的熔融、混炼和塑化过程中所带来的热效率低,耗电量大和工作条件差的问题,填补了我国用感应加热方式替代电阻加热方式在塑料行业应用的空白。电磁感应加热原理: 科益热技术引进日本最新高频电磁感应加热技术开发出一种适合国内企业要求的新型高频电磁加热系统是通过电磁感应加热控制器把将220V或380V,50Hz的交流电转换成频率为20-40KHz 的高频高压电,当高速变化的高频高压电流流过线圈会产生高速变化的交变磁场,当磁场内的磁力线通过导磁性金属材料时会在金属体内产生无数的小涡流,使金属材料本身自行快速发热,从而加热金属材料料筒内的东西。同时,配合高效能的保温装置,

电磁感应加热

电磁感应加热 感应加热的性能与特点 与传统的加热方式(如火焰式加热)相比,感应加热具有如下的一些性能特点:具有精确的加热深度和加热区域,并易于控制;易于实现高功率密集,加热速度快,效率高,能耗小;加热温度高,加热温度易于控制;加热温度由工件表面向内部传导或渗透;采用非接触式加热方式,在加热过程中不易掺入杂质;工件材料烧损小,氧化皮生成少。 原理 感应加热方式是通过感应线圈把电能传递给被加热的金属工件,然后电能再在金属工件内部转化为热能,感应线圈与金属工件并非直接接触,能量是通过电磁感应传递的,因而,我们把这种加热方式称为感应加热。 感应加热所遵循的主要原理是:电磁感应、集肤效应、热传导。为了将金属工件加热到一定的温度,要求工件中的感应电流尽可能地大,增加感应线圈中的电流,可以增加金属工件中的交变磁通,进而增加工件中的感应电流。增加工件中感应电流的另一个有效途径是提高感应线圈中电流的频率,由于工件中的频率越高,磁通的变化就越快,感应电势就越大,工件中的感应电流也就越大。对同样的加热效果,频率越高,感应线圈中的电流就可以小一些,这样可以减少线圈中的功率损耗,提高设备的电效率。 在感应加热过程中金属工件内部各点的温度是在不断发生变化的,感应加热的功率越大,加热时间越短,金属工件表面温度就越高,工件中心部位的温度就越低。如果感应加热时间长,金属工件表面和中心的温度通过热传导而趋于均匀。 感应加热设备的选用是根据被加热工件的工艺要求和尺寸大小来决定的。根据被加热工件的材质、大小以及加热区域、加热深度、加热温度、加热时间等工艺要求,进行综合计算与分析,来确定感应加热设备的功率、频率和感应线圈等技术参数。 柔性陶瓷电加热 柔性陶瓷电加热设备是由柔性陶瓷电加热及其温度测量和控制设备组成,其是利用电能激发辐射能并进行加热的装置。当柔性陶瓷电加热器的陶瓷件材料(含涂料)具有高的远红外辐射性能、可充分发挥辐射加热的特点时称为远红外电加热器。 柔性陶瓷片电阻加热,它的原理是利用远红外辐射方式加热。用这种方法进行厚壁管的热处理时,热源先从加热元件向管子外壁辐射传热再从外壁表面向内壁传导热量,由于管道长度方向的热传递散热,使得内外壁产生较大的温差。管子径向远离加热源中心的部位(焊缝根部)的温度与管子表面温度相差较大。 如在对规格为420×70mm,长度为680mm的P22管子进行的内外壁温差的热处理过程中,以柔性陶瓷加热器进行加热,加热温度770℃,保温4h,加热宽度500mm。结果发现,平焊位置内外壁温差为50℃,仰焊位置温差内外壁为30℃,这么大的内外壁温差很难保证

