当前位置:文档之家› 郑大材科热处理原理思考题(08)

郑大材科热处理原理思考题(08)

郑大材科热处理原理思考题(08)
郑大材科热处理原理思考题(08)

《材科热处理原理》思考题(08级)

第一章固态相变概论

1. 金属固态相变的主要类型有哪些?

2. 热力学主要的状态函数与状态变数之间的关系如何?

3. 金属固态相变按(1)相变前后热力学函数、(2)原子迁移情况、(3)相变方式分为哪几类?

4. 金属固态相变有哪些特点?

5. 固态相变的驱动力和阻力包括什么?加以说明。

6. 固态相变的过程中形核和长大的方式是什么?加以说明。

7. 何谓热处理?热处理的目的是什么?热处理在机械加工过程中作用有那些?热处理与合金相图有

何关系?

8. 金属固态相变主要有哪些变化?

9. 说明下列符号的物理意义及加热速度和冷却速度对他们的影响?

Ac1、Ar1、Ac3、Ar3、Accm、Arcm

10. 一些概念:固态相变、热处理、平衡转变、不平衡转变、同素异构转变、多形性转变、共析转变、包析转变、平衡脱溶沉淀、调幅分解、有序化转变、伪共析转变、马氏体转变、贝氏体转变、块状转变、不平衡脱溶沉淀、一级相变、二级相变、扩散型相变、非扩散型相变、半扩散型相变、共格界面、半共格界面、非共格界面、惯习面、位向关系、应变能、界面能、过渡相、均匀形核、非均匀形核、晶界形核、位错形核、空位形核、界面过程、传质过程、协同型方式长大、非协同型方式长大、切变机制、台阶机制第三章奥氏体与钢在加热过程中的转变

1. 奥氏体(A)的晶体结构,组织形态与性能有什么特点?

2. 奥氏体形成的热力学条件是什么?共析钢的珠光体(平衡态组织)向奥氏体转变属于何种转变?试说明珠光体向奥氏体转变过程。

3. 钢在实际热处理加热和冷却过程时的临界点为什么偏离相图上的临界点?实际的临界点如何表示?实际的临界点与加热和冷却速度有什么关系?

4. 试以碳扩散的观点说明奥氏体长大机理。(奥氏体的形成包括哪几个过程?为什么说奥氏体形成是以C扩散为基础并受碳扩散控制的?)

5. 说明奥氏体形成时铁素体先消失的原因。

6. 非共析钢的奥氏体的形成与共析钢的奥氏体的形成有哪些异同?

7. 共析碳钢奥氏体等温形成动力学(TTA图)有什么特点?非共析钢和共析碳钢奥氏体等温形成动力学图有什么异同?

8. 影响奥氏体等温形成的形核率的因素有哪些?如何计算A线长大速度?影响奥氏体转变速度的因素有哪些?如何影响?(奥氏体等温形成动力学(形核与长大)的经验公式)(为什么温度升高,奥氏体转变速度加快?)(合金元素对奥氏体的形成速度有什么影响?)

9. 合金钢的奥氏体形成动力学有什么特点?

10. 连续加热时奥氏体形成动力学有什么特点?试以连续加热时奥氏体的形成动力学曲线,说明奥氏体形成时临界点的变化。

11. 连续加热时奥氏体形成在动力学、转变机理、奥氏体状态上有什么特点?

12. 8级奥氏体晶粒的共析钢中,每平方毫米含多少个奥氏体晶粒?每个奥氏体晶粒中含多少个铁、碳原子?每个奥氏体晶胞中含多少个碳原子?

13. 奥氏体晶粒度的概念,晶粒度级别与晶粒大小的关系式。

14. 何谓起始晶粒度、实际晶粒度、本质晶粒度?试加以比较。如何显示和评定晶粒度级别?

15. 影响奥氏体晶粒长大的因素有哪些?如何影响?如何防止和控制奥氏体晶粒长大?(如何获得细小的奥氏体晶粒?)

16.合金元素对奥氏体的晶粒长大有什么影响?

17. 为什么用Al脱氧的钢或加入Ti、V、Zr、Nb等合金元素的钢是本质细晶粒钢?本质细晶粒钢的奥氏体晶粒是否一定细小,而本质粗晶粒钢的奥氏体晶粒是否一定粗大?试加以解释。

18. 含碳量对亚共析钢的奥氏体晶粒长大倾向有何影响?

19. 含碳量为0.8%的钢分别在950℃、860℃下进行奥氏体化,其奥氏体形成速度、奥氏体起始晶粒度、实际晶粒度、本质晶粒度个有何区别?

20. 为什么奥氏体晶粒随温度的升高而长大?

21. 获得何种状态的奥氏体晶粒为理想?为什么?(提示:从奥氏体晶粒度、奥氏体成分均匀化程度上加以说明。)

22. 一些概念:奥氏体(化)、重结晶、粒状奥氏体、针状奥氏体、过热度、奥氏体形核、奥氏体长大、剩余渗碳体、奥氏体成分均匀化、奥氏体等温形成动力学曲线(图)、线长大速度、晶粒度、起始晶粒度、实际晶粒度、本质晶粒度、本质粗晶粒钢、本质细晶粒钢、正常长大、异常长大、过热、过热敏感性、过烧、组织遗传、相遗传

第四章钢的过冷奥氏体转变及热处理

1. 有关过冷奥氏体等温转变动力学图(C曲线、S曲线、TTT图)

(1)共析钢的过冷奥氏体等温转变曲图分析:各线、区的意义;

(2)随过冷度增加,过冷奥氏体发生的哪三种转变(珠光体型转变、马氏体型转变、贝氏体型转变)?转变产物是什么?各属何种类型的转变?比较三种转变的特征。(过冷度与过冷奥氏体分解有什么关系?)(3)过冷奥氏体等温转变动力学图为何呈“C”字形?

(4)非共析钢的过冷奥氏体等温转变动力学图与共析钢的过冷奥氏体等温转变动力学图的异同?

(5)合金钢的过冷奥氏体等温转变图类型如何

(6)加入合金元素或改变含碳量对该图有何影响?

(7)影响过冷奥氏体等温转变动力学图的形状因素有哪些?如何影响?

(8)采用金相硬度法测定共析钢冷奥氏体等温转变图的原理和过程。

(9)过冷奥氏体等温转变动力学图有何应用?

2. 过冷奥氏体连续冷却转变图(CT图、CCT图)

(1)共析钢过冷奥氏体连续冷却转变图分析:线、区的意义;

(2)不同的冷却速度下奥氏体发生的转变;

(3)何谓淬火临界冷却速度?影响Vc的因素有哪些?如何影响?对实际生产有何意义?

(4)非共析钢CCT图与非共析钢CCT图的异同点?

(5)另一种形式的CCT图

(6)采用金相硬度法测定过冷奥氏体连续转变动力学图的原理和过程。

(7)过冷奥氏体连续转变动力学图有何应用?

(8)分析亚共析钢的过冷奥氏体连续转变图各线、区的意义;

3. 钢的TTT图和CCT图有什么区别与联系?

4. 一些概念:过冷奥氏体等温转变动力学图(IT图、C曲线、TTT图)、过冷奥氏体连续转变动力学图(CCT图、CT图)、上临界冷却速度(淬火临界冷却速度)、下临界冷却速度、

5. 列表比较珠光体转变、马氏体转变和贝氏体转变的转变过程、转变特点、转变产物及产物的组织形态、力学性能。(比较奥氏体转变、珠光体转变、马氏体转变、贝氏体转变的形成温度、转变过程、领先相、切变共格性、扩散性、转变的完全性、转变的产物及其形态和组成、产物的硬度。)

6. 碳和合金元素对奥氏体转变、珠光体转变、马氏体转变、贝氏体转变有什么影响?

7. 奥氏体化条件对珠光体转变、马氏体转变、贝氏体转变有什么影响?

8. 应力和塑性变形对珠光体转变、马氏体转变、贝氏体转变有什么影响?

9. 材料中可能存在多种类型的固态相变(A、P、M、B、回火转变),碳钢在加热、冷却及回火时的组织转变的规律如何?

