当前位置:文档之家› 离子液体在催化剂制备中的应用

离子液体在催化剂制备中的应用

离子液体在催化剂制备中的应用
离子液体在催化剂制备中的应用

离子液体在催化剂制备中的应用

摘要:离子液体具有很多独特的物理、化学性质,正引起人们越来越多的重视,被认为是一类可以取代传统有机溶剂对环境友好的新型绿色溶剂,在很多领域中有着诱人的应用前景。本文归纳了离子液体的优越性质,介绍了离子液体的分类和制备方法,综述了其作为催化剂在各种化学反应中的应用,并展望了离子液体在该领域中的应用前景。同时,还对离子液体的固定化方法进行了评述,并指出了该研究领域目前存在的问题及发展趋势。

关键词:离子液体,催化剂,合成,应用,固定化

1 前言

1.1 离子液体的定义

离子液体(Ionic liquids)是完全由离子组成的在低温下呈液态的盐,也称为低温熔融盐,它一般由较大的有机阳离子和较小的无机阴离子所组成。离子液体与传统的熔融盐的显著区别是它的熔点较低,一般低于150℃,而传统的熔融盐具有高熔点、高薪度和高的腐蚀性。根据离子液体的这一性质,可以用它代替传统的有机溶剂和电解质作为化学反应与电化学体系的介质等。离子液体的产生可追溯到1914年,当Walden无意间将乙胺与浓硝酸混合时发现所形成的盐-硝酸乙基胺在室温下为液体,这就是第一个离子液体[1]。

1.2 离子液体的分类

离子液体的分类[2]比较多,按照阳离子可以分为四类:(1)1,3-二烷基取代的咪唑离子或称N,N'-二烷基取代的咪唑离子,简记为[RR'im]+,例如1-丁基-3-甲基咪唑离子记为[Bmim]+,若2位上还有取代基R'',则简记为[RR''R'im]+,如1,2-二甲基-3-丙基咪唑离子记为[MM'M''im]+;(2)N-烷基取代的吡啶离子,简记为[RPy]十;(3)烷基季铵离子[NR X H4-x]+,例如[Bu3NMe]+;(4)烷基季磷离子[PRxH4-x]+,例如[Ph3PO c]+。

图1-1 离子液体中常见的正离子结构

根据阴离子的不同,离子液体可分为二类:(1)卤化盐+AlCl3型(其中Cl也可用Br代替),如1-乙基-3-甲基咪唑氯代铝酸盐([emim]Cl-AlCl3),其缺点是对水极其敏

感,要在真空或惰性气氛下进行处理和研究,质子和氧化物杂质的存在对在该类离子液体中的化学反应有决定性的影响;(2)非卤化盐+AlCl3型(又称为新离子液体)的阳离子多为烷基取代的咪唑离子,阴离子为BF4-、PF6-、NO3-、ClO4-、CH3COO-、CF3COO-等,许多品种对水和空气稳定,如1-乙基-3-甲基咪唑四氟硼酸盐([emim]BF4)以及NO3-、ClO4-为阴离子的离子液体要小心爆炸,尤其是在干燥的时候。

1.3 离子液体的性质[3,4]

离子液体是近年来绿色化学的研究热点之一,因为离子液体在工业有机化学的清洁合成方面显示出潜在的应用前景。例如,传统的Friedel-Crafts烷基化反应在80℃下反应8h,得到产率为80%的异构体混合物,采用离子液体,同样的反应在0℃下反应30s 得到产率为98%的单一异构体。除了它们所表现出的高活性、高选择性外,离子液体还具有如下优点:

(1)具有较宽的稳定温度范围。通常在300℃范围内为液体,有利于动力学控制;在高于200℃时具有良好的热稳定性和化学稳定性。

(2)具有良好的溶解性能。它们对无机和有机材料表现出良好的溶解能力。

(3)通过对阴、阳离子的合理设计可调节其对无机物、水、有机物及聚合物的溶解性,并且其酸度可调至超酸。

(4)易于与其它物质分离,可以循环利用。

(5)稳定、不易燃、可传热、可流动。

(6)制备简单。如[BMIM]Cl/AlCl3,可由商业成品甲基咪唑和卤代烷直接合成中间产物,再与含有目标阴离子的无机盐反应生成相应的离子液体。

(7)具有较弱的配位趋势。

2 离子液体的合成方法

离子液体的合成基本上有两种方法:直接合成法和两步合成法。直接合成法就是通过酸碱中和反应或季铵化反应一步合成离子液体。其优点是操作简便而且经济,没有副产物,产品易纯化,如硝基乙胺离子液体就是由乙胺的水溶液与硝酸中和反应制备。如果难以直接得到目标离子液体,就须用两步合成法。首先,通过季铵化反应制备出含目标阳离子的卤盐([阳离子]X型离子液体);然后用目标阴离子Y-置换出X-离子或加入L酸MXy来得到目标离子液体,通常将一些离子液体混合是开发具有更好性能以及低共熔点的新型离子液体的一种方法。

2.1 直接合成法

(1)中和法:文献报道了用叔胺与酸生成离子液体的方法,简称中和法。反应一

步完成,因为没有副产物,产物提纯简单,但是季铵离子液体上少1个烷基多1个氢。用这种多方法己经合成超过100种离子液体,如[Emim][OTf]熔点为8℃,[mim][BF4]熔点为-5~9℃。

(2)叔胺与酯反应:文献报道用叔胺与酯反应生成季铵类离子液体的方法,限负离子为OTf的离子液体,如mim+ROTf=[Rmim][OTf]在l,1,l-三氯乙烷等溶剂中进行。

(3)一锅法:文献阐述了一锅制法,甲醛、甲胺、乙二醛、四氟硼酸、正丁基叔胺一锅反应制得离子液体混合物,其中[BBim][BF4]占41%,[Bmim][BF4]占50%,[Minim][BF4]占9%。

通过酸碱中和反应或季铵化反应一步合成离子液体,操作经济简便,没有副产物,产品易纯化。硝基乙胺离子液体可以由乙胺的水溶液与硝酸中和一步合成。通过季铵化反应也可以一步制备出多种离子液体,如1-丁基-3-甲基咪唑盐[Bmim][CF3SO3],[Bmim][Cl]等[5]。

2.2 两步合成法

在两步法中的合成的时候,第一步是先将叔胺类与卤代烷反应生成季铵类的卤化物,第二步再将卤负离子交换为所要的负离子。

第一步:季铵的卤化物盐合成

先由叔胺类与卤代烃合成季铵的卤化物盐,例如[Emim][Cl]的合成:

Mim+EtBr=[Emim][Cl]

反应需有机溶剂、过量的卤代烃,加热回流数小时后,反应完要用旋转蒸发仪除去有机溶剂剩余的卤代烃。叔胺Rim亦可用im+NaOEt+RX反应制得。

文献报道了美国学者的研究,将这一步改在家用微波炉中进行,快速有效,一步完成,不用溶剂,反应物料用量为等摩尔,只要不到1h即可完成。

第二步:离子交换

(1)AlCl3类离子液体:AlCl3类离子交换只需将季铵的卤化物盐与AlCl3按要求的摩尔比混合即可,如[Emim][Cl]与AlCl3混合为放热反应,应缓慢分别将两种固体分批加入,以免过热。文献报道了[C n mirn][AlCl4](n=4、6、8)用微波加热制备的方法,只要几分钟即可,不用微波加热则要加热数小时(C原子数为4以上)。

(2)非AlCl3类离子液体:有Ag盐法(AgCl)、非Ag盐法(LiCl,HCl)、离子交换树脂法(限水溶性的)等。

非AlCl3离子液体最先是用Ag盐法(AgCl),反应如下:

[Emim][Cl]+AgBF4=[Emim][BF4]+AgCl

所用溶剂可以是甲醇或者是甲醇与水的混合物等。AgCl沉淀析出,过滤除去,剩余液相利用旋转蒸发仪除去溶剂即可。Ag盐法要用AgO先与酸反应制得AgBF4,成本较贵。