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

感应加热电源的控制与驱动电路

感应加热电源的控制与驱动电路 感应加热电源中电力电子控制电路的构成,显现出多样化组成方式,其控制方案主要是根据感应电源调功方式、加热负载特性要求等不同,控制电路的结构会有所不同。 感应加热电源的功率控制调节方式总体上可分为直流侧调功和逆变侧调功两种。直流侧调功又分为三相全控整流器调功和直流斩波器调压调功。逆变侧调功的控制电路方案根据加热工艺特性要求,可以采用的控制方式更灵活, 常用的有调频功(PFM )、移相调功(PSM)、脉宽调制恒频调功(PWM )、脉冲密度调制调功(PDM )、调宽调制加调频调功(PWM+PFM )、脉宽调制加脉冲密度调制调功(PWM+PDM )等各种调功方式。 下面就感应加热电源控制电路的基本组成和原则作简单叙述,其具体内容将在相关章节中介绍。 (1)控制方式根据感应加热电源负载特性不同,调功方法不同,通常可采用电压反馈控制、电流反馈控制。 1)采用电压控制,其目的是保证输出直流母线电压恒定,也就是说加在感应加热绕组的端电压恒定。控制采样可以取自直流母线电压或逆变器电感绕组或谐振补偿电容上的电压。取样一般采用隔离式电压传感器(TV),经道算、比较处理,控制品闸管的导通角或逆变器开关管PWM 驱动脉冲的相移或脉宽,达到改变直流输出到逆变器直流母线上的电压或改变逆变器输出电压的平均值(或有效值),最终因闭环负反馈的作用维持输出电压恒定。输人电压的波动,对加热电源的输出功率也就是对工件的加热温度产生较大影响,将直接影响到加热工件的产品工艺质量要求。 加热电源的输出功率为P =u 2/Z,在负载不变的条件下,功率P 与电压组或谐振补偿电容上的电压。u 的平方成正比。也就是说,加热温度与电压的平方成正比。如果电压不稳定,加热温度就不均匀,对于毛坯工件加热、淬火要求温度稳定性较高的场合,必须要有自动稳压功能,否则产品质單得不到保证。 2)采用电流控制,其目的是保证输出直流或高频输出电流恒定。控制采样可取自直流母线电流或逆变器感应加热绕组中的电流。取样一般采用隔离式电流传感器感(TA ),电流反馈信号控制的对象同电压控制,目的是达到输出电流的变化,也就是输出功率P 的变化、加热温度的 变化。这是因为P=IU u z u z u =?? ? ??=2,因此可以看出,电压U 或负载阻抗Z 的变化,会引起电流I 的变化,即功率或加热温度的变化。 3)采用功率控制,其目的是为了保证感应加热电源的恒功率输出。采样信号同时取样电压和电流信号,经乘法器处理后,经PI 调节器输出与功率给定相比较,控制晶闸管的导通角或逆变器驱动脉冲信号的宽度、相移,或采用动态阻抗匹配法控制电源侧的等效阻抗与负载相等,达到功率的恒定,保证加热温度在给定的功率下恒定,满足工件加热工艺特性和质量要求。 (2)采用直流侧调月i 调功方案的感应加热电源,其控制电路需要有锁相频率自动跟踪系统。无.论是逆变器采用脉宽调制(PwM)控制技本调功,还是采用移相(PSM)调功等,如果逆变侧不进行频率自动照際,会出现两大问题:①逆变器的开关功率器件不能很好地工作在软开关状态,开关器件承受的电压和电流应力大,除了危及器件安全外,开关损耗也增大;②因为逆变器工作频率与谐振电路的固有谐振频率不相等,逆变器回路或者说开关器件中流过较大的无功电流,而且功率因数下降,达不到最大功率输出,逆变器的效率降。频率跟踪的目的是保证逆变器的开关频

高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。 功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。使电源的工作特性就像一个电阻一样,而不在是容性的。 目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。这种类型的控制方式,在小功率PFC电路中非常常见。 今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。 要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例: 已知参数: 交流电源的频率fac——50Hz 最低交流电压有效值Umin——85Vac 最高交流电压有效值Umax——265Vac 输出直流电压Udc——400VDC 输出功率Pout——600W 最差状况下满载效率η——92% 开关频率fs——65KHz 输出电压纹波峰峰值Voutp-p——10V 那么我们可以进行如下计算: 1,输出电流Iout=Pout/Udc=600/400=1.5A 2,最大输入功率Pin=Pout/η=600/0.92=652W 3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A 4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A 5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A 6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A 7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH 8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。实际的电路中,我用了1320uF,4只330uF的并联。 有了电感量、有了输入电流,我们就可以设计升压电感了! PFC电路的升压电感的磁芯,我们可以有多种选择:磁粉芯、铁氧体磁芯、开了气隙的非晶/微晶合金磁芯。这几种磁芯是各有优缺点,听我一一道来。