10. 比较奥氏体转变、珠光体转变、贝氏体转变、马氏体转变的主要特征。(比较奥氏体转变、珠光体转变、马氏体转变、贝氏体转变的形成温度、转变过程、领先相、切变共格性、扩散性、转变的完全性、转变的产物及其形态和组成、产物的硬度。)

11. 请绘制含碳量为0.77%的钢的过冷奥氏体等温转变图,标出各线、区代表的意义;并回答下列问题:

(1)简要说明该图为什么呈“C”字形?

(2)该钢的过冷奥氏体随过冷度的增大将发生哪三种转变?转变产物及组成是什么?各属于何种类型的转变?(该钢的过冷奥氏体在高、中、低温发生哪些转变?)

(3)列表简单比较上述三种转变的特征,产物的形态和性能。

(4)若加入合金元素或改变含碳量对该图有何影响?(非共析钢和共析钢的TTT图有什么区别? 该钢中加入Cr、Co、Al、Ni合金元素对TTT图有何影响?)

(5)说明采用金相硬度法测定共析钢冷奥氏体等温转变图的原理和方法。(试设计一种采用金相硬度法测定共析钢TTT图的方法。)

第五章珠光体与钢在冷却时的高温转变

1. 何谓珠光体片间距?片状珠光体片间距与过冷度有什么关系?(珠光体片间距与与哪些因素有关?)(影响珠光体片间距的因素有哪些?如何影响?)

2. 何谓珠光体团?珠光体团的直径与哪些因素有关?

3. 片状珠光体可分为哪几类?试说明形成温度、片间距和力学性能上的特点。

4. 片状珠光体的形成包括哪两个基本过程?珠光体形成热力学条件是什么?

5. 共析钢的奥氏体向片状珠光体转变属于何种转变?试说明奥氏体向片状珠光体的转变过程(形成机制)。(试说明珠光体转变是以C扩散为基础并受C扩散控制的相变)

6. 片状珠光体长大方式有哪些?试以碳扩散的观点说明片状珠光长大机理?

7. 简述粒状珠光体的形成过程。(片状珠光体转为粒状珠光体机制)

8. 分析珠光体转变动力学图并说明珠光体转变动力学的特点。影响珠光体转变动力学的因素有哪些?如何影响?

9. 合金钢的珠光体转变有什么特点?

10. 非共析钢的珠光体形成和转变动力学图与珠光体转变共析钢的有何差异?

11. 珠光体常见形态有哪些?从形态、力学性能上加以比较。(珠光体有哪两种基本形态?它们在力学性能上有何差异?)(珠光体的力学性能、影响力学性能的因素、片状珠光体和粒状珠光体在力学性能的差异。)(试说明粒状珠光体在力学性能优异的原因。)

12. 珠光体的力学性能有什么特点?影响珠光体的力学性能的因素有哪些?如何影响?片状珠光体和粒状珠光体在力学性能上有何差异?

13. 为什么珠光体片间距越小,珠光体的强度和塑性越高?

14. 说明先共析相的析出条件、形态

15 含碳量为1.0%的钢在900℃下锻造停锻后(1)空冷,(2)炉冷,冷到室温的组织状态如何?他们在力学性能上是否相同?为什么?

16. 对碳钢采用何种热处理工艺可获得:(a)索氏体;(b)回火索氏体,并说明这两种组织形态以及力学性能有何差异。

17. 一些概念:珠光体型转变、贝氏体型转变、马氏体型转变、片状珠光体、粒(球)状珠光体、索氏体、屈氏体、珠光体片间距、珠光体团、领先相、纵向长大、横向长大、先共析相、伪共析转变、伪珠光体、共析组织、魏氏组织、铅浴淬火(派登处理)、相间析出、特殊碳化物、孕育期。

第六章马氏体与钢在冷却时的低温转变

1. 马氏体和马氏体转变的含义是什么?

2. 马氏体的晶体结构的类型如何?试加以说明。

3. 何谓马氏体正方度?为什么有些钢的马氏体具有异常正方度?

4. 试绘出碳原子在马氏体点阵结构中的可能位置构成的三个亚点阵图。

5. 马氏体转变有哪些主要特征?(五个特征的内容:非恒温性、切变共格性和表面浮凸效应、无扩散性、与奥氏体存在着严格的晶体学关系、可逆性)

6. 哪些实验现象可以说明马氏体转变具有无扩散性?

7. 为什么钢中马氏体转变必须在连续冷却过程中转变?而恒温马氏体的数量很少?

8. 为什么钢中马氏体转变不能进行到底,而总有一定的残余奥氏体?

9. 马氏体有哪两种基本形态?它们在亚结构以及力学性能上有什么差异? 影响马氏体形态及其内部亚结构的因素有哪些?(马氏体有哪两种基本形态?它们在力学性能上有什么差异?)(两种基本形态是板条马氏体和片状马氏体:形成的钢和合金、形成温度、组织特征、亚结构、与奥氏体的晶体学关系、形成过程、残余奥氏体)(马氏体的形态和亚结构与合金成分、M S点有什么关系?)

10. 比较板条马氏体和片状马氏体:形成的钢和合金、形成温度、组织特征、金相形态、立体形态、亚结构、晶体类型、与奥氏体的晶体学关系、形成过程、残余奥氏体。

11. 各种碳钢的淬火马氏体形态如何?

12. T0、M S、M f、M d点有什么物理意义?Ms点为什么很低?

13. 马氏体转变的热力学学条件是什么?驱动力是什么?马氏体的形成条件是什么?

14. 影响钢的M S点因素有哪些?如何影响?(C和合金元素对钢的M S点有什么影响?)

15. 测定钢的M S点有什么意义?

16. 在M S点以上或以下对马氏体进行塑性变形,对马氏体转变的规律有何影响?

17. 马氏体转变的动力学主要有哪几种方式?各种方式有什么特征?

18. 马氏体降温转变的规律是什么?

19. 切变型马氏体转变的特征是什么?

20. 以马氏体转变的二次切变模型(K-S切变模型和G-T模型)说明马氏体的形成过程和马氏体亚结构的形成。

21. 马氏体的力学性能有何特点?为什么?

22. 钢中马氏体具有高硬度、高强度的本质是什么?

23. 马氏体的硬度和淬火钢的硬度与哪些因素有关?合金元素影响如何?

24. 马氏体的硬度、强度和韧性与含碳量及亚结构的有什么关系?(马氏体的力学性能的显著特点、马氏体高硬度、高强度的本质;马氏体相变强化机制)(为什么钢中板条马氏体具有较好的强韧性,而片状马氏体的塑性和韧性差?)(说明钢中马氏体的常见形态,亚结构以及力学性能特点。)(说明钢中马氏体的形态对力学性能的影响。)

25. 马氏体的硬度、强度和韧性与含碳量及亚结构有什么关系?(说明钢中马氏体的常见形态,亚结构以及力学性能特点。)

26. 区别马氏体的固溶强化、相变强化、时效强化、晶界强化。

27. 淬火钢的硬度与马氏体的硬度是否相同?为什么?

28. 马氏体的物理性能有何特点?

29. 什么是显微裂纹敏感度?影响形成显微裂纹敏感度的因素有哪些?

30. 什么是奥氏体稳定化?奥氏体稳定化分为哪几类?影响奥氏体稳定化的因素有哪些?如何影响?奥氏体稳定化在实际生产中有何应用?

31. 马氏体转变在实际中有何应用?简要说明。

32. 一些概念:马氏体转变、马氏体、马氏体转变的非恒温性、马氏体转变不完全性、马氏体转变的切变共格性、表面浮凸、第二类共格、马氏体转变的无扩散性、位向关系、惯习面、西山关系、K-S关系、G-T关系、马氏体转变的可逆性、马氏体的正方度(c/a)、板条(低碳、位错)马氏体、片状(针状、高碳、孪晶)马氏体、蝶状马氏体、薄片状马氏体、ε—马氏体、马氏体板条、板条马氏体束、马氏体领域、板条马氏体块、隐晶(针)马氏体、形变诱发马氏体、残余奥氏体、惯习面、位向关系、Ms(马氏体开始转变温度)、Mf(马氏体转变终止点)、Md(形变诱发马氏体点)、马氏体变温转变、马氏体等温转变、马氏体爆发式转变、马氏体表面转变、奥氏体稳定化、奥氏体热稳定化、奥氏体机械稳定化、马氏体固溶强化、马氏体相变强化、马氏体时效强化、马氏体晶界强化、冷处理、马氏体转变的超塑性(相变超塑性)、显微裂纹、显微裂纹的敏感度、形状记忆合金、形状记忆效应、热弹性马氏体、伪弹性、强韧化热处理、自回火

第七章贝氏体与钢在冷却时的中温转变

1. 贝氏体转变的主要特征(七个主要特征)有哪些?