经选择反应溶剂,可以用非Ag盐法如LiCl,NH4Cl等不溶的溶剂,即可沉淀分离。

也可以用微波加热制备的方法。

文献报道用[Emim][Cl]+HBF4制备[Emim][BF4]的方法,反应混合物加热到130℃下干燥数小时,可以避免Ag盐产生的AgBF4等杂质。

文献报道了用离子交换法制备离子液体,卤化盐与应是可以溶解的,用传统的离子交换树脂将卤负离子交换掉。

3 离子液体液相催化的优点和缺点

在离子液体参与的诸多液相反应中,离子液体的作用大致可以分为二类:一类是作为绿色反应溶剂。利用其对反应底物及有机金属催化剂特殊的溶解能力,使反应在离子液体相中进行,同时又利用它与某些有机溶剂互不相溶的特点,使产物进入有机溶剂相,这样既能很好地实现产物的分离,又能简单地通过物理分相的方法实现离子液体相中催化剂的回收和重复利用[6]。另一类是功能化离子液体[7](Task specific ionic liquid),即离子液体除了作为绿色反应介质外,同时也用作反应的催化剂。如利用离子液体固有的Lewis酸性来催化酯化反应[8]、付氏烷基化反应[9]等;或有目的地合成具有特殊催化性能的催化剂,如Mj等[10]将含有羟基的咪唑基与十六烷基吡啶键合,合成一类新的离子液体,用于催化Baylis-Hillman反应等。

离子液体参与的两液相催化反应几乎涵盖了所有的有机化学反应类型,如氧化、氢化、聚合、Friedel-Crafts烷基化/酰基化、Diels-alder加成、MizomkiHeck、Ziegle-Natta 反应等;其负载的催化剂也几乎囊括了所有用于有机反应的金属催化剂,对这方面的研究国内外已有相当详细的综述[11-12]。可以看出,在离子液体参与的这些反应中,离子液体不仅是作为绿色反应介质或催化剂,而且由于其结构的“可设计”性,选择合适的离子液体往往可以起到协同催化的作用,使得催化活性和选择性均有所提高[13]。这种协同作用可能的产生机理可归为如下4点:①催化反应所生成的产物不溶于离子液体相,在反应过程中直接沉淀出来或被萃取到有机相,从而加快了反应的进行[11,14];②离子液体特定的空间结构使得溶于其中的催化剂的配体发生变化,从而提高催化活性和选择性[15];③离子液体的存在使得反应条件变得温和,从而有利于反应的进行[16];④Lewis酸溶于特定酸性离子液体使其酸性增强,从而增强其催化活性[17]。

尽管离子液体在两液相催化反应中具有上述诸多优势,但其局限性也是相当明显的:①离子液体在有机溶剂中或多或少地溶解,这将导致离子液体的损失,同时,离子液体对反应物或产物的溶解也会导致离子液体的黏度降低、颜色加深而逐渐难以重复使用;②有机溶剂对有机金属催化剂也会有一定的溶解性,使得金属催化剂在重复使用过程中也会出现不同程度的流失而影响催化活性;③离子液体所固有的高黏度也会产生传质阻力,从而对反应速率造成一定影响;④目前离子液体价格相对昂贵,直接影响了其商业化应用。

4 离子液体在催化领域的应用

离子液体能够催化烷基化反应,其表现出的Lewis、Bronsted、Franklin酸及超强酸酸性,可有效替代硫酸、氢氟酸、AlCl3等作为催化剂进行酸催化过程。离子液体作为催化剂没有腐蚀性,易于循环使用。

4.1离子液体催化C4烷基化

异丁烷与各种烯烃进行烷基化反应,生成高辛烷值汽油调和组分是重要的烷基化工业应用。该工艺生产的烷基化汽油辛烷值高、蒸气压低、燃烧热高、燃烧清洁,是航空汽油和车用汽油的理想添加剂。但传统无机催化剂的缺点是存在着严重的设备腐蚀和环境污染等问题。人们开始研究离子液体催化下的异丁烷与烯烃的反应。

对烷基季铵盐离子液体的研究表明[18],随着使用的离子液体中季铵阳离子N上烷基链越长,烷基化油收率和C8选择性越高,汽油的质量也就越高;而且重复使用性能较好。用CuCl对AlCl3/Et3NHCl离子液体对催化性能进行改性[19],发现烷基化油的收率达到178%,C8组分的含量达到85%,辛烷值(RON)达到94.8。对咪唑型离子液体的研究发现[20],由烷基咪唑和吡啶阳离子构成的离子液体有较好的选择性,烷基化油收率达到160%以上,接近工业硫酸烷基化水平(170~180%),烷基化油中C8可以达到50%。而且它更容易与产物分离,不经任何处理可循环利用10次。

4.2 离子液体催化苯与乙烯、己烯烷基化

芳环上的氢在Bronsted/Lewis酸的作用下被烷基取代,称为Friedel-Crafts反应;若被酰基取代,则称为Friedel-Crafts酰化反应。这两种反应广泛应用于涂料、润滑油、洗涤剂等产品的生产中,在石化工业中有着举足轻重的作用。传统上F-C反应是以无水AlCl3等Lewis酸为催化剂的,反应溶剂为石油醚、氯苯等,一般反应5~6h,收率为80%左右,产物为各种异构体的混合物,选择性差。生产过程中产生大量的酸性富铝废弃物及蒸气,既不经济又污染环境。如若反应在[emim]AlCl3离子液体中进行,该离子液体既作为溶剂,也作为催化剂,反应只需30s就转化完全(100%转化),选择性极高,并能很好地克服了工业过程所存在的问题[21]。

4.3离子液体催化合成长链烷基苯

用苯、甲苯、苯酚、萘等芳香族化合物与C9~C14(平均碳数为12)烯烃的烷基化反应引入长链烷基,是典型的烷基化反应过程。这类烷基化反应主要使用HF或AlCl3作为催化剂,烷基化产品是由一系列芳香族化合物取代碳链不同位置氢的长链烷基化合物的异构体组成。由于HF或AlCl3作为催化剂,存在很多缺点,如强腐蚀性、高毒性、

催化剂不能重复使用、产生铝盐废物、产品纯度不高、后处理复杂等,因此使用受到限制。使用离子液体不仅可以克服以上缺点,而且可以在较温和的反应条件下进行,并提高烷基化反应的产率,简化了产物的分离与提纯,且对环境友好。氯代1-丁基-3-甲基咪唑氯铝酸盐([Brain]Cl-AlCl3)离子液体做催化剂,催化苯与正十二烯的烷基化反应,与传统催化剂相比,降低了反应温度,又减少了苯/烯摩尔比和催化剂用量。离子液体在25℃、AlCl3/正十二烯摩尔比为0.07、苯/烯摩尔比等于8时就具有很高的催化活性[22,23]。研究还表明:苯与十二碳烯或氯代甲烷反应中不同的产物分布和反应活性的提高,是由于盐酸修饰后的离子液体中盐酸的存在,引起离子液体具有过强酸性。

2006年4月由中国石化石油化工科学研究院开发的连续式离子液体催化制备长链烷基苯工艺通过了科技开发部组织的评议和验收。该工艺简单合理,所用离子液体催化剂成本低,用量少,烷基化产物与催化剂易分离。

4.4 离子液体载手性催化剂的有机合成反应

在离子液体中引入手性中心或者枝接手性结构片段而制备的手性离子液体,由于兼具有离子液体和手性催化试剂的特点和优点,在手性合成方面的研究显得格外引人关注。Moreau等[24]把樟脑磺酸枝接到离子液体阳离子上,作为手性助剂,考察了它与四异丙氧基钛催化的二乙基锌与苯甲醛的加成反应,反应几乎定量完成,产物对映选择性高达65%。Luo等[25]制备了离子液体键载的有机催化剂,并成功地应用于催化酮、醛与β-硝基苯乙烯的Michael加成反应,收率高达100%,对映选择性高达99%ee,非对映选择性高达99:1,催化剂可以循环使用4次,催化活性没有降低。

Yang等[26]将带有磺酰胺结构的手性催化剂枝接到离子液体上,并考察了其催化的酮的不对称还原反应。以较高的立体选择性和收率得到相应的仲醇,离子液体载催化剂可以方便地回收,并至少可以循环使用4次,催化活性没有明显降低。此外,Miao等[27]还研究了离子液体载(2S,4R)-4-羟基脯氨酸催化的直接不对称Aldol反应,产物的立体选择性比在纯丙酮中有明显提高(提高可达28%ee),与DMSO中的结果相当。

此外,Corma等[28]报道了离子液体载钯催化的Heck反应和Suzuki反应;Clavier等[29]报道了离子液体载钌催化的链烯的环合反应;Baleizao等[30]报道了离子液体载钒催化的醛的腈硅烷化反应。

4.5 离子液体载催化剂催化氧化反应

Peng等[31]创报道了将Mn(III)-席夫碱络合物枝接到咪唑离子液体上,作为苯丙烯酰苯环氧化反应的高效催化剂。该反应兼具有均相反应易发生和多相反应易分离的优点。该催化剂可以在不失去催化活性条件下,至少循环使用5次。此外,在高强度的机械搅拌下,与固载的催化剂相比,离子液体载催化剂具有很强的机械性能。