感应加热基本原理

二感应加热基本原理 1.电磁感应原理 1831年,英国物理学家faraday发现了电磁感应现象,并且提出了相应的理论解释。其内容为,当电路围绕的区域内存在交变的磁场时,电路两端就会感应出电动势,如果闭合就会产生感应电流。 利用高频电压或电流来加热通常有两种方法: (1)电介质加热:利用高频电压(比如微波炉加热) (2)感应加热:利用高频电流(比如密封包装) 2.电介质加热(dielectric heating) 电介质加热通常用来加热不导电材料,比如木材。同时微波炉也是利用这个原理。原理如图1: 图1 电介质加热示意图 当高频电压加在两极板层上,就会在两极之间产生交变的电场。需要加热的介质处于交变的电场中,介质中的极分子或者离子就会随着电场做同频的旋转或振动,从而产生热量,达到加热效果。 3.感应加热(induction heating) 感应加热原理为产生交变的电流,从而产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。如图2: 图2 感应加热示意图 基本电磁定律:

法拉第定律:d e N dt φ= 安培定律:Hdl NI ?= 其中:BdS φ=?,0r B u u H = 如果采用MKS 制,e 的单位为V ,?的单位为Wb ,H 的单位为A/m ,B 的单位为T 。 以上定律基本阐述了电磁感应的基本性质, 集肤效应: 当交流的电流流过导体的时候,会在导体中产生感应电流(如图3),从而导致电流向导体表面扩散。也就是导体表面的电流密度会大于中心的电流密度。这也就无形中减少了导体的导电截面,从而增加了导体交流电阻,损耗增大。工程上规定从导体表面到电流密度为导体表面的1/e =0.368的距离δ为集肤深度。 在常温下可用以下公式来计算铜的集肤深度: 7.5 δ= 式(1) 图3 涡流产生示意图 从以上可以看到,如果增大电流和提高频率都可以增加发热效果,是加热对象快速升温。所以感应电源通常需要输出高频大电流。 参考文献:fundalmentals of power electronics, R.W .Erickson (讲义) TPIH2500 Textbook Tetra Pak Technical Training Centre 三 感应加热电源常见框图结构和控制方法 1.感应加热电源常见框图

高频感应加热电源工作原理

高频感应加热电源工作原理【大比特导读】高频感应加热电源在工作原理方面,也与普通的加热电源有 着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 感应加热电源的研发在最近几年呈现出专业化和快速的趋势,高频感应加热电源凭借着加热速度快、加热均匀等优势,被广泛的应用在工业及生活领域。高频感应加热电源在工作原理方面,也与普通的加热电源有着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 高频感应加热电源与普通的感应加热模块一样,也是采用了导体磁束加热的模式。用交流电流流向被卷曲成环状的导体,这种导体通常情况下会采用铜管这种材料,由此产生磁束。将金属放置其中,磁束就会贯通金属体,在与磁束自缴的方向产生涡电流,也就是大家所熟悉的旋转电流,于是感应电流在涡电流的影响下产生发热,用这样的加热方式就是感应加热。由此,对金属等被加热物体在无需直接接触的状态下就能获得加热效果。 此时,窝电流将会在线圈接近的物体上集中,感应加热表现出在物体的表面上较强里边较弱的特点,用这样的原理来对被加热体的必要的地方集中加热,达到瞬间加热的效果,从而提高生产效率和工作量等。 当然了,使用高频感应加热电源进行加热的成功与否,直接取决于感应线圈设置是否合理,以及加热体的大小、形状、间距等等。感应线圈是要做到均匀加热、加热效果好,并且要有强度和准确度。感应线圈是一般用一圈或数圈的铜管来做,一般采用水冷的方式对线圈进行冷却。 结语: 高频感应加热电源的感应线圈是高效加热的关键所在,而无需直接触碰就可以快速加热 的优势,也让这个感应加热电源的家族新成员迅速获得了生产商的认可。