2. 贝氏体的组织形态有哪几种?其晶体结构有何特点?

3. 比较比较无碳化物贝氏体、上贝氏体和下贝氏体的组织特征(金相形态、电镜形态、立体形态、形成温度、组成、铁素体的形态及分布、碳化物的形态及分布、亚结构、与奥氏体的晶体学关系)

4. 分析贝氏体转变的动力学图,说明贝氏体转变的动力学特点和影响因素

5. 贝氏体转变的热力学条件是什么?B S、B f点有什么物理意义?

6. 贝氏体的形成包括哪两个基本过程?简述贝氏体的形成过程。

7. 简述上贝氏体、下贝氏体和无碳化物贝氏体形成机理。

8. 贝氏体力学性能有何特点?影响贝氏体强度和韧性的因素有哪些?

9. 上贝氏体和下贝氏体在组织形态和力学性能上有什么差异?(上贝氏体和下贝氏体的强韧性有什么特点?并说明与形态的关系。)

10. 有些钢在实际生产中为什么希望得到下贝氏体组织?试从组织结构和力学性能的角度来分析。(在实际生产中常采用等温淬火的方法得到下贝氏体组织,而不是上贝氏体组织,为什么?)

11. 比较奥氏体转变、珠光体转变、贝氏体转变、马氏体转变的主要特征。

12. 何谓魏氏组织?魏氏组织的形态特征如何?对钢的力学性能的有什么影响?

13. 一些概念:贝氏体、贝氏体转变上贝氏体、下贝氏体、无碳化物贝氏体、粒状贝氏体、反常贝氏体、柱状贝氏体、ε-Fe x C、贝氏体等温转变动力学图、B S点、B f点、W S点、贝氏体转变的扩散性、切变机制、台阶机制、贝氏体有效晶粒尺寸、魏氏组织、铁素体魏氏组织、渗碳体魏氏组织。

14. 奥氏体、珠光体、马氏体、贝氏体转变的特征——形成温度范围、转变过程(包括孕育期、形核的部位、长大的速度)和领先相、有无表面浮凸、点阵的切变性、转变时的共格性、转变时的晶体学关系、转变时的扩散性(碳的再分布、铁和合金元素的扩散)、等温转变的完全性?¢转变产物及其形态和组成、转变产物的硬度。

15. 材料中可能存在多种类型的固态相变(A、P、M、B、回火转变),碳钢在加热、冷却及回火时的组织转变的规律。

16. 含碳量为1.2%的碳钢,其原始组织为片状珠光体和网状滲碳体,欲得到回火马氏体和粒状碳化物组织,试制订所需热处理工艺,并注明工艺名称、加热温度、冷却方式以及热处理各阶段所获得的组织。(A c1=730℃,A c c m=830℃)

17. 碳钢显微组织变化对其力学性能的影响规律。

第八章钢的回火转变

1. 什么是回火?回火的目的是什么?为什么说淬火组织为亚稳组织?为什么说淬火钢一定要进行回火?

2. 简述淬火钢回火时的组织转变过程。(淬火钢的回火时的组织转变的五个阶段:马氏体中碳的偏聚、马氏体分解、残余奥氏体转变、碳化物类型的转变、基体α相回复再结晶,碳化物聚集长大)

3. 淬火钢回火分为哪几个阶段?说明各阶段回火的温度范围,回火后的产物,产物的性能,各阶段转变过程有什么特点?

4. 试简述马氏体分解阶段组织结构的变化。(简述回火时马氏体分解的转变过程。)

5. 简述回火时碳化物的转变过程。

6. 简述回火时残余奥氏体的转变过程。

7. 何谓回火马氏体?回火马氏体与马氏体在组织、性能上有何区别?

8. 何谓回火屈氏体和回火索氏体?它们分别与屈氏体和索氏体在组织、性能上有何区别?

9. 区别淬火钢回火过程中出现的碳化物ε-Fe x C、η-Fe2C、χ-Fe5C2、θ-Fe3C。

10. 简述α相回复再结晶过程。

11. 简述淬火钢回火过程中碳化物的转变过程和碳化物的聚集长大过程。

12. 碳化物有哪些类型?淬火钢回火过程中碳化物的转变方式有哪几种?试举例说明。碳化物聚集长大方式是什么?

13. 淬火内应力分为哪几类?淬火钢回火时淬火内应力如何变化?

14. 合金元素对钢回火时过程(组织转变和力学性能的变化)有什么影响?

15. 淬火钢回火时力学性能的变化

(1)低碳钢淬火后回火时力学性能如何变化?

(2)高碳钢淬火后回火时力学性能如何变化?

(3)中碳钢淬火后回火时力学性能如何变化?

16. 淬火钢回火时强度、硬度、塑性、韧性、淬火裂纹等如何变化?(碳钢淬火后回火时,力学性能发生什么变化?)

17. 何谓回火脆性?回火脆性分为哪两类?各有什么特征?受哪些因素的影响?形成的机理是什么?如何减小和防止回火脆性?(何谓第一、第二类回火脆性?它们各有什么特征?)

18. 淬火钢回火分为哪几类?说明各回火的温度范围、回火后的组织和性能有什么特点?(45钢淬火后进行低温、中温、高温回火后的组织和性能有什么特征?)

19. 回火转变产物与过冷奥氏体分解产物在组织、性能和热处理工艺等方面有何区别?

(1)回火马氏体、下贝氏体、马氏体(2)回火索氏体、索氏体

(3)屈氏体、回火屈氏体(4)粒状珠光体、回火索氏体

(5)回火马氏体、回火屈氏体、回火索氏体(6)

(索氏体和回火索氏体在组织形态上、性能上和热处理工艺上有何区别?)

(简述淬火钢回火过程中,组织和力学性能的变化过程)。

(碳钢显微组织变化对其力学性能的影响规律。)

20. 对碳钢采用何种热处理工艺可获得: (a)索氏体;(b)回火索氏体,并说明这两种组织形态以及力学性能有何差异。

21. 一些概念:回火、碳原子偏聚、马氏体的分解、马氏体双相分解、马氏体单相分解、自回火、回火马氏体、回火屈氏体、回火索氏体、独立转变(离位析出、单独形核)、原位转变(原位析出、就地形核)、热陈化稳定、第I类内应力、第II类内应力、第III类内应力、回火抗力、二次淬火、二次硬化、回火脆性、第一类回火脆性、第二类回火脆性、ε-Fe x C、η-Fe2C、χ-Fe5C2、θ-Fe3C。

第九章合金的脱溶沉淀与时效

1. 熟悉概念:固溶处理、时效、时效硬化、脱溶、连续脱溶、不连续脱溶、局部脱溶。

2. 试述Al-Cu合金的时效过程和脱溶物的结构,写出时效序列。

3. Al-Cu合金的时效过程和淬火钢的回火过程有何共同点和不同点?

4. 试述脱溶过程中出现过渡相的原因。

5. 试述过饱和固溶体脱溶转变的动力学及其印象因素

6. 合金体系中存在不同半径的粒子时,如果在一定温度下保温,则小颗粒溶解,大颗粒长大,其驱动力是什么?小颗粒如何溶解,大颗粒如何长大的?颗粒的平均半径如何随时间变化?

7. 过饱和固溶体的分解机制有哪两种?他们有哪些区别?