Qian等[32]考察了3种离子液体载TEMPO(2,2,6,6,-四甲基-1-氧代哌啶)催化的醇选择性氧化为醛和酮的反应。该新的催化剂在水相中表现出了较高的催化活性,通过萃取分离产物后,离子液体载催化剂可以至少循环使用5次,反应活性基本保持不变。

5 离子液体的固定化研究进展

为了提高离子液体催化剂的重复利用效率,降低其相对成本,有效分离产物与离子

液体催化剂以及实现使用固定床进行连续操作的工业化生产等,一个可行方法是将离子液体固定化,负载到固体载体中。最早研究离子液体固定化的是1988年Rao等[33]将氯化钯/氯化铜融熔盐混合物负载到多孔硅胶上并且用于烯烃部分氧化,但对离子液体的固定化研究主要是近几年开始的。由于该研究得到的固载化离子液体比用于两液相催化的离子液体具有更好的应用前景,因而也受到人们的广泛关注。离子液体的固定化方法一般可以采用浸渍法、键合法、溶胶-凝胶法等,最常用的载体是硅胶或其他硅基材料,近几年也出现了一些用高分子聚合物载体或膜材料进行离子液体固定化的研究。在固定化过程中可以通过简单的物理吸附方法,即通过分子问作用力对离子液体进行固定,也可以使离子液体与固体载体间进行化学键合,以下将逐一介绍。

5.1 浸渍法

浸渍法是最简单的离子液体固定化方法。其操作方法比较简单,一般是将离子液体滴加到固体载体上(如硅胶),至载体完全湿润;浸渍一段时间后,用索氏萃取法除去载体上未被吸附的离子液体即可。采用浸渍法制备的固定化离子液体将会在载体上形成多重自由的离子液体层,然后将其作为一种惰性反应相来溶解各种不同的有机金属催化剂。因此,尽管所形成的材料呈固态,离子液膜的存在却使得反应仍在液相中进行,且使得催化剂局部浓度升高,有利于提高催化反应速率。

Mehnert等[34]采用浸渍法,将[BMIM][PF6]与硅胶拌匀,然后减压蒸发制得一种流动性好的固定化离子液体粉末。该粉末中含有25%(质量分数)的离子液体,该粉末颗粒中离子液体的平均厚度为0.6nm。他们将[Rh(NBD)-(PPh3)2]PF6(NBD为降冰片二烯,PPh3为三苯基膦)分别加入到有机溶剂、离子液体和上述的固定化离子液体中检测其催化加氢活性,结果显示,在固定化离子液体体系中的催化活性比其他2种体系均高。此外,固定化离子液体体系的稳定性也相当好,在间歇操作中重复使用18次活性无明显下降,不仅Rh的损失量仍然低于检测限,而且分离得到的有机相也不显示任何催化活性,从而进一步证实活性组分没有流失。

5.2 键合法

键合法即指载体与离子液体之间通过共价键的方式结合。除了上述浸渍法中提及的AlCl3型咪唑类离子液体能与硅羟基发生共价缩合外,绝大部分离子液体没有这种性质。因此,在键合前需要对咪唑基离子液体的N-侧链进行修饰。一种常用的试剂是三乙氧基氯丙基硅烷,该试剂与离子液体的咪唑基发生缩合反应,生成带有三乙氧基硅烷基丙基侧链的咪唑基离子液体,然后进一步与硅胶表面发生缩合反应生成新的Si-O-Si键,使离子液体固定到硅胶表面。

Kang等[35]分别采用键合法和浸渍法将离子液体(氯化1-烷基-3-甲基咪唑)固定在中孔泡沫硅胶(MCF)和无定形硅胶上,用于催化苯与十二烯之间的付氏烷基化反应,发

现键合法制备的固定化离子液体的稳定性高于浸渍法制备的相应催化剂。

5.3 溶胶一凝胶法

溶胶一凝胶法是一种将有机金属催化剂负载到无机载体中的常规方法,该方法能使催化剂更好地分散到载体上。最早将溶胶一凝胶法应用于离子液体固定化的是Valkenberg等[36],其思路与键合法相近,只不过所采用的硅羟基材料不是硅胶等固态物质,而是液态的正硅酸乙酯(TEOS),该物质与经侧链修饰的1-(三乙氧基硅烷丙基)-3-甲基咪唑基离子液体共聚形成凝胶,干燥后即可得到性质均一的固定化离子液体。Gadenne等[37]对采用溶胶一凝胶法合成的固定化离子液体的性质进行了研究,发现共聚后所形成的硅基材料的微孔结构与所采用的咪唑盐侧链的长短有一定关系。

5.4 聚合物载体固定化

除无机载体外,离子液体也可以固定在有机聚合物载体上,如将过渡金属催化剂与离子液体负载到聚合材料聚氯化二烯丙基二甲基胺中用于催化2-环己烯-l-酮和1,3-环辛二烯的氢化反应[38]。在催化剂活性测试中发现,聚合物负载离子液体催化剂显示了比未固定化离子液体有更高的活性,且催化剂稳定性较好,反应过程中没有检测到离子液体的流失。Carlin等将Pd负载到具有透气性的离子液体聚合物凝胶上,合成了一种用于非均相氢化反应的催化剂膜,所采用的离子液体为[BMIM][PF6],聚合物为二氟乙烯与六氟丙烯的共聚物。研究发现,该催化剂膜具有很高的加氢活性、选择性和稳定性。

6 结束语

随着人们环境意识的增强,符合当前绿色化学发展趋势的离子液体引起了人们的广泛关注,同时利用离子液体作催化剂的有机催化反应也日益增多。这就把离子液体的利用由原来大量作为溶剂而转移到作为反应的催化剂上来,从而降低成本、更好的利用资源。同时,亲水性离子液体参与的催化反应催化效果优于或相当于传统的催化剂,而且过程中不用或尽量少用有机溶剂,尤其是酸催化时避免了废酸污染,因而更加环境友好。人们对离子液体应用于多种类型的均相和多相催化反应过程进行了广泛的研究。离子液体还可应用于烷基、酰基化反应、硝化、环化等典型有机反应具有常规方法不具有的高产率、高选择性、产物易分离等特点。

总的来说,经过几十年的研究人们对离子液体已经有了较为深入的认识。而且,由于离子液体具有阴阳离子可调的特殊性质,特别是近年来不同类型的功能化离子液体的不断涌现,使得离子液体的家族不断壮大,从而大大拓宽了离子液体的应用领域。然而,目前人们对离子液体基础性质的了解还相对比较薄弱,因此研究者们正在把目光转向离子液体的基础研究,力求从微观层次上更加深入、透彻的认识和设计离子液体,在使用

中真正做到“量体裁衣”。总之,进一步完善离子液体的化学理论基础,积极开发更加廉价、易得、同时具有高效性、普适性的离子液体,促进离子液体的研究与应用开发,加快技术转化是绿色化学化工发展的必然趋势。

参考文献

[1]黄卫国. 新型离子液体的制备、表征及其在催化合成中的研究[D]. 上海: 华东师范大

学, 2005.

[2]胡德荣, 张新位, 赵景芝. 离子液体简介[J]. 首都师范大学学报, 2005, 26(2): 40-45.

[3]张玉芬, 乔聪震, 张金昌, 李成岳. 离子液体-环境友好的溶剂和催化剂[J]. 化学反应

工程与工艺, 2003, 19(2): 165-170.

[4]张宇. 功能型离子液的合成及其应用[D]. 杭州: 浙江大学, 2006.

[5]翁建阳. 新型季铵型离子液体的合成及其应用[D]. 杭州: 浙江大学, 2006.

[6]Wu J X, Beck B, Ren R X. Catalytic rosenmund-von brmm reaction in halide-based ionic

liquids[J]. Tetrahedron Left, 2002, 43: 387-389.

[7]寇元, 杨雅立. 功能化的酸性离子液体[J]. 石油化工, 2004, 33(4): 297-302.

[8]Joseph T, Sahoo S, Halligudi S B. Brfnsted acidic ionic liquids: A green, eficient and

reusable catalyst system and reaction medium for Fischer esterification[J]. J Mol Catal A: Chem, 2005, 234: 107-110.

[9]Forbes D C, Weaver K J. Brfnsted acidic ionic liquids: The dependence On water of the

Fischer esterification of acetic acid and ethanol[J]. J Mol Catal A: Chem, 2004, 214:

129-132.