感应加热原理及应用

感应加热原理及应用 1.电磁感应原理 1831年,英国物理学家faraday发现了电磁感应现象,并且提出了相应的理论解释。其内容为,当电路围绕的区域内存在交变的磁场时,电路两端就会感应出电动势,如果闭合就会产生感应电流。 利用高频电压或电流来加热通常有两种方法: (1)电介质加热:利用高频电压(比如微波炉加热) (2)感应加热:利用高频电流(比如密封包装) 2.电介质加热(dielectric heating) 电介质加热通常用来加热不导电材料,比如木材。同时微波炉也是利用这个原理。原理如图1: 图1 电介质加热示意图 当高频电压加在两极板层上,就会在两极之间产生交变的电场。需要加热的介质处于交变的电场中,介质中的极分子或者离子就会随着电场做同频的旋转或振动,从而产生热量,达到加热效果。 3.感应加热(induction heating) 感应加热原理为产生交变的电流,从而产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。如图2: 图2 感应加热示意图 皕赫国际贸易(上海)有限公司 TEL: +86 (0)21 60896520

皕赫国际贸易(上海)有限公司 TEL: +86 (0)21 60896520 基本电磁定律: 法拉第定律:d e N dt φ= 安培定律:Hdl NI ?= 其中:BdS φ=?,0r B u u H = 如果采用MKS 制,e 的单位为V ,?的单位为Wb ,H 的单位为A/m ,B 的单位为T 。 以上定律基本阐述了电磁感应的基本性质, 集肤效应: 当交流的电流流过导体的时候,会在导体中产生感应电流(如图3),从而导致电流向导体表面扩散。也就是导体表面的电流密度会大于中心的电流密度。这也就无形中减少了导体的导电截面,从而增加了导体交流电阻,损耗增大。工程上规定从导体表面到电流密度为导体表面的1/e =0.368的距离δ为集肤深度。 在常温下可用以下公式来计算铜的集肤深度: δ= 式(1) 图3 涡流产生示意图 从以上可以看到,如果增大电流和提高频率都可以增加发热效果,是加热对象快速升温。所以感应电源通常需要输出高频大电流。 参考文献:fundalmentals of power electronics, R.W.Erickson (讲义) TPIH2500 Textbook Tetra Pak Technical Training Centre 三 感应加热电源常见框图结构和控制方法 1.感应加热电源常见框图

利用SG3525实现调频控制的感应加热电源

利用SG3525实现调频控制的感应加热电源 1.引言: 感应加热技术具有加热温度高、加热效率高、速度快、加热温度容易控制、易于实现机械化、自动化、无空气污染等优点,现在感应加热电源已广泛用于金属熔炼、透热、热处理和焊接等工业过程。 根据功率调节量的不同感应加热电源有多种调功方式,调频调功是通过改变逆变器工作频率从而改变负载输出阻抗以达到调节输出功率的目的[1]。这种调功方式控制比较简单,可以对电路的工作频率进行直接控制,而且能对功率连续调整。本文正是基于调频调功这种方式,由PWM控制芯片SG3525控制实现的加热电源。 2.主电路拓扑结构和控制原理: 2.1 主电路结构: 本文设计的感应加热电源为串联谐振式全桥IGBT逆变电源,其逆变主电路结构如图1所示。输入采用三相AC/DC不控整流,输出采用负载串联谐振式全桥DC/AC逆变电路。整流输出的电压经高压大电容C1滤波,逆变器主开关器件Q1、Q2、Q3、Q4为IGBT,D1、D2、D3、D4为反并联二极管。

图1 主电路结构图 2.2控制原理 调频控制的原理就是:通过改变逆变器开关频率来改变输出阻抗以达到调节输出功率的目的。串联谐振等效电路图如图2所示。 图2 负载等效电路图 负载等效阻抗为Z=1/jωC +jωL+R ;则|Z|= = ,其中f=1/(2π)谐振频率。f=f0时,负载等效阻抗最小,|Z| =R,此时功率输出最大;f >f0时,负载呈感性,且频率越大感抗越大,功率减小;f