8. 试述时效脱溶过程中合金性能变化的规律及影响因素。

9. 什么是时效合金的回归现象?举例说明其应用。

10. 试述界面能和弹性应变能在无核相变中起的作用。

11. 举例说明马氏体时效钢的时效过程和强化机制。

12. 合金元素对铝合金时效过程有什么影响?举例说明。

13. 合金元素对铝合金时效过程有什么影响?举例说明。

比较概念

1. 平衡转变和不平衡转变

2. 平衡脱溶沉淀和不平衡脱溶沉淀

3. 共格界面、半共格界面和非共格界面

4. 惯习面和位向关系

5. 固态相变的均匀形核和非均匀形核

6. 界面过程和传质过程

7. 协同型方式长大和非协同型方式长大

8. 扩散型相变、非扩散型相变和半扩散型相变9. 一级相变和二级相变

10. 有核级相变和无核相变

11. 奥氏体形成动力学曲线(图)和过冷奥氏体转

变动力学曲线(图)

12. 奥氏体、过冷奥氏体和残余奥氏体

13. 本质粗晶粒钢和本质细晶粒钢

14. 奥氏体起始晶粒度、本质晶粒度和实际晶粒度

15. Ac1、A1、Ar1

16. Ac3、A3、Ar3

17. Accm、Acm、Arcm

18. 组织遗传和相遗传

19. 奥氏体晶粒的正常长大和异常长大

20. 粒状奥氏体和针状奥氏体

21. 重结晶和再结晶

23. 奥氏体临界晶核和奥氏体起始晶粒

26. 过热和过烧

27. 奥氏体晶粒和珠光体晶粒

28. 共析组织和伪共析组织(珠光体和伪珠光体)

29. 片状铁素体、网状铁素体和块状铁素体

30. 先共析铁素体和共析铁素体

31. 过冷奥氏体等温转变图和过冷奥氏体连续冷却

转变图(TTT图和CCT图)

32. 珠光体转变终了线和中止线

33. C曲线的鼻尖和淬火临界冷却速度

34. 先共析相和领先相

35. 先共析铁素体、无碳化物贝氏体和魏氏体铁素

体组织36. 粒状珠光体和片状珠光体

37. 淬火临界冷却速度与淬透性

38. 上临界冷却速度和下临界冷却速度

39. 孕育期与孕育作用

40. 粒状珠光体和粒状碳化物

41. 第I类内应力、第II类内应力、第III类内应力

42. 回火抗力、二次硬化和二次淬火

43. 索氏体和回火索氏体

44. 马氏体、回火马氏体和下贝氏体

45. 固溶强化、相变强化和时效强化

46. 珠光体、索氏体和屈(托)氏体

47. 固溶处理和时效(析出)

48. 固溶处理和时效

49. 第一类回火脆性和第二类回火脆性

50. 原位析出和离位析出

51. 屈氏体、回火屈氏体

52. 粒状珠光体、回火索氏体

53. 回火马氏体、回火屈氏体、回火索氏体

54. 上贝氏体和下贝氏体

郑大材科热处理原理思考题(材科专业06级)

《材科热处理原理》思考题(材科专业06级) 第一章固态相变概论 1. 金属固态相变的主要类型有哪些? 2. 热力学主要的状态函数与状态变数之间的关系如何? 3. 金属固态相变按(1)相变前后热力学函数、(2)原子迁移情况、(3)相变方式分为哪几类? 4. 金属固态相变有哪些特点? 5. 固态相变的驱动力和阻力包括什么?加以说明。 6. 固态相变的过程中形核和长大的方式是什么?加以说明。 7. 何谓热处理?热处理的目的是什么?热处理在机械加工过程中作用有那些?热处理与合金相图有何关系? 8. 金属固态相变主要有哪些变化? 9. 说明下列符号的物理意义及加热速度和冷却速度对他们的影响? Ac1、Ar1、Ac3、Ar3、Accm、Arcm 10. 一些概念:固态相变、热处理、平衡转变、不平衡转变、同素异构转变、多形性转变、共析转变、包析转变、平衡脱溶沉淀、调幅分解、有序化转变、伪共析转变、马氏体转变、贝氏体转变、块状转变、不平衡脱溶沉淀、一级相变、二级相变、扩散型相变、非扩散型相变、半扩散型相变、共格界面、半共格界面、非共格界面、惯习面、位向关系、应变能、界面能、过渡相、均匀形核、非均匀形核、晶界形核、位错形核、空位形核、界面过程、传质过程、协同型方式长大、非协同型方式长大、切变机制、台阶机制 第二章钢中奥氏体的形成 1. 奥氏体(A)的晶体结构,组织形态与性能有什么特点? 2. 奥氏体形成的热力学条件是什么?共析钢的珠光体(平衡态组织)向奥氏体转变属于何种转变?试说明珠光体向奥氏体转变过程。 3. 钢在实际热处理加热和冷却过程时的临界点为什么偏离相图上的临界点?实际的临界点如何表示?实际的临界点与加热和冷却速度有什么关系? 4. 试以碳扩散的观点说明奥氏体长大机理。(奥氏体的形成包括哪几个过程?为什么说奥氏体形成是以C扩散为基础并受碳扩散控制的?) 5. 说明奥氏体形成时铁素体先消失的原因。 6. 非共析钢的奥氏体的形成与共析钢的奥氏体的形成有哪些异同? 7. 共析碳钢奥氏体等温形成动力学(TTA图)有什么特点?非共析钢和共析碳钢奥氏体等温形成动力学图有什么异同? 8. 影响奥氏体等温形成的形核率的因素有哪些?如何计算A线长大速度?影响奥氏体转变速度的因素有哪些?如何影响?(奥氏体等温形成动力学(形核与长大)的经验公式) (为什么温度升高,奥氏体转变速度加快?)(合金元素对奥氏体的形成速度有什么影响?) 9. 合金钢的奥氏体形成动力学有什么特点? 10. 连续加热时奥氏体形成动力学有什么特点?试以连续加热时奥氏体的形成动力学曲线,说明奥氏体形成时临界点的变化。

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

热处理原理与工艺第二章教案

第二章珠光体转变 共析碳钢加热奥氏体化后,在共析温度以下冷却时,奥氏体可发生三种基本的转变:珠光体转变、贝氏体转变和马氏体转变。这三种转变得到的组织中,马氏体硬度最高,贝氏体次高,珠光体最低。 图2-1是实测的共析钢奥氏体等温冷却转变曲线的示意图(也称等温C曲线),图中三条线分别表示转变开始线、转变终了线和马氏体转变开始温度。奥氏体在A1以下不同温度等温冷却时,将发生以下转变:A1~550℃珠光体转变,550℃~Ms之间为贝氏体转变。在Ms以下则发生马氏体转变。珠光体区又分为粗珠光体P、细珠光体 S (也称索氏体)、极细珠光体T (也称托氏体);贝氏体区分为上贝氏体B上和下贝氏体B下。如将共析钢工件冷至650℃并等温,当等温时间与珠光体转变开始曲线相交时,奥氏体将开始发生珠光体转变,转变为细珠光体S;此后,随等温时间延长,奥氏体不断减少、S不断增多,当等温至与珠光体转变终了曲线相交时,奥氏体全部转变为S。 图2-1 共析碳钢等温转变曲线示意图 本章主要介绍珠光体组织形态、形成过程、影响因素及力学性能等。 第一节珠光体组织形态和力学性能 一、珠光体组织形态 当含碳量为0.77%的奥氏体冷却到A1温度以下时,发生共析转变,分解为片状的铁素体和渗碳体交替重叠组成的共析组织(见图2-2)。这种组织经浸蚀后,在光学显微镜下观察,其金相形态酷似珍珠母产生的光学效果,故而得名珠光体。珠光体组织中铁素体和渗碳体的体积比约为7:1,故铁素体片总是比渗碳体厚。