[10]Mi X L, Luo S Z, Xu H, et al. Hydroxyl ionic liquid-immobilized quinuclidine for

Baylis-Hillman catalysis: Synergistic effect of ionic liquids as organocatalyst spports[J].

Tetrahedron, 2006, 62: 2537-2544.

[11]WehonT. Ionic liquids in catalysis[J]. Coord Chem Rev, 2004, 248: 2459-2477.

[12]顾彦龙, 彭家建, 乔琨, 等. 室温离子液体及其在催化和有机合成中的应用[J]. 化学

进展, 2003, 15(3): 222-241.

[13]Bemardo-Gusngto K, Trevisan Queiroz L F, de Souza R F, et al. Biphasic

oligomerization of ethylene with nickel-l,2-diiminophosphorane complexes immobilized in 1-n-butyl-3-Methylimidazohum organochloroaluminate[J]. J Catal, 2003, 219: 59-62.

[14]Mehnert C P. Supported ionic hquid phases[J]. Chem Eur J, 2005, 11:50-56.

[15]Mao L F, Li F W, Peng H H, et al. Immobilized ionic liquid/zinc chloride: Heterogeneous

catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. J Mol Catal A: Chem, 2006, 253: 265-269.

[16]朴玲钰, 付晓, 杨雅立, 等. 离子液体的酸性测定及其催化的二苯醚/十二烯烷基化

反应[J]. 催化学报, 2004, 25(1): 44-48.

[17]Chanvin Y, Gilbert B, Guibard I. Catalytic dimerization of alkenes by nickel complexesin

organochloroaluminatemolten sahs[J]. Chem Comnun, 1990(23): 1715-1716.

[18]黄崇品, 刘植昌, 徐春明, 等. [J]. 石油大学学报(自然科学版), 2003, 27(4): 120-122.

[19]刘植昌, 张彦红, 黄崇品. CuCl对Et3NHCl/AlCl3离子液体催化性能的影响[J]. 催化

学报, 2004, 25(9): 693- 696.

[20]杨雅立, 王晓化, 寇元. 离子液体的酸性测定及其催化的异丁烷/丁烯烷基化反应[J].

催化学报, 2004, 25(1): 60-64.

[21]Freemantle M. Buferde ionic liquid boosts catalyst activity[J]. Chemical&Engineering

News, 1999, 77(9): l1-12.

[22]Qiao C Z, Zhang Y F, Zhang J C, et al. Activity and stability investigation of liquid as

catalyst for alkylation of benzene with 1-dodecene[J]. Applied Catalysis A: General, 2004, (276): 61-66.

[23]张玉芬, 乔聪震, 张金昌, 等. 离子液体合成长链烷基苯[J]. 石油化工, 2003, 32(10):

844-846.

[24]Gadenne B., Hesemann P., Moreau J. [J]. Tetrahedron Lett, 2004, 45: 8157.

[25]Luo S Z, Mi X L, Zhang L, Liu S, Xu H, Cheng J. E Angew[J]. Chem. Int. Ed, 2006, 45,

3093.

[26]Yang S D, Shi Y, Sun Z H, Zhao Y B, Liang Y M. [J]. Tetrahedron Asymmetry, 2006, 17:

1895.

[27]Miao W S, Chan H. [J]. Adv. Synth. Catal., 2006, 348: 1711.

[28]Corma A, Garcia H, Leyva A. [J]. Tetrahedron, 2004, 60: 8553.

[29]Baleizao C, Gigante B, Garcia H, Corma A. [J]. Tetrahedron, 2003, 44: 6813.

[30]Clavier H, Audic N, Guillemin J C, Man duit M. J. [J]. Organomet. Chem., 2005, 690:

3585.

[31]Peng Y Q, Cai Y Q, Song G H, Chen J. [J]. Synlett, 2005, 2147.

[32]Qian W X, Jin E L, Bao W L, Zhang Y M. [J]. Tetrahedron,2006, 62: 556.

[33]RaoV, DattaR. Developmentofa supported molten-saltWacker catalyst for the oxidation

of ethylene to acetaldehyde[J]. Joumal of Catalysis, 1988, 114: 377-387.

[34]J Mehnert C P, Mozeleski E J, Cook R A. Supported ionic liquid catalysis investigated for

hydrogenation reactions[J]. Chin Commun, 2002, (24): 3010-3011.

[35]J Kang K K, Jung S A, Rhee H K. Ionic liquids supported on mesocellluar foam silica

(MCF) and its catalytic activity[J]. J Chin Inst Chem Eng, 2006, 37: 17-23.

[36]Valkenberg M H, deCastro C, Holderich W F. Immobilisation of ionic liquids on solid

supports[J]. Green Chem, 2002, 4: 88-93.

[37]Gadenlle B, Hesemann P, Moreau J J E. Supported ionic liquids: Ordered mesoporous

silicas containing covalently linked ionic species[J]. Chem Commun, 2004, (15):

1768-1769.

[38]Wolfson A, Vankelecoml F J, Jacobs P A. Co-immobilization of transition-metal

complexes and ionic liquids in a polymeric support for liquid phase hydrogenations[J].

Tetrahedron Lett, 2003, 4: 1195-1198.

离子液体的应用前景

离子液体的应用前景 离子液体是指全部由离子组成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。 离子液体的优点 一、离子液体无味、不燃,其蒸汽压极低,因此可用在高真空体系中,同时可减少因挥发而产生的环境污染问题; 二、离子液体对有机和无机物都有良好的溶解性能,可使反应在均相条件下进行,同时可减少设备体积; 三、可操作温度范围宽(-40~300℃),具有良好的热稳定性和化学稳定性,易与其它物质分离,可以循环利用; 四、表现出Lewis、Franklin酸的酸性,且酸强度可调。 上述优点对许多有机化学反应,如聚合反应、烷基化反应、酰基化反应,离子溶液都是良好的溶剂。 离子液体的应用前景 迄今为止,室温离子液体的研究取得了惊人的进展。北大西洋公约组织于2000年召开了有关离子液体的专家会议;欧盟委员会有一个有关离子液体的3年计划;日本、韩国也有相关研究的相继报道。在我国,中国科学院兰州化学物理研究所西部生态绿色化学研究发展中心、北京大学绿色催化实验室、华东师范大学离子液体研究中心等机构也开展专门的研究。兰州化学物理研究所已在该领域取得重大突破,率先制备了多种咪唑类离子液体润滑剂。 世界领先的离子液体开发者—德国SolventInnovation公司即将推出数以吨计的商品。SolventInnovation公司也正在开发一系列的离子液体,以取代对环境极有害的溶剂。其

绿色化学催化剂应用

绿色化学催化剂应用 摘要:从有机功能小分子催化、高分子负载催化剂、新型过渡路易酸催化、生物质催化、离子液体和超临界流体为介质的催化来介绍有机合成中的一些绿色反应。 关键字:绿色,有机合成,催化 催化化学 催化化学对人类社会的发展和进步起着深远的影响,80 %以上的传统化工过程都与催化作用有关。近年来随着人类对能源、环境和健康等问题的普遍关注,催化化学的作用和地位进一步获得了新的评价。因此,适当掌握一些关于催化剂及催化过程的知识是非常必要的。催化化学是一门面向化学类专业大学学生的一门学科。其目的主要是使学生了解催化化学的基础知识以及最新发展动向,通过学习,提高学生对化学和化工领域的环境友好的意识,为今后从事研究和开发打下良好的基础。学科内容主要包括:催化作用基础、催化剂的设计、制备和表征以及各种新兴催化技术在绿色化学、生物医药等领域的应用,如纳米技术、超临界流体技术和相转移催化等。 绿色化学 绿色化学的定义:是在化工产品生产过程中,从工艺源头上就运用环保的理念,推行源消减、进行生产过程的优化集成,废物再利用与资源化,从而降低了成本与消耗,减少废弃物的排放和毒性,减少产品全生命周期对环境的不良影响。绿色化工的兴起,使化学工业环境污染的治理由先污染后治理转向从源头上根治环境污染。 绿色化学被称为环境无害化学(Environmentally Benign Chemistry),由此