感应加热电源常见问题解读

感应加热电源常见问题解读 在感应加热电源的设备调试和日常使用过程中,工程师常常需要临时解决其出现的突发情况,这就需要工程师结合感应加热电源的设计方案和理论知识,及时进行处理。在今天的文章中,我们为大家总结了三种在平时比较常遇到的问题并进行解读,下面就让我们一起来看看这些问题都有哪些吧。 常见问题一:感应加热电源的烟气问题应该怎么处理比较稳妥? 对于感应加热电源来说,想要正确处理其烟气问题,我们可以从两个方面来入手,即通常所说的烟气净化或设置烟气捕集装置。先来看烟气净化方式,想要实现对感应加热设备的烟气净化,只有靠除尘器来实现,而除尘器选择的优劣直接影响到除尘系统的捕集效果、除尘电耗以及整个系统能否长期稳定、可靠运行、除尘器的形式繁多,各有利弊。关键在于如何扬长避短,与系统工艺及粉尘组成相适应以获得最佳效果。而设置烟气捕集装置则相对来说繁琐一些,其设置的内容主要包括回转式伞顶吸罩、低阻、大流量管道+调温电动蝶阀、 离线气管式脉冲除尘器、锅炉引风机等。这两种方法的选择,需要工程师依据实际情况进行判断。 常见问题二:感应加热电源在开机工作时有哪些问题需要特别注意一下? 通常情况下,在感应加热电源的工作过程中,有三类问题需要我们特别注意,分别是水资源短缺、电压过高和电气接地阴极电容设置。先来看水资源短缺问题,在长期使用感应加热设备的过程中,可能会出现因冷却水管水垢或阻塞电容而引起的电力电容器过热和燃烧问题,因此,我们应特别注意在水流量的排放情况,一旦发现排放不正常,则应该使用适当的措施。电气接地阴极电容也是需要特别注意的,电绝缘电容一旦发生损坏,很容易造成故障,因此需要工程师及时排查问题,及时处理故障的电容柜绝缘点。电压过高的情况也同样需

30kw电磁感应加热控制系统

30KW电磁感应加热控制系统 使 用 说 明 书

30KW电磁感应加热控制系统 一、概述 电磁加热器,是现今工业领域和民用设备中最广泛的一种加热方式,采用电磁加热,杜绝了明火在加热过程中的危害和干扰,采用电磁场在被加热够工件表面形成涡流的方式来加热,是一种环保,国家提倡的加热方案。电磁加热器将220V/380V,50/60Hz的交流电经整流电路整流变成直流电,再经过控制电路将直流电转换成频率为20-40KHz的高频高压电,高速变化的高频高压电流流过线圈会产生高速变化的交变磁场,当磁场内的交变磁力线通过导磁性金属(铁、钴、镍)材料时会在金属体内产生无数的小涡流,使金属材料本身自行高速发热,从而达到加热金属材料的目的。因为电磁加热圈本身并不发热,而且是采用绝缘材料和高温电缆制造,所以不存在着像原电热圈的电阻丝在高温状态下氧化而缩短使用寿命的问题,具有使用寿命长、升温速率快、无需要维修等优点,减少了维修时间,降低了成本。现已被广大的企业使用,大大的降低了企业的生产成本。 二、应用范围 1、塑料橡胶行业,如:塑料用吹膜机、拉丝机、注塑机,造粒机,橡胶用 挤出机、硫化机、电缆生产挤出机等。 2、医药化工行业,如:医药专用输液袋、塑料器材生产线,化工行业液体 加热输送管道等等。

3、能源、食品行业,如:原油输送管道的加热;食品机械,如:超货机等需要电加热的设备。 4、大功率商用电磁灶机芯。 5、建材行业,如:燃气管生产线、塑料管材生产线、PE塑料硬质平网、土工网机组、自动中空成型机、PP挤出透明片材生产线、挤出聚苯乙烯发泡管材、PE缠绕膜机组。 6、印刷设备里的干燥加热。 7、其它类似行业加热。 三、技术参数 产品电气规格 1、额定电压频率:AC 380V / 50Hz 2、电压适应范围:310V~440V 3、额定功率:30KW (30~100%可调) 环境适应能力 1、温度:-20℃~50℃; 2、湿度:≤95% 基本性能概述 1、电流与电压特性:恒流输出;