图2-2 共析碳钢片状珠光体 500X 珠光体的金相组织中有许多片层排列位向大致相同的小区域(见图2-3),称为珠光体领域或珠光体团。在一个原奥氏体晶粒内,可形成几个位向不同的珠光体团。相邻两渗碳体(或铁素体)片中心之间的距离S0,称珠光体片层间距(见图2-3a所示)。片层间距S0是影响珠光体力学性能的一个重要参数。实验表明,珠光体团的尺寸随原奥氏体晶粒尺寸减小而减小。 图2-3 珠光体片层间距和珠光体团示意图 a)珠光体片层间距S。 b)珠光体团 通常所说的珠光体组织粗细,是指组织中渗碳体和铁素体片层厚薄程度不同,也就是珠光体片层间距大小的不同。如前已述及的组织中的珠光体、索氏体和托氏体组织,实质上都是渗碳体和铁素体交替重叠组成的片状组织,只是片层间距大小不同而已(见表2-1)。 由表中数据可以看出,转变温度愈低,片间距愈小(即珠光体组织愈细),硬度愈高。较高温度下,形成的珠光体组织,片间距较大,在通常光学显微镜下观察,就能清楚分辨片层组织形态。在较低温度形成的索氏体组织,在显微镜放大至600倍以上,才能分辨其片层组织形态。如果转变温度更低,形成托氏体组织,其片层组织更细小,即使在高倍的光学显微镜下也分辨不出其片层形态,只能看到其总体是一团黑,必须用高倍率的电子显微镜才能分辨出极薄的渗碳体和铁素体片。 在工业用钢中,还可见到另一种形态的珠光体组织,在铁素体上均匀分布着球粒状碳化物,称为粒状珠光体,见图2-4。粒状珠光体一般是经球化退火后获得的组织。球化退火工艺不同,获得

金属学与热处理原理试题2004-2005

金属学与热处理原理试题 2004-2005学年第一学期 第一部分金属学 一、解释下列名词并说明其性能特点(本大题共2小题,每小题3分,总计6分) 1、渗碳体 2、铁素体 二、问答题(本大题共5小题,总计40分) ?写出Fe-Fe3C相图中共析和共晶转变式,并说明含碳量及温度。(8分) ?写出Fick第一定律和第二定律的表达式,并说明应用范围、区别及联系。(8分) ?图示并说明什么是热过冷。(4分) ?何谓加工硬化?产生原因是什么?有何利弊?(12分) ?无论置换固溶体还是间隙固溶体都会引起强度升高,试分析其原因。(8分) 三、计算题(本大题共2小题,每小题5分,总计10分) 1、计算莱氏体中Fe3C的相对含量。 2、已知Cu的熔点为1083℃,试估算其再结晶温度。(δ≈0.35) 四、实验题(本大题共2小题,每小题3分,总计6分) 1、试画出含碳量为0.45%的铁碳合金金相显微组织示意图; 2、试分析含碳量分别为0.20%、0.45%、0.65%的铁碳合金在组织和力学性能上有何不同? 第二部分热处理原理(38分) 一、名词解释(本大题共3小题,每小题2分,总计6分) 1、热处理 2、马氏体 3、实际晶粒度 二、填空题(本大题共16个空,每空1分,总计16分) 1、马氏体的基本形态有和,此外还有、和。通常低碳钢所形成的马氏体为,高碳钢所形成的马氏体为. 2、按回火温度不同,通常将回火分为、和; 回火温度分别是、和;其回火组织分别为、和。 三、何谓奥氏体?简述奥氏体的转变的形成过程及影响奥氏体晶粒长大的因素。(本大题6分)

四、问答题:(本大题共2小题,每小题5分,总计10分) 将共析钢加热至780℃,经保温后,请回答: 1、若以图示的V1、V 2、V 3、V 4、V5和V6的速度进行冷却,各得到什么组织? 2、如将V1冷却后的钢重新加热至530℃,经保温后冷却又将得到什么组织?力学性能有何变化? 答案 第一部分金属学(62分) 一、 1.Fe3C为复杂晶体结构的间隙化合物,其硬度高,脆性大,塑性几乎等于零,硬脆相,是钢中主要强化相。 2. α-Fe中溶入溶质元素而构成的固溶体,铁素体仍保持α-Fe的体心立方晶格,由于间隙小,溶碳极少,力学性能与纯铁相同,强度、硬度不高,具有良好的塑性,770 oC以下为铁磁性。 二、 1.A0.77 (F0.0218+Fe3C)共析L4.3(A 2.11+Fe3C)共晶; 2.稳态 非稳态

金属学与热处理课后习题答案第二章

第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答: 2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答:

2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使G s<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<G s,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。

2、具有相同的临界形核半径。 3、所需形核功都等于所增加表面能的1/3。 不同点: 1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变 化而变化。 2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 3、两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的 影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界 面是平直的。 晶体生长形状与温度梯度关系: 1、在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面-晶体学小平面与熔点等温面成一定角度,这种情况有利于形成规则几何形状的晶体,固液界面通常呈锯齿状。 粗糙界面的晶体,其显微界面平行于熔点等温面,与散热方向垂直,所以晶体长大只能随着液体冷却而均匀一致地向液相推移,呈平面长大方式,固液界面始终保持近似地平面。 2、在负温度梯度下: 具有光滑界面的晶体:如果杰克逊因子不太大,晶体则可能呈树枝状生长;当杰克逊因子很大时,即时在较大的负温度梯度下,仍可能形成规则几何形状的晶体。具有粗糙界面的晶体呈树枝状生长。 树枝晶生长过程:固液界面前沿过冷度较大,如果界面的某一局部生长较快偶有突出,此时则更加有利于此突出尖端向液体中的生长。在尖端的前方,结晶潜热散失要比横向容易,因而此尖端向前生长的速度要比横向长大的速度大,很块就长成一个细长的晶体,称为主干。这些主干即为一次晶轴或一次晶枝。在主干形成的同时,主干与周围过冷液体的界面也是不稳的的,主干上同样会出现很多凸出尖端,它们会长大成为新的枝晶,称为称为二次晶轴或二次晶枝。二次晶枝发展到一定程度,又会在它上面长出三次晶枝,如此不断地枝上生枝的方式称为树枝状生长,所形成的具有树枝状骨架的晶体称为树枝晶,简称枝晶。 2-6 简述三晶区形成的原因及每个晶区的特点。 答: 三晶区的形成原因及各晶区特点: 一、表层细晶区

金属学与热处理试题及答案

复习自测题 绪论及第一章金属的晶体结构自测题 (一)区别概念 1.屈服强度和抗拉强度; 2.晶体和非晶体; 1刚度与强度 (二)填空 1.与非金属相比,金属的主要特性是 2.体心立方晶胞原子数是,原子半径是,常见的体心立方结构的金属有。 3.设计刚度好的零件,应根据指标来选择材料。 4 T K是材料从状态转变为状态时的温度。 5屈强比是与之比。 5.材料主要的工艺性能有、、和。 7材料学是研究材料的、、和四大要素以及这四大要素相互关系与规律的一门科学;材料性能取决于其内部的,后者又取决于材料的和。 8 本课程主要包括三方面内容:、和。 (三)判断题 1.晶体中原子偏离平衡位置,就会使晶体的能量升高,因此能增加晶体的强度。 ( ) 2.因为面心立方和密排六方晶体的配位数和致密度都相同,因此分别具有这两种晶体结构的金属其性能基本上是一样的。( ) 3.因为单晶体具有各向异性,多晶体中的各个晶粒类似于单晶体,由此推断多晶体在各个方向上的性能也是不相同的。( ) 4.金属的理想晶体的强度比实际晶体的强度高得多。 5.材料的强度高,其硬度就高,所以其刚度也大。 (四)改错题 1.通常材料的电阻随温度升高而增加。 3.面心立方晶格的致密度为0.68。 4.常温下,金属材料的晶粒越细小时,其强度硬度越高,塑性韧性越低。 5.体心立方晶格的最密排面是{100}晶面。 (五) 问答题