发展的技术称环境友好技术或洁净技术:即利用化学原理在化学品的设计、生产和应用中消除或减少那些对人类健康、社区安全和生态环境有毒有害物质的使用和生产,设计研究没有或只有尽可能少的环境负作用,在技术上和经济上可行的产品和化学过程。无论属于哪个学科,面对一项有利于人类社会的发展的新理论,都应该树立正确的态度和观念。所以,首先有必要解释清楚这些技术或科学理念的理论来源及前因后果、带来的益处、发展方向、积极意义、发展前景及发展方式等等。 绿色化学的研究内容及其实现方式 1、绿色化学研究的核心内容 绿色化学研究的核心内容是原子经济性这一概念最早是1991年美国Stanford大学的著名有机化学家Trost(为此他曾获得了1998年度的“总统绿色化学挑战奖”的学术奖)提出的,即原料分子中究竟有百分之几的原子转化成了产物。理想的原子经济反应是原料分子中的原子百分之百地转变成产物,不产生副产物或废物,实现废物的“零排放”。他用原子利用率衡量反应的原子经济性,认为高效的有机合成应最大限度地利用原料分子的每一个原子,使之结合到目标分子中。绿色化学的原子经济性的反应有两个显著优点:一是最大限度地利用了原料,二是最大限度地减少了废物的排放。近年来,开发新的原子经济反应已成为绿色化学研究的热点之一。国内外均在开发钛硅分子筛上催化氧化丙烯制环氧丙烷的原子经济新方法。此外,针对钛硅分子筛催化反应体系,开发降低钛硅分子筛合成成本的技术,开发与反应匹配的工艺和反应器仍是今后努力的方向。 BHC工艺是一个典型的原子经济性反应,不但合成简单,原料利用率高,而且无需使用大量溶剂和避免产生大量废物,对环境造成的污染小。Boots工艺肟化法从原料到产物要经过4步反应,每步反应中的底物只有一部分进入产物,所用原料中的原子只有40%进入最后产品中。而BHC工艺只需3步反应即可得到产品布洛芬,其原子经济性达到77%,也就是说新方法可少产废物37%。如果考虑副产物乙酸的回收,BHC 合成布洛芬工艺的原子有效利用率则高达99%。 环氧乙烷的生产,原来是通过氯醇法两步制备,采用银催化剂后,改为乙烯直接氧化成环氧乙烷的原子经济性反应。而合成乙二醇二乙酸酯(EGDA)的经典

催化剂的制备和应用

摘要: 均匀、连续、致密分子筛膜的合成和应用受到广泛关注。利用分子筛膜具有的筛分和催化作用,在传统颗粒催化剂或载体表面包覆分子筛膜形成复合型催化剂,可以实现膜基分离和催化过程的耦合,增加反应物选择性,提高目标产物收率。本文综述了近年来在不同类型颗粒催化剂或载体表面合成分子筛膜的制备方法,描述了分子筛膜包覆型复合催化剂用于不同催化反应体系的研究结果。同时,在归纳和总结已有研究成果基础上展望了分子筛膜包覆型催化剂的研究发展趋势。 关键词: 分子筛膜包覆载体膜催化反应器 Coated with molecular sieve membrane preparation and application of the catalyst Abstract:uniform, continuous, the synthesis and application of dense molecular sieve membrane is widely https://www.doczj.com/doc/067652727.html,ing molecular sieve membrane is screening and catalysis, in traditional particle catalyst or carrier cladding molecular sieve membrane formation on the surface of composite catalyst, can realize the coupling of membrane separation and catalytic process, increase the selectivity of reactants, improve the target product yield.In recent years was reviewed in this paper in different types of particle catalyst or carrier surface preparation methods of synthesis of molecular sieves membrane, describes the molecular sieve membrane coated type composite catalyst used for the results of different catalytic reaction system.At the same time, on the basis of induction and summary of existing research results discussed coated with molecular sieve membrane research and development trend of catalyst. Keywords:molecular sieve membrane coated carrier membrane catalytic reactor 1引言 分子筛膜具有较高的热稳定性,较好的化学稳定性。耐腐蚀性以及与特种材料的生物相容性,自首次支撑体分子筛膜专利报道至今,沸石分子筛膜的研究及生产已经成为膜科学技术领域的研究热点之一。图1分子筛膜论文和专利发表数量随年份的趋势图。支撑体分子筛膜的使用拓宽了分子筛的应用范围,避免了直接使用分子筛粉末床层带来的高压降及成型时加入粘结剂带来的使用效率降低等问题,使分子筛膜规模化的工业应用成为可能。加上分子筛具有筛分效应,较大的比表面积,可控的客体-吸附质相互作用,使其可用于膜催化和分离。分子筛膜在膜分离、膜催化反应器、化学传感器、电极材料、光电器件、低介电常数材料以及保护层方面均有潜在的应用前景。

有机催化剂的应用及发展

催化化学综述 综述题目:有机催化剂的应用及发展 学院:_ 专业:_ 班级:___ 学号:_ 学生姓名:_ 2013年 6月16日

有机催化剂的应用及发展 前言 在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒),在现代有机合成化学及化工中有着举足轻重的地位。现代化学工业产品的85%都是通过催化过程生产的,每种新催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。有机催化剂作为其中非常重要的一种,和我们生活的各个方面都有着联系,其发展历史也是几经波折,最终也取得了不错的成果。有机催化剂主要分为金属有机催化剂和非金属有机催化剂,其在社会生产中具有重要作用。

1.非金属有机催化剂 金属有机催化剂相反,非金属有机催化剂是指具备催化剂基本特征的一类不包含金属离子配位的低分子量有机化合物.此类非金属有机催化剂不同于通常的单纯以质子酸中心起主导作用的有机羧酸类、苯磺酸类有机催化剂,它是通过分子中所含的N,P等富电子中心与反应物通过化学键或范德华力形成活化中间体,同时利用本身的结构因素来控制产物的立体选择性。 1.1、非金属有机催化剂的种类 1、有机胺类:脯氨酸、咪唑啉酮类、金鸡纳碱类、Ⅳ杂环卡宾类、二酮哌嗪类、胍类、脲及硫脲类等; 2 、有机膦类:三烷基膦类、三芳基膦类等; 3 、手性醇类质子催化剂:如TADDOL类催化剂。 非金属有机催化剂和金属有机催化剂以及生物有机催化剂有着非常密切的联系,有的非金属有机催化剂例如叔膦本身又是金属有机催化剂很好的配体,还有些非金属有机催化剂显示出类似于酶的特性和催化机理.大量的研究发现大多数非金属催化剂有较高的催化活性,尤其是应用在不对称合成中,经其催化的反应大都有很好的收率和对映选择性,并且具有毒性低、价格低廉、容易制备、稳定性好、易于高分子固载等一系列优点,所以越来越受到各国化学家的重视。 1.2、非金属有机催化剂的应用 1.2.1.松香酯化催化剂 松香是自然界极其丰富的一种天然树脂 ,分为脂松香、浮油松香和木松香三种 ,松香具有防腐、防潮、绝缘、粘合、乳化、软化等特性 ,广泛应用于食品工业、胶粘剂工业、电子工业、医药和农药等 ,但松香性脆、易氧化、酸值较高、热稳定性差等缺点严重妨碍了它的应用。研究发现可以通过对松香进行化学改性 ,人为地赋予它各种优良性能 ,使其得到更广泛的应用。松香化学反应主要在枞酸型树脂酸分子的两个活性基团——羧基和共扼双键上进行。它的主要反应有:异构、加成、氢化、歧化、聚合、氨解、酯化、还原、成盐反应和氧化反应。松香的氢化和酯化是其中最主要的改性手段。

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

离子液体概述及其应用要点

离子液体概述及其应用 前言:离子液体是仅由阴阳两种离子组成的有机液体,也称之为低温下的熔盐。离子液体具有低蒸汽压,良好的离子导电导热性,液体状态温度范围广和可设计性等优点。离子液体所具备的这些其他液体无法比拟的性质,给大部分传统化工反应提供了新的思路,特别是在绿色化学设计中的应用。本文首先阐述了离子液体的基础知识,而后着重讨论了离子液体在催化及有机合成领域,摩擦领域,生物医药领域中的应用。 主题: 一 离子液体概述 1.1离子液体的发展及性质 20世纪时“离子液体”(IL )仅仅是表示熔融盐或溶盐的一个术语,比如高温盐。现在,术语IL 大部分广泛的用在表示在液态或接近室温条件下存在的熔盐。早在1914年,Walden [1]合成出乙基硝酸铵,熔点为12℃,但当时这一发现并未引起关注。20世纪40年代,Hurley 等人报道了第一个氯铝酸盐离子液体系AlCl3-[EPy]Br 。此后对这一氯铝酸盐离子液体系进行了不断的扩充,包括各种基团修饰,如N-烷基吡啶,1,3-二烷基咪唑等,另外研究了此类离子液体系在电化学,有机合成以及催化领域的应用并有很好的效果[2]。但是由于此类离子液体共同的缺点就是遇水反应生成腐蚀性的HCl ,对水和空气敏感,从而限制了他们的应用。所以直到1992年,Wilkes [3]领导的小组合成了一系列由咪唑阳离子与-4BF ,-6PF 阴离子构成的对水和空气