基于KA3525的高频感应加热电源的设计

基于KA3525的高频感应加热电源的设计 【摘要】本文根据电流型PWM控制芯片KA3525的特点,并利用三星单片机S3F9454的辅助控制功能,设计了一种高频感应加热电源电路,并可实现输出功率可调。本文详细介绍了它的功率调整电路、主电路、控制电路等,并描述了它们的实现原理与方法。 【关键词】KA3525;三星单片机S3F9454;PWM;感应加热电源 0.引言 在当今工业生产中,很多地方都要用到中小功率的感应加热电源,例如对工件进行淬火、熔炼贵金属等。这类电源大多为并联谐振型电源,由电流源直接供电,通过直流侧的控制电路实现功率调节,即通过调节整流晶闸管的移相触发角来实现功率调节。这类电源在制作时需要消耗大量材料,入端功率因数低,包含比较大的平波电抗器,对电网也有较大的谐波干扰,效率低。因此,这类电源如今越来越不符合人们对具有高品质的感应加热电源的要求。本文就这一问题,设计出了一种容易实现、高品质的中小功率感应加热电源。 本文结合KA3525和三星单片机S3F9454的特点,研制出了一种基于KA3525并利用单片机辅助控制的高频感应加热电源。对高频感应加热电源的工作原理作了详细分析,并对它的功率调整电路、主电路、控制电路等作了主要阐述。 1.感应加热电源原理及总体结构 首先通过不控整流电路,将220V的交流电转换为脉动直流,再经过电容滤波得到平直的直流电压,然后通过高速V-MOS功率场效应管组成的桥式逆变电路,得到高频方波交流电压,利用变压器隔离实现阻抗匹配,将高频高压电变为低压大电流,从而对金属进行加热。 系统主要由七个部分组成: 不控整流电路:本文采用不控整流将220V的交流电变为不可调的直流电。 滤波电路:逆变谐振一般采用电容滤波,这里为减小体积,采用了电感,为防止电流冲击破坏电路,特在电路中设置了延迟环节。 桥式逆变电路:本文装置频率较高,必须采用高速V-MOS场效应管;由于单管电流容量受到限制,而场效应管具有易并联的特点,因此在满足耐压的前提下,采用多管并联方式来满足输出功率的要求。 高频变压器隔离:串联谐振一般Q值较大,谐振时,电压可达千伏以上,

感应加热基本原理

那么,感应加热实际上是如何工作的呢?感应加热是通过在一个导体中产生电流来工作的。它是这样的: 首先,一个铜线圈(通常是螺线管,但不完全),在它部有一个大的,时变的电流,这个电流通过加在线圈上的时变电压产生(通常是通过施加正弦波的形式)。 然后此电流会创建一个随时间变化的磁场(对于螺线圈来说,l NI H =),这将产生一个时变的磁通(H B μ=)。 如果一个导体放在磁场中,那么它周围就会产生电压。(BA dt d E == φφ ,) 。 如果导体是个闭环,感应电压会在导体的外部产生循环的电流。 jX R V I jX R I V += +=)....( 由于这是一个交流系统,肯定会有阻抗的补偿:如果是直流系统,磁通变化率(dt d φ)将会是0,所以就不会有感应电流产生。 最后,这个产生的电流会在工件中产生R I 2的损失,可以有效地使这种加热途径成为一种电阻加热方法,albeit with the current flowing at right angles to that of direct resistance heating (也就是围绕着钢坯而不是顺沿着钢坯)。 通过考虑在管状金属薄片中的电流流量,已经知道了感应加热工作的基本原理,我们将要观察的是当感应加热一个固体工件时的感应电流。 这个问题的答案是一个相当复杂的数学问题,并且深入的研究它会很浪费时间。因此,我将提供一个简单的描述,来告诉你磁场以及电流是怎么样在要加热的材料上工作的,之后便是解析答案。这种方法就避免了矢量积分,贝塞尔函数等复杂问题。 为了避免讨论磁通的返回路径和最终影响,我们把一个半无限大的平板作为加热对象,只是通过在它上面的无限大的电流2-diamentional sheet 来加热它。这个图表示的是无限部分中有限的一部分。代表工作头的电流层左右(x 方向)、前后(z 方向)无限延伸。在y 方向上没有占用所有的空间。 代表工件的半无限大的平板在z 方向和x 方向上也是无限延伸的,但在y 方向上是从0到负无穷。 为了观察电流的去向,我们可以把这个同性质的平板分割成一系列的薄片。 先考虑顶层。它有一个随时间变化的磁场,作用在它上面的是)cos(?0 t H ω。

相关主题
文本预览
相关文档 最新文档