1.从原子结合的观点来看,金属、陶瓷和高分子材料有何主要区别?在性能上有何表现? 2.试用金属键结合的方式,解释金属具有良好导电性、导热性、塑性和金属光泽等基本特性。 (六) 计算作图题 1.在一个晶胞中,分别画出室温纯铁(011)、(111)晶面及[111)、[011)晶向。2.已知一直径为11.28mm,标距为50mm 的拉伸试样,加载为50000N 时,试样的伸长为0.04mm。撤去载荷,变形恢复,求该试样的弹性模量。 3.已知a-Fe 的晶格常数a=0.28664nm,γ-Fe 的晶格常数a=0.364nm。试求出a-Fe 和γ-Fe 的原子半径和密度(已知Fe 的原子量为55.85)。 4.设有一刚性球模型。当由面心立方晶格转变成为体心立方晶格时,计算其体积膨胀率。若在912℃时,γ-Fe的晶格常数a=0.3633nm,a-Fe 的晶格常数a=0.2892nm,又计算γ-Fe 转变成为a-Fe 的体积膨胀率。试比较两者差别的原因。 第二章纯金属的结晶自测题 (一)判断题 1.液态金属结构与固态金属结构比较接近,而与气态金属相差较远。 2.过冷是结晶的必要条件,无论过冷度大、小,都能保证结晶过程得以进行。 3.当纯金属结晶时,形核率总是随着过冷度的增大而增加。4.金属面心立方晶格的致密度比体心立方晶格的致密度高。() ( ) 5.金属晶体各向异性的产生,与不同晶面和晶向上原子排列的方式和密度相关。( ) 6.金属的结晶过程分为两个阶段,即先形核,形核停止之后,便发生长大,使晶粒充满整个容积。 7.玻璃是非晶态固体材料,没有各向异性现象。 (二)选择题 ( ) 1.纯金属结晶时,冷却速度越快,则实际结晶温度将。 A.越高且越低 C 越接近理论结晶温度D.高低波动越大 2.在实际金属结晶时,往往通过控制N/G 比值来控制晶粒度。当时,将获得粗大晶粒。 A.N/G 很大 3.晶体中的晶界属于。 B.N/G 很小C.N/G 居中,0.N/G=1 A.点缺陷且线缺陷 4.材料的刚度与有关。 C 面缺陷0.体缺陷 A.弹性模量B.屈服强度 C 抗拉强度D.延伸率 5.纯金属结晶的冷却曲线中,由于结晶潜热而出现结晶平台现象。这个结晶平台对应的横坐标和纵坐标表示。 A 理论结晶温度和时间 B 时间和理论结晶温度 C 自由能和温度 (三)问答题 D.温度和自由能 1.阐述液态金属结构特点并说明它为什么接近固态而与气态相差较远? 2.如果其它条件相同,试比较下列铸造条件下铸件晶粒的大小,为什么?

简述常用热处理工艺的原理与特点

简述常用热处理工艺的原理与特点。 热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。 热处理工艺原理 1、正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 2、退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。 3、淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。 4、回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。 5、调质处理:一般习惯将淬火加高温回火相结合的热处理称为调质处理。调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织更优。它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。 特点:金属热处理是机械制造中的重要工艺之一,金球的热处理工艺与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。 比较钢材与非金属材料热处理的异同点。 热处理有金属材料热处理和非金属材料热处理 相同点:热处理的原理基本一样,都是一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。 不同点: 1.钢的表面热处理有两大类:一类是表面加热淬火热处理,另一类是化学热处理。 非金属材料的表面热处理:喷漆、着(染)色、抛光、化学镀后再电镀(如ABS)等。 2.金属材料热处理包括:退火、正火、淬火和回火。 非金属材料热处理包括碳纤维预氧化、碳化、石墨化设备,石墨化烧结等;复合材料成形以及空间环境模拟,包括热压罐,热压机,KM系列模拟罐,用户分布于汽车、模具、工具、碳纤维加工和其他高端应用领域。

金属热处理原理期末考试复习题

《金属热处理原理》复习题1 一、选择题(每空分,共分) 1.钢的低温回火的温度为()。 A.400℃ B.350℃ C.300℃ D.250℃ 2.可逆回火脆性的温度范围是()。 A.150℃~200℃ B.250℃~400℃ C.400℃~550℃ D.550℃~650℃ 3.不可逆回火脆性的温度范围是()。 A.150℃~200℃ B.250℃~400℃ C.400℃~550℃ D.550℃~650℃ 4.加热是钢进行热处理的第一步,其目的是使钢获得()。 A.均匀的基体组织 B.均匀的A体组织 C.均匀的P体组织 D.均匀的M体组织 5.钢的高温回火的温度为()。 A.500℃ B.450℃ C.400℃ D.350℃ 6.钢的中温回火的温度为()。 A.350℃ B.300℃ C.250℃ D.200℃ 7.碳钢的淬火工艺是将其工件加热到一定温度,保温一段时间,然后采用的冷却方式是()。 A.随炉冷却 B.在风中冷却 C.在空气中冷却 D.在水中冷却 8.正火是将工件加热到一定温度,保温一段时间,然后采用的冷却方式是()。A.随炉冷却 B.在油中冷却 C.在空气中冷却 D.在水中冷却

9.完全退火主要用于()。 A.亚共析钢 B.共析钢 C.过共析钢 D.所有钢种 10.共析钢在奥氏体的连续冷却转变产物中,不可能出现的组织是()。 A.P B.S C.B D.M 11.退火是将工件加热到一定温度,保温一段时间,然后采用的冷却方式是()。A.随炉冷却 B.在油中冷却 C.在空气中冷却 D.在水中冷却 二、是非题 1. 完全退火是将工件加热到Acm以上30~50℃,保温一定的时间后,随炉缓慢冷却的一种热处理工艺。 2. 合金元素溶于奥氏体后,均能增加过冷奥氏体的稳定性。 3. 渗氮处理是将活性氮原子渗入工件表层,然后再进行淬火和低温回火的一种热处理方法。 4. 马氏体转变温度区的位置主要与钢的化学成分有关,而与冷却速度无关。 三、填空题 1. 共析钢中奥氏体的形成过程是:(),(),残余Fe3C溶解,奥氏体均匀化。 2. 氰化处理是将(),()同时渗入工件表面的一种化学热处理方法。 3. 化学热处理的基本过程,均由以下三个阶段组成,即(),(),活性原子继续向工件内部扩散。 4. 马氏体是碳在()中的()组织。 5. 在钢的热处理中,奥氏体的形成过程是由()和()两个基本过程来完成的。 6. 钢的中温回火的温度范围在(),回火后的组织为()。 7. 共析钢中奥氏体的形成过程是:奥氏体形核,奥氏体长大,(),()。 8. 钢的低温回火的温度范围在(),回火后的组织为()。 9. 在钢的回火时,随着回火温度的升高,淬火钢的组织转变可以归纳为以下四个阶段:马氏体的分解,残余奥氏体的转变,(),()。 10. 钢的高温回火的温度范围在(),回火后的组织为()。 11. 根据共析钢的C曲线,过冷奥氏体在A1线以下等温转变所获得的组织产物是()和贝氏体型组织。 12. 常见钢的退火种类有:完全退火,()和()。 13. 根据共析钢的C曲线,过冷奥氏体在A1线以下转变的产物类型有(),()和马氏体型组织。 14. 材料在一定的淬火剂中能被淬透的()越大,表示()越好。 15. 化学热处理的基本过程,均有以下三个阶段组成,即(),活性原子被工件表面吸收,()。

钢的热处理原理及四把火

钢的热处理 钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。其共同点是:只改变内部组织结构,不改变表面形状与尺寸。 第一节钢的热处理原理 热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。 热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下) 1、整体热处理:包括退火、正火、淬火、回火和调质; 2、表面热处理:包括表面淬火、物理和化学气相沉积等; 3、化学热处理:渗碳、渗氮、碳氮共渗等。 热处理的三阶段:加热、保温、冷却

一、钢在加热时的转变 加热的目的:使钢奥氏体化 (一)奥氏体( A)的形成 奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。在铁素体和渗碳体的相界面上形成。有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。 1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。 2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。(F比Fe 3 C先消失) 3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。 (二)奥氏体晶粒的长大 奥氏体大小用奥氏体晶粒度来表示。分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。 影响 A晶粒粗大因素 1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。因此,合理选择加热和保温时间。以保证获得细小均匀的奥氏体组织。(930~950℃以下加热,晶粒长大的倾向小,便于热处理) 2、A中C含量上升则晶粒长大的倾向大。