都很稳定的离子液体。此后在全世界范围内形成了研究离子液体的热潮。这是由于ILs 存在很多优异而特殊的性质。(1)液体状态温度范围广,300℃;(2)蒸汽压低,不易挥发;(3)对有机物,无机物都有很好的溶解性,是许多化学反应能够在均相中完成;(4)密度大,与许多溶剂不溶,当用另一溶剂萃取产物时,通过重力作用,可实现溶剂与产物的分离;(5)较大的可调控性;(6)作为电解质具有较大的电化学窗口,良好的导电性,热稳定性。这些特殊的物理化学性质可以产生许多新应用,同时也会提高现有的科技水平。到目前为止,已经合成并报道了大量的ILs ,图1显示了典型的阳离子结构,阴离子结构和侧基链[4]。我们可以通过选择合适的离子组成从而实现ILs 物理化学性质的设计。比如说咪唑阳离子(1-丁基-3-甲基咪唑阳离子)和-4BF 或-4AlCl 组合,生成的离子液体是亲水性的,而同样的阳离子和 -6PF 或-2NTf 产生的是强憎水性的离子液体。 目前研究较多的是咪唑阳离子和吡啶阳离子与含氟阴离子构成的离子液体。

离子液体(综述)

离子液体的现状、应用及其前景 姓名:丁文章专业:轻工技术与工程学号:6140206024摘要:离子液体因为具有如蒸汽压低,电化学窗口宽,物质溶解性好,稳定诸多优点而被极多的化学工作者关注.本文就离子液里的研究进展.离子液体的类型及应用,离子液体的毒性等几个方面做出详细的阐述,并对离子液体的前景做出了初步的预测. 关键词:离子液体;离子液体的类型;应用;毒性; Abstract:Ionic liquid has the following advantages, wide electrochemical window, steam down material good solubility ,This paper is about of the research progress in the ionic liquid, the types and application of ionic liquids and the toxicity of ionic liquid, and made a preliminary forecast to the prospect of the ionic liquid. Keyword:Ionic liquid;the types of Ionic liquid; application of ionic liquids; toxicity of ionic liquid; 1引言 离子液体[1]是指全部由有机阳离子和无机或有机阴离子构成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体,在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体. 离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+HNO3-的合成(熔点12℃) .这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体.1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体.他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) .但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用.直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽.1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃.在这以后,离子液体的应用研究才真正得到广泛的开展. 与传统的有机溶剂相比,离子液体具有如下特点[2]:(1) 液体状态温度范围宽,从低于或接近室温到300℃, 且具有良好的物理和化学稳定性;(2)无色、无臭, 不挥发, 几乎没有蒸气压.(3) 蒸汽压低,不易挥发,消除了VOC(Volatile Organic Compounds)环境污染问题;(4) 对大量的无机和有机物质都表现出良好的溶解能力, 且具有溶剂和催化剂的双重功能,可作为许多化学反应溶剂或催化活性载体;(5) 具有较大的极性可调控性, 粘度低, 密度大, 可以形成二相或多相体系, 适合作分离溶剂或构成反应

第二章催化剂制备、性能评价及使用技术

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

离子液体及其在化学中的应用

离子液体及其在化学中的应用 随着科技发展和环保意识的增强,清洁、低耗、高效的化学化工反应是发展的必然趋势.由于绝大多数化学反应需要在溶剂中进行,而有机溶剂的用量大、挥发性强是造成化学化工污染的主要原因之一.寻找对环境友好、有利于反应控制的介质和溶剂是目前化学化工需要解决的迫切问题之一.室温离子液体适应这种需要,正在快速为是继超临界CO2之后的新一代绿色溶剂。 一离子液体及其特点 离子液体[1]是指在室温或接近室温呈液态的离子型化合物,也称为低温熔融盐.常见的阳离子有季铵、季、咪唑盐和吡作为离子化合物,离子液体熔点较低的主要原因是:结构的不对称性使离子难以规则紧密地堆积,难以形成晶体或固体. 与传统的溶剂相比,离子液体具有以下3个显著的特性: 1 在室温下,离子液体蒸汽压几乎为零,并且不燃烧、不爆炸、毒性低,溶解性能强,可以较好地溶解多数有机物、无机物和金属配合物.多数离子液体在300e仍能保持液态,因而离子液体液态温度范围大,既可室温使用,也可以高温使用.离子液体作为溶剂,不仅不会造成溶剂损耗和环境污染,而且使用温度范围大,适用范围广.

2) 离子液体具有良好的导电性和较宽的电化学稳定电位窗.离子液体的电化学稳定电位窗比传统溶剂大得多,多数为4V左右,而水在酸性条件下为1.3V,在碱性条件下只有0.4V.因此使离子液体在电化学研究中有着广泛的用途. 3) 离子液体具有可调节的酸碱性,作为反应介质使用极为方便.例如,将Lewis酸AlCl3加入到离子液体氯化1-丁基-3-甲基咪唑中,当AlCl3的摩尔分数x<0.5时,体系呈碱性;当x=0.5时,呈体系呈中性;当x>0.5时,体系表现强酸性[4].同时,还发现离子液体存在/潜酸性0和/超酸性0.例如,把弱碱吡咯或N,N)二甲基苯胺加到中性的离子液体1-丁基 -甲基咪唑四氯铝酸盐中,体系表现出很强的潜酸性[5],如果把无机酸溶于上述离子液体中可观察到超强酸性[6]. 二离子液体在化学中的应用 由于离子液体所具有的独特性能,目前它被广泛应用于化学研究的各个领域中 .1 用作反应溶剂 2.1.1 氢化反应离子液体作为氢化反应的溶剂已有大量的报道[7~9],对于氢化反应,用离子液体替代普通溶剂的优点是:反应速率提高数倍,离子液体和催化剂的混合液可以重复利用.研究表明,离子液体在氢化反应中发挥了溶剂和催化剂的双重

炼油催化剂的现状分析和技术进展

炼油催化剂的现状分析和技术进展 炼油催化剂在原油制造业中具有十分重要的应用,对我国基础油的工业生产水平的提高做出了卓越的贡献,目前国内外在炼油催化剂的投入以及取得的进展方面来看,我国的技术较欧美国家稍弱,但是由于近几年政府在原油上加大了投入,以及积极的引入欧美发达国家的技术,原油业也取得了不错的成果。文章就炼油过程中所使用的催化剂的种类及效用分析以及每项技术的发展前景展开论述。 标签:炼油催化剂;生产水平;现状分析;应用进展 1 炼油催化剂工业现状的特点分析情况 自从种类繁多的催化剂出产之后,它的发展的状况,对于以石油和化工等作为支柱的产业,以及人生存环境的维护等都有非常重要的促进作用,在国外的炼油催化剂制造业中以此种技术而达到了突出的进展,我们从宏观角度的产业发展看有以下两方面特点。 (1)为了使催化剂生产厂的收益日渐增多,现在出现生产厂家的多家兼融或连锁状况,从而稳固竞争中的地位,也方便对产品进行优化。 注明的Albemarle公司以6125亿美元在2004年5月购买了阿克苏公司的炼油催化剂这一重要业务,此行为使在美国以化学品著称的公司凭借特种化学品在市场上由第10的排位上升到第6位。此次收购后又开展了相关业务,所以Albemarle公司也因得到助力而一举成为世界上最大的催化剂生产商。 (2)根据市场状况的改变,积极的调整业务。在二十世纪九十年代初,世界上的催化裂化催化剂,其平均生产力每年约4万吨,全球超过4万吨及以上的公司一共有6家,由于催化剂的价低而重要,逐渐催化剂产业就开始占据世界大商场相关份额的1/3。其中有加氢的处理、加氢的裂化、加氢的精制、异构化以及石脑油催化重整等主要生产手段。在南方化学公司中炼油催化剂业务在炼提催化剂的技术取得了些成就。在脱芳技术的方面上,该公司研创的高度抗硫的ASAT脱芳催化剂,可用于多个方面,例如改质瓦斯油或者生产出超极清洁的燃料。 2 炼厂的各种催化剂种类介绍及效用进展分析 (1)催化轻汽油醚化、催化裂化轻汽油醚化后降低汽油烯烃的量并增加汽油辛烷值的活性炭负载杂多酸,并能使汽油减少雷德蒸气压,汽油含痒量增多,以及使汽油的稳定性得到很好的改进,当前的醚化催化剂大部分采取的是具强酸性的离子交换型树脂,从其名可知其具有很强的酸性,而且其还有一个特点就是低温转化时效率较高,其缺点就是热稳定性低、磺酸基易脱落以及失活之后就不能再生等。目前几年的研究,由于使用的特殊酸及多功能催化等优点的杂多酸受