热处理原理与工艺课程试题

热处理原理与工艺课程试题 热处理原理与工艺课程试题,一, 一、术语解释(每题4分,共20分) 1(分级淬火: 2(淬透性: 3(TTT曲线: 4(Ms温度: 5(调质处理: 二、填空(每空1分,共20分) 1(大多数热处理工艺都需要将钢件加热到相变临界点以上。 2((在钢的表面同时渗入碳和氮的化学热处理工艺称为,其中低温,最初主要用于中碳钢的耐磨性及疲劳强度的提高,因为硬度提高不多,故又称为。 3(奥氏体中的碳浓度差是奥氏体在铁素体和渗碳体相界面上形核的必然结果,也是相界面推移的驱动力。 4(钢中产生珠光体转变产物的热处理工艺称为退火或正火。 5(马氏体相变区别于其他相变最基本的两个特点是: 相变以切变共格方式进行和无扩散性。 6(贝氏体相变时随着钢中碳含量的增加,贝氏体相变速度减慢,等温转变C曲线向右移。 7(回火第一阶段发生马氏体的分解。 8(钢件退火工艺种类很多,按加热温度可分为两大类,一类是在临界温度(Ac1或AC3)以上的退火,又称相变重结晶退火。 9(有物态的淬火介质淬火冷却过程可分为三个阶段: 蒸气膜阶段、沸腾阶段和对流阶段。

10. 几乎所有的合金元素(除(Co )、(Al)以外),都使Ms和M点( 降低 )。 f11.随着合金含量的增加(Co等个别元素除外),钢的等温转变曲线右移,淬透性( 提高 ),比碳钢更容易获得( 马氏体 )。 三、选择题(每题2分,共20分) 1、下面对“奥氏体”的描述中正确的是: ( ) A(奥氏体是碳在α,Fe中的过饱和固溶体 B(奥氏体是碳溶于α,Fe形成的固溶体 C(奥氏体是碳溶于γ,Fe所形成的固溶体 D(奥氏体是碳溶于γ,Fe所形成的过饱和固溶体 2、45钢经下列处理后所得组织中,最接近于平衡组织的是:( ) A(750?保温10h后空冷 B(750?保温10h后炉冷 C(800?保温10h后炉冷 D(800?保温10h后空冷 3、对奥氏体实际晶粒度的描述中不正确的是:( ) A(某一热处理加热条件下所得到的晶粒尺寸 B(奥氏体实际晶粒度比起始晶粒度大 C(加热温度越高实际晶粒度也越大 D(奥氏体实际晶粒度与本质晶粒度无关 4、钢的淬硬性主要取决于() A(含碳量 B(含金元素含量 C(冷却速度 D(保温时间 5、防止或减小高温回火脆性的较为行之有效的方法是()

热处理原理与工艺课后习题

热处理原理与工艺课后习题 第一章 一.填空题 1.奥氏体形成的热力条件()。只有在一定的()条件下才能转变为奥氏体。()越大,驱动力越大,奥氏体转变速度越快。 2.共析奥氏体形成过程包括()()()和()四个阶段。 3.( )钢加热时奥氏体晶粒长大的倾向小,而()钢加热时奥氏体晶粒长大的倾向小。 4.本质晶粒度是钢的热处理工艺性能之一,对于()钢可有较宽的热处理加工范围,对于()钢则必须严格控制加热温度,以免引起晶粒粗化而是性能变坏。 5.()晶粒度对钢件冷却后的组织和性能影响较大。 6.控制奥氏体晶粒长大的途径主要有()()( )( )和()。 7.()遗传对热处理工件危害很大,它强烈降低钢的强韧性,使之变脆,必须避免和消除。、 二、判断正误并简述原因 1.奥氏体晶核是在珠光体中各处均匀形成的。() 2.钢中碳含量越高,奥氏体转变速度越快,完全奥氏体化所需时间越

短。() 3.同一种钢,原始组织越细,奥氏体转变速度越慢。() 4.本质细晶粒钢的晶粒在任何加热条件下均比本质粗晶粒钢细小。() 5.在一定加热的温度下,随温度时间延长,晶粒将不断长大。() 6.所有合金元素都可阻止奥氏体晶粒长大,细化奥氏体晶粒。() 三、选择题 1.Ac1、A1、Ar1的关系是__________。 A..Ac1>A>1Ar1 B. Ar1>A1>Ac1 C.A1>Ar1>Ac1 D.A1>Ac1>Ar1 2. Ac1、Ac3、Ac cm是实际()时的临界点。 A. 冷却 B.加热 C.平衡 D.保温 3.本质晶粒度是指在规定的条件下测得的奥氏体晶粒() A.长大速度 B. 大小 C. 起始尺寸 D. 长大极限 4.实际上产中,在某一具体加热条件下所得到的奥氏体晶粒大小称为() A. 起始晶粒度 B.本质晶粒度 C.实际晶粒度 D.名义晶粒度 四、简答题 1.以共析碳钢为例,说明:1.奥氏体的形成过程; 2. 奥氏体晶核为什

热处理原理考试试卷及参考答案

热处理原理考试试卷及参考答案 (一)填空题 1 起始晶粒度的大小决定于成分及冶炼条件。 2 在钢的各种组织中,马氏体的比容最大,而且随着w(C)的增加而增加。 3.板条状马氏体具有高的强度和硬度及一定的塑性与韧性。它的强度与奥氏体碳含量有关,马氏体板条群越细(或尺寸越小)则强度越高。 4. 淬火钢低温回火后的组织是低碳过饱和铁素体和粒状碳化物ε—FexC ( x ≈ 2.4 ) ;中温回火后的组织是回火屈氏体,一般用于高弹性的结构件;高温回火后的组织是回火索氏体,用于要求足够高的强度及高的塑韧性的零件。 5.钢在加热时,只有珠光体中出现了浓度起伏和结构起伏时,才有了转变成奥氏体的条件,奥氏体晶核才能形成。 6.马氏体的三个强化包括固溶强化、相变强化强化、时效(沉淀)强化。 7.第二类回火脆性主要产生于含Mn、、Cr、Ni 等合金元素的钢中,其产生的原因是钢中晶粒边界偏聚的杂质元素增加的结果,这种脆性可用快冷来防止,此外在钢中加入W 和Mo及形变(亚温回火)热处理等方法也能防止回火脆性。 8.共析钢加热至稍高于727℃时将发生P→A的转变,其形成过程包括A的形核、A的长大、剩余渗碳体的溶解和A成分均匀化等几个步骤。 9 根据共析钢转变产物的不同,可将C曲线分为珠光体、贝氏体、马氏体三个转变区。 10 根据共析钢相变过程中原子的扩散情况,珠光体转变属 于扩散型转变,贝氏体转变属于半扩散型转变,马氏体转变属于非扩散型转变。 11.马氏体按其组织形态主要分为片(针)状马氏体和板

条状马氏体两种。其中板条状马氏体的韧性较好。 12.马氏体按其亚结构主要分为胞状亚结构和孪晶亚结构两种。 13.贝氏体按其形成温度和组织形态,主要分为上贝氏体和下贝氏体两种。 14.珠光体按其组织形态可分为片状珠光体和粒状珠光体;按片间距的大小又可分为珠光体、索氏体和托氏体。 15、描述过冷奥氏体在A1点以下相转变产物规律的曲线有TTT 和CCT 两种;对比这两种曲线可看出,前者指示的转变温度比后者高一些,转变所需的时间前者比后者短一些,临界冷却速度前者比后者大。 16、当钢发生奥氏体向马氏体组织的转变时,原奥氏体中w(c)越高,则Ms点越低,转变后的残余奥氏体量越多。 17 钢的淬透性越高,则临界冷却速度越小;其C曲线的位置越靠右。 18、在过冷A等温转变产物中,P和T的主要相同点是:都是共析体(F + 层片状Fe3C) 不相同点是:T的层片间距较小。 19、用光学显微镜观察,上B的组织特征呈(羽毛)状,而下B则呈(黑色针)状。 (二)判断题 1.相变时新相的晶核之所以易在母相的晶界上首先形成,是因为晶界处能量高。(√) 2.随奥氏体中W (C)的增高,马氏体转变后,其中片状马氏体减少,板条状马氏体增多。(×) 3.第一类回火脆性是可逆的,第二类回火脆性是不可逆的。(×) 4.马氏体降温形成时,马氏体量的不断增加不是依靠原有的马氏体长大,而是不断形成新的马氏体。(√)5.钢经加热奥氏体化后,奥氏体中碳与合金元素的含量与

铝合金热处理原理及工艺

铝合金热处理原理及工艺 3.1铝合金热处理原理 铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P (Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 3.1.2.4 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。 铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时

《材科热处理原理》思考题

《材科热处理原理》思考题 第一章固态相变概论 1. 金属固态相变的主要类型有哪些? 2. 热力学主要的状态函数与状态变数之间的关系如何? 3. 金属固态相变按(1)相变前后热力学函数、(2)原子迁移情况、(3)相变方式分为哪几类? 4. 金属固态相变有哪些特点? 5. 固态相变的驱动力和阻力包括什么?加以说明。 6. 固态相变的过程中形核和长大的方式是什么?加以说明。 7. 何谓热处理?热处理的目的是什么?热处理在机械加工过程中作用有那些?热处理与合金相图有何关系? 8. 金属固态相变主要有哪些变化? 9. 说明下列符号的物理意义及加热速度和冷却速度对他们的影响? Ac1、Ar1、Ac3、Ar3、Accm、Arcm 10. 一些概念:固态相变、热处理、平衡转变、不平衡转变、同素异构转变、多形性转变、共析转变、包析转变、平衡脱溶沉淀、调幅分解、有序化转变、伪共析转变、马氏体转变、贝氏体转变、块状转变、不平衡脱溶沉淀、一级相变、二级相变、扩散型相变、非扩散型相变、半扩散型相变、共格界面、半共格界面、非共格界面、惯习面、位向关系、应变能、界面能、过渡相、均匀形核、非均匀形核、晶界形核、位错形核、空位形核、界面过程、传质过程、协同型方式长大、非协同型方式长大、切变机制、台阶机制 第二章钢中奥氏体的形成 1. 奥氏体(A)的晶体结构,组织形态与性能有什么特点? 2. 奥氏体形成的热力学条件是什么?共析钢的珠光体(平衡态组织)向奥氏体转变属于何种转变?试说明珠光体向奥氏体转变过程。 3. 钢在实际热处理加热和冷却过程时的临界点为什么偏离相图上的临界点?实际的临界点如何表示?实际

哈尔滨工业大学硕士研究生入学考试 哈工大金属材料与热处理原理试题

2010硕士研究生入学考试哈工大金属学与热处理 一选择题(一个或多个答案) 1.决定金属材料性能的因素有() A晶体结构类型B晶体缺陷的种类与数量C组织状态D热加工工艺 2.金属与非金属的区别有()2页 A良好的延展性B良好的导热性C正的电阻温度系数D负的电阻温度系数 3.晶格常熟为a的奥氏体八面体间隙()11页 A是不对称的B间隙半径为0.146a C六个原子围成D位于面心和棱边中点 4.铁由体心立方晶格变成密排六方晶格,其体积() A将膨胀B将收缩C不发生变化D不确定39页 5.在AC1到AC3温度区间加热时,奥氏体转变为铁素体的转变属于() A二次再结晶B重结晶C同素异构转变D多晶型转变107页 6.钢中的铁素体为() A间隙相B间隙固溶体C间隙化合物D置换固溶体107页 7.六方晶系[010]晶向指数,若改为四坐标轴的密勒指数标定,可表示为()15页 A[2-1-10] B[11-20] C[-12-10] D[1-210] 8.晶面(101)和(1-11)所在的晶带轴指数为()16页 A[-110] B[0-11] C[10-1] D[1-10] 9.大型铸件的细化可以采用() A减小过冷度B变质处理C降低冷却速度D固溶与失效 10.位错环周围的位错线的特点是()31页 A相同的位错类型B唯一的柏氏矢量C不同的位错类型D不同的柏氏矢量 11.金属冷变形经过回复退火再结晶工艺之后的效果为() A保持了加工硬化状态B有效消除了第二类内应力C减轻了翘曲和变形 D提高了塑性韧性和耐磨性 12.含碳量在2.11%钢中渗碳体的类型为()120页 A一次渗碳体B二次渗碳体C共晶渗碳体D共析渗碳体 13.0.6%的铁碳合金平衡结晶到室温,则室温下该合金中() A相组成物为铁素体和渗碳体B组织组成物为铁素体和奥氏体 C铁素体含量为…. D奥氏体含量为…… 14.固溶体在正温度梯度条件下结晶时()54页 A垂直方式长大B螺型位错C二维晶核方式D可能呈平面状胞状树枝状 15.碳溶于a-Fe中形成的过饱和间隙式固溶体称为()107页 A铁素体B奥氏体C马氏体D贝氏体 16.第一类回火脆性()219页 A又称低温回火脆性B在几乎所有钢中可能出现C又称高温回火脆性D又称不可逆回火脆性 17.过共析钢经过正火后() A调整硬度便于机械加工B细化晶粒消除内应力C消除魏氏组织和带状组织 D消除网状碳化物 18.三元合金变温截面图可以() A确定三元合金平衡相成分B定性分析三元合金的平衡结晶过程 C应用杠杆定律和重心法则D确定平衡相的含量

钢的热处理原理及工艺复习重点及课后习题

钢的热处理原理及工艺复习重点及课后习题 一、复习重点 1、什么是加工硬化?产生加工硬化的根本原因是什么? 2、什么是再结晶?再结晶的实际应用是什么?金属再结晶是通过什么方式发生的?再结晶退火的主要作用是什么? 3、冷加工和热加工的区别是什么? 4、热处理的定义及三个基本过程。为什么钢能够进行热处理?奥氏体化的目的是什么? 5、珠光体、贝氏体、马氏体分别都有哪几种组织形态?每种组织力学性能如何? 6、退火、正火、淬火、回火的定义是什么? 7、什么是钢的淬透性? 二、课后复习题 (一)、填空题 1、加工硬化现象是指随变形度的增大,金属强度和硬度显著提高而塑性和韧性显著下降的现象。加工硬化的结果,使金属对塑性变形的抗力增大,造成加工硬化的根本原因是位错密度提高,变形抗力增大。消除加工硬化的方法是再结晶退火。 2、再结晶是指冷变形金属加热到一定温度之后,在原来的变形组织中重新产生无畸变的新等轴晶粒,而性能也发生明显的变化,并恢复到冷变形之前状态的过程。 3、在金属的再结晶温度以上的塑性变形加工称为热加工。在金属的再结晶温度以下的塑性变形加工称为冷加工。

4、金属在塑性变形时所消耗的机械能,绝大部分(占90%)转变成热而散发掉。但有一小部分能量(约10%)是以增加金属晶体缺陷(空位和位错)和因变形不均匀而产生弹性应变的形式(残余应力)储存起来,这种能量我们称之为形变储存能。 5、马氏体是碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。贝氏体是渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。根据形貌不同又可分为上贝氏体和下贝氏体。用光学显微镜观察,上贝氏体的组织特征呈羽毛状,而下贝氏体则呈针状。相比较而言,上贝氏体的机械性能比下贝氏体要差。 6、在过冷奥氏体等温转变产物中,珠光体与屈氏体的主要相同点是都是渗碳体的机械混合物,不同点是层间距不同,珠光体较粗,屈氏体较细。 7、马氏体的显微组织形态主要有板条状、针状马氏体两种。其中板条状马氏体的韧性较好。钢在淬火后获得的马氏体组织的粗细主要取决于奥氏体的实际晶粒度。 8、钢的热处理工艺由加热、保温、冷却三个阶段所组成。 9、淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。 10、当钢中发生奥氏体向马氏体的转变时,原奥氏体中碳含量越高,则M S点越低。 11、钢的正常淬火温度范围,对亚共析钢是线以上A C3+30 ~ 50℃,对过共析钢是A C1+30 ~ 50℃。 12、淬火钢进行回火的目的是消除内应力,获得所要求的组织与性能,回火温度越高,钢的强度与硬度越低。 13、调质处理是经淬火后再高温回火,能得到回火索氏体组织,具有

相关主题
文本预览
相关文档 最新文档