离子液体的发展与应用

绿色化学又称环境无害化学、环境友好化学、清洁化学。绿色化学即用化学的技术和方法去减少或停止那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂和试剂、产物、副产物等的使用与产生,使污染消除在生产的源头,并使整个合成过程和生产过程对环境友好。绿色化学是当今国际化学科学研究的前沿学科之一,是一门具有明确社会需求和科学目标的新型交叉学科。由于绿色化学化工所追求的目标是淘汰有毒原材料,探求新的合成路线,采用无污染的反应途径和工艺,能最大限度地减少“三废”,并实行“原材料筛选-产品生成-产品使用循环再利用”全过程控制;绿色化学技术的发展和应用不但能提高生产效率和优化产品,而且能同时提高资源和能源的利用率,减轻污染负荷,改善环境质量,从而大幅度地提高生产过程中的社会和经济效益,成为实现经济和社会可持续发展的途径之一。因此,绿色化学与技术的推广应用必然带来一场新的产业革命。这个绿色浪潮将使环境变得经济性,而不再仅是使经济性成为技术创新的主要推动力。 美国科学家、绿色化学的倡导者阿纳斯塔斯(Anastas P.T.)和韦纳(Waner J.C.)提出绿色化学的12条原则,这些原则在许多论述中被多次引用,其内容:(1)防止废物的生成比在其生成后处理更好;(2)设计的合成方法应使生产过程中所采用的原料最大量地进入产品之中;(3)设计合成方法时,只要可能,不论原料、中间产物和最终产品,均应对人体健康和环境无毒、无害;(4)设计的化学产品应在保持原有功效的同时,尽量无毒或毒性很小;(5)应尽可能避免使用溶剂、分离试剂等助剂,如不可避免,也要选用无毒无害的助剂;(6)合成方法必须考虑反应过程中能耗对成本与环境的影响,应设法降低能耗,最好采用在常温常压下的合成方法;(7)在技术可行和经济合理的前提下,采用可再生资源代替消耗性资源;(8)在可能的条件下,尽量不产生衍生物;(9)合成方法中采用高选择性的催化剂比使用化学计量助剂更优越;(10)化工产品要设计成在终结其使用功能后,不会永存于环境中,要能分解成可降解的无害物质;(11)进一步发展分析方法,对危险物质在生成前实行在线监测和控制;(12)一个化学过程中使用的物质或物质的形态,应考虑尽量减小实验事故的潜在危险,如气体释放,爆炸和着火等[1]。 绿色化学发展至今已经取得了很大的进展,笔者主要通过对离子液体的讨论来对绿色化学的进展进行综述。 1离子液体的发展 离子液体是由特定阳离子和阴离子构成的在室温或近于室温下呈液态的物质,其主要的特点是:几乎没有蒸气压,不挥发,无色,无嗅;具有较大的稳定温度范围,较好的化学稳定性及较宽的电化学稳定电位窗口;通过阴阳离子的设计可调节其对无机物、水、有机物及聚合物的溶解性,且其酸度可调至超强酸。离子液体良好的环境友好性和可设计性,使得其作为新型的反应介质正在成为研究热点[2~3]。与传统溶剂相比,用离子液体作有机化学反应的介质,可获得更高的选择性和更快的反应速率,同时还具有反应条件温和、环境友好的特点[4~6]。多种重要的有机合成反应,如加成反应、聚合反应、氧化还原反应、烷基化反应、酰基化反应、酯化反应等均可在离子液体介质中进行,避免了其它有毒溶剂及催化剂的使用。反应中离子液体可循环使用,且效率无明显下降。因此,离子液体越来越受到大家的重视,2007年发表和待发表的各研究小组以总结自己离子液体工作为主的评述就有10余篇[7~18],说明大家都在思考离子液体的明天。 1.1离子液体改变了载体模板的概念 以离子液体为“载体”实现多相催化剂的液相化近年来受到高度重视,热点之一就是担载金属催化剂向可溶性纳米粒子催化剂方向的发展。此前很多 离子液体的发展与应用 李长途 (吉林石化公司海特化工厂吉林132000)

相转移催化技术原理及应用

相转移催化技术原理及应用 摘要:介绍了相转移催化技术的基本原理, 分别讨论了液一液相转移催化反应、固一液相转移催化反应和三相催化反应的特点。着重记述了近年来相转移催化技术在医药工业和化工中的应用进展。采用相转移催化技术具有操作简便、反应条件温和、收率高、质量好等优点, 对于工业生产进行工艺技术改进、降低生产成本, 具有重要现实意义。 关键词:相转移催化技术、原理、医药工业、化工、应用进展 相转移催化反应( 简称PTC 反应) 是20 世纪60 年代发展起来的一种异相反应的新理论和方法。它能使采用传统方法难以实现的异相反应顺利进行,能够加快反应速率,降低反应温度,改变反应的选择性,抑制副反应发生。同时相转移催化反应无需使用价格昂贵的无水溶剂或非质子溶剂,且对碱的要求低,可以使用碱金属、碱土金属氧化物的水溶液。因此该技术的研究和应用得到了迅速发展。现在,相转移催化技术已经应用到了化学合成的绝大多数领域,涉及到医药、农药、香料、造纸、化工、制革、高分子材料等重要领域[1 ]。 1、相转移催化反应的原理 相转移催化反应虽然涉及的各种类型化学反应很多, 但概括起来可分为三大类: 液一液相转移催化、固一液相转移催化和三相催化。 1.1 固一液相转移催化 在固-液相转移催化反应中,应用较多的络合剂主要有冠 醚、穴醚和聚乙二醇类等,其中工业上使用较多的为价格低廉的聚乙

二醇等两亲类化合物。聚乙二醇是一类大众化工产品,结构呈螺旋构象它的催化机理与冠醚等的催化机理相似,均为通过氧原子与金属阳离子络合,将活性阴离子带入有机相,从而达到相转移催化的目的。聚乙二醇的自动活动的链可以形成与冠醚类似的环,且不受孔穴大小的限制,因此是理想的冠醚取代物,得到了广泛的应用。 1.2 液一液相转移催化 液-液相转移催化反应是在一个互不混溶的两相系统中进行。其中一相( 一般为水相) 为碱或含起亲核试剂作用的盐类,另一相为有机相,其中含与上述盐类起反应的作用物。在加入相转移催化剂后,这些物质中的阳离子是亲油性的,既溶于水相也溶于油相。当在水相中碰到分布在其中的盐类时,水相中过剩的阴离子便与相转移催化剂中的阴离子进行交换。因此,通常的相转移催化反应过程至少包括两个步骤: 一种反应物从本相转移至另一相;转移的反应物与没有转移的反应物发生反应。在相转移催化剂机理中,亲核取代反应发生在有机相,并且是控制步骤。 1.3 三相催化 为了解决相转移催化剂回收难、价格高的问题,近年来发展了一种新的相转移催化法: 三相催化反应, 将相转移催化剂连接在聚合物载体上, 它是一种不溶水也不溶于有机相的固体高分子, 因此称为三相催化剂, 也称聚合物催化剂。此法的显要优势是催化剂可定量回收, 干燥后活性不受影响, 可重复使用, 因此该领域研究开发的时间不长, 但发展很快, 并积累了大量的理论和实践经验, 在选择和

离子液体的功能化及其应用

中国科学 B 辑 化学 2006, 36 (3): 181~196 181 离子液体的功能化及其应用 李雪辉① 赵东滨 ②③* 费兆福② * 王乐夫① (①华南理工大学化学工程系 广东省绿色化学产品技术重点实验室, 广州 510640; ②Swiss Federal Institute of Technology, Lausanne, EPFL, CH-1015 Lausanne, Switzerland; ③北京大学化学与分子工程学院, 北京 100871) 摘要 综述了近年来功能化离子液体的设计开发以及在多领域内的应用, 其中包括“双功能化“离子液体的设计和制备. 离子液体—— 以绿色介质出现的新材料, 其应用研究的潮流和趋势, 随着功能化研究的发展, 将超越绿色化学的领域, 为其在众多领域的应用开拓出更广阔的前景. 关键词 离子液体 功能化离子液体 双功能化离子液体 反应介质 不对称合成 纳米材料 多孔材料 润滑剂 烟道气脱硫 油品脱硫 收稿日期: 2005-07-27; 接受日期: 2005-11-27 *联系人, E-mail: dongbin.zhao@epfl.ch , zhaofu.fei@epfl.ch 1 引言 20世纪90年代后期兴起的绿色化学, 是从源头清除污染的一项措施, 它为人类解决化学工业对环境的污染, 实现经济和社会可持续发展提供了有效的手段[1]. 目前在化学工业中大量使用的有毒、易挥发的有机溶剂由始至终都违背着绿色化学的理念. 在寻找有机溶剂的替代品时, 人们发现离子液体具有高热稳定性、可忽略的蒸气压、宽的液态温度区间、可调控的对极性及非极性物质的良好溶解性[2], 它能够替代传统有机溶剂介质进行化学反应(特别是催化反应), 从而实现反应过程的绿色化, 因此离子液体的研究得到了迅猛的发展[3~14]. 咪唑类离子液体与过渡金属催化剂形成卡宾配合物[15,16], 以及离子液体稳定纳米粒子的实验证据[17], 为解释离子液体体现出和传统溶剂不同的特性提供了理论依据. 离子液 体的物理化学性质研究可为这些理论探讨提供基础数据, 目前已经成为离子液体研究领域的另一热点[18]. 现今越来越多的离子液体被商业化, 不断有新型离子液体诞生, 并在催化科学、材料科学、分离技术等领域里得到应用[19]. 按统计学推测, 根据阴阳离子的不同组合, 离子液体的种类可达到1018, 而目前有机溶剂却只有300~400种, 离子液体家族成员如此庞大的数量, 暗示着其开发应用的广阔前景. 以往大部分的离子液体研究集中在以咪唑为阳离子骨架, 带有饱和烷烃的离子液体上. 然而, 由于离子液体的诸多性质, 如熔点、黏度、密度以及溶解能力都能通过改变离子液体的结构而得到调整; 因此, 理论上我们可以通过这种做法来优化特定的反应. 寇元率先提出将离子液体功能化的思路: 将功能团引入到离子液体的阳离子或阴离子上, 这些功能团赋予了离子液体专一的特性而与溶解于其中的溶

催化剂的制备及贵金属催化剂的回收

论文题目:催化剂的制备及贵金属催化剂的回收课程名称:石油化工 专业名称:应用化学 学号:1109341009 姓名: 成绩: 2014年3月29日

催化剂的制备及回收 摘要:在工业领域,催化剂是一种重要的化学制品,不但能够促进化学反应的发生,还能控制化学反应的速率,在工业领域有着重要的应用。对于有些化学反应来讲,如果没有催化剂的介入,将无法正常实现。然而,在参与反应后很多催化剂很难回收利用或已经中毒。 关键词:催化剂;回收技术;贵金属;催化剂中毒 Preparation Of Catalysts And Recycling Abstract:In industry, the catalyst is an important chemical products, not only to promote the chemical reaction, but also to control the chemical reaction rate, in the industrial field has important applications. For some chemical reactions in terms of, if not the catalyst intervention will not work properly achieved. However, after involved in the reaction a lot of catalyst is difficult to recycle or have been poisoned. Keywords: Catalyst; recycling technology; precious metals; catalyst poisoning 引言 催化剂最早由瑞典化学家贝采里乌斯发现。100多年前,贝采里乌斯偶然发现,白金粉末可以加快酒精和空气中的氧气发生化学反应,生成了醋酸。后来,人们把这一作用叫做触媒作用或催化作用,希腊语的意思是“解去束缚”。后来,经过科学家们的不断研究和总结,将催化剂普遍定义[1]为--催化剂是一种能够改变一个化学反应的速度,却不能改变化学反应热力学平衡位置,本身在化学反应中不被明显的消耗的化学物质。 1 催化剂的主要分类 催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂, 1.1 均相催化剂 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作

离子液体应用及其发展

离子液体应用及其发展 罗树琴生化系化学教育2001541 摘要:离子液体也称为室温离子液体或低温盐,通常是指熔点低 于100℃的有机盐。由于完全有例子组成,离子液体有许多不同于常规有机溶剂的性质。离子液体在各方面都有广泛应用前景,目前离子液体的制备和研究正在快速的发展,其应用前景也是相当广阔的。 关键字:离子液体应用发展及前景 离子液体也称为试问离子液体或低温盐,通常是指熔点低于100℃的有机盐。由于完全有例子组成,离子液体有许多不同于常规有机溶剂的性质。如熔点低,不挥发,液程范围宽,热稳定性好。溶解能力强,性质可调,不易燃,电化学窗口宽等。与传统的有机溶剂,水,超临界流体等相比,起黏度低,比热容大,有的对水对空气均稳定,故易于处理,制造较为容易,不太昂贵。是理想的绿色高效溶剂,研究其性质极其应用成了一项热门课题, 1.离子液体的性质 离子液体大多呈无色,完全由阴阳离子组成,但样离子较大,且是有机物。离子液体 1有酸碱性(主要由阳离子决定,可通过调节阳离子来改变其酸碱性), 2亲水性:含C越多亲水性越弱 3热稳定性:较高的稳定性与杂原子氢键,阴阳离子组成相关,其蒸汽压低(可忽略不计),不易挥发,可去取代有机溶剂。 4熔点低:熔点与阴阳离子组成有关,是随阳离子对称性增大而增大的 5溶解性好:可溶解有机物,无机物,聚合物等 6密度:和阴阳离子组成有关,阳离子增多密度变大 7生物降解性:其一降解,相当环保,是绿色的环保剂 8电化学窗口:其可产生5-7V的高电压, 2.离子液体的合成制备 2.1 常规合成法 2.1.1一步法:采用叔胺与卤代烃或脂类物质发生加成反应,或利用叔胺的碱性和酸性发生中和反应而一步生成目标离子液体的方法 2.1.2两步法:两步法的第一步是通过叔胺和卤代烃反应制备出

微孔分子筛催化剂的制备及应用

2 银川能源学院 工业催化 学生姓名席坤 学号 1310140108 指导教师王伟 院系石油化工学院 专业班级能源化工1302班 微孔分子筛催化剂的制备及应用 (银川能源学院能源化工1302班1310140108 席坤) 摘要:微孔分子筛具有表面积大、水热稳定性高、微孔丰富均一、表面性质可调等性能,被广泛地用作催化剂。分子筛作为催化剂常应用在石油化工、有机中间体的合成和物质的分离中。本文主要是简述了一下微孔分子筛催化剂及对微孔分子筛的改进方法和分子

筛催化剂在不同反应中的应用。 关键词:催化剂;微孔;分子筛;应用 一、引言 分子筛是一种具有立方晶格的硅铝酸盐化合物,具有均匀的微孔结构,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛”分子的作用,故称分子筛。根据形成的孔径的大小,国际纯粹与应用化学协会(IUPAC)定义:微孔(小于2nm),介孔(2~50nm),大孔(大于50nm)三类。自1756年,瑞典科学家 A.F.Cronstedt 在研究矿物时发现了最早的天然沸石分子筛到现在通过各种方法合成的新型分子筛,人们已经从结构,性质,作用原理等各个方面全面认识了分子筛。根据不同的需要合成具有不同功能的分子筛材料,不同种多性能的分子筛被越来越多的人研究[1]。因此分子筛也不再局限于由硅氧四面体和铝氧四面体组成的阴离子骨架硅铝酸盐体系 ,而是泛指一类具有规则孔结构的结晶无机固体。这些具有新型组成和结构的分子筛进一步扩大了微孔分子筛的应用和发展空间。分子筛作为催化剂特别具有活性高,选择性好,稳定性和抗毒能力强等优点。近年来,它作为一种化工新材料发展得很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用[2]。 二、微孔分子筛的合成方法[3] 传统的微孔分子筛合成方法有:水热体系合成法,非水体系合成法,蒸汽相体系合成法,干粉体系合成法,微波法,高温焙烧法,向导剂法等等。 1、水热体系合成法 又称水热晶化法,是将硅源、铝源、碱(有机碱和无机碱)和水按一定比例合,放入反应釜中,在一定温度下晶化而制备沸石晶体。通常低硅铝比沸石是在低温水热体系中合成的,而高硅铝比的沸石于高温水热体系中合成。 2、非水体系合成法 非水体系合成法于本世纪八十年代初期由Bibbq和Dale[19]开创。它不以水为溶剂,而代之以有机物作为溶剂进行沸石的合成。开辟了一条沸石合成的新途径,并为沸石的固相转变机理提供了有力的佐证。 3、蒸汽相体系合成法 蒸汽相体系合成法区别于水热体系合成法和非水体系合成法,蒸汽相体系合成法是

相关主题
文本预览
相关文档 最新文档