当前位置:文档之家› 复合型分数阶微分方程初值问题的解_韦东奕

复合型分数阶微分方程初值问题的解_韦东奕

复合型分数阶微分方程初值问题的解_韦东奕
复合型分数阶微分方程初值问题的解_韦东奕

分数阶微分方程-课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方法与有限单元法; (3)未形成成熟的数值计算软件,严重滞后于应用的需要。

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模 型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型

我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线 y y(x)上某点的切线斜率即函数y y(x)在该点的导数;力学中的牛顿第二运 动定律:F ma ,其中加速度a 就是位移对时间的二阶导数,也是速度对时间 的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体, 我们可以利用牛顿第二运动定律建立其微分方程模型, 设物体质量为m ,空气阻 力 系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时 刻t 时物体的下落速度为v ,初始条件:v (o ) 0.由牛顿第二运动定律建立其微 分方程模型: 求解模型可得: 体在地面上的投影面积。根据极限速度求解式子,在m,, 一定时,要求落地速 度w 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的 直径大小来 3?利用导数的定义建立微分方程模型 dv m 一 dt mg kv 2 ? k(exp[2t 由上式可知,当t 其中,阻力系数k 1) 时,物体具有极限速度: lim v t mg :k , s , 为与物体形状有关的常数, 为介质密度,s 为物 、mg(exp[2t 1)

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

3.1 微分方程模型的建模步骤

第3章微分方程模型 3.1 微分方程模型的建模步骤 在自然科学以及工程、经济、医学、体育、生物、社会等学科中的许多系统,有时很难找到该系统有关变量之间的直接关系——函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统——即建立微分方程模型。我们以一个例子来说明建立微分方程模型的基本步骤。 例1 某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。在健身训练中,他所消耗的热量大约是69(焦/公斤?天)乘以他的体重(公斤)。假设以脂肪形式贮藏的热量100%地有效,而1公斤脂肪含热量41868(焦)。试研究此人的体重随时间变化的规律。 模型分析 在问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重(记为W )关于时间t 的 函数。如果我们把体重W 看作是时间t 的连续可微函数,我们就能找到一个含有的dt dW 微分方程。 模型假设 1.以)(t W 表示t 时刻某人的体重,并设一天开始时人的体重为0W 。 2.体重的变化是一个渐变的过程。因此可认为 )(t W 是关于t 连续而且充分光滑的。 3.体重的变化等于输入与输出之差,其中输入是指扣除了基本新陈代谢之后的净食量吸收;输出就是进行健身训练时的消耗。 模型建立 问题中所涉及的时间仅仅是“每天”,由此,对于“每天” 体重的变化=输入-输出。 由于考虑的是体重随时间的变化情况,因此,可得 体重的变化/天=输入/天—输出/天。 代入具体的数值,得 输入/天 = 10467(焦/天)—5038(焦/天)=5429(焦/天), 输出/天 = 69(焦/公斤?天)×W (公斤)= 69W (焦/天)。 体重的变化/天=t W ??(公斤/天)dt dW t =→?0 考虑单位的匹配,利用 “公斤/天=公斤焦天 焦/41868 /”, 可建立如下微分方程模型

二阶常微分方程解

第七节 二阶常系数线性微分方程 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线 性微分方程及其求解方法。先讨论二阶常系数线性齐 §7.1 二阶常系数线性齐次方程及其求 22dx y d +p dx dy +qy = 0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y 2 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22 dx y d ,dx dy ,y 各乘 以常数因子后相加等于零,如果能找到一个函数y ,

其22dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函 数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx y =e rx (其中r 为待定常数) 将y =e rx ,dx dy =re rx ,22dx y d =r 2e rx 代入方程 (7.1) 得 r 2e rx +pre rx +qe rx = 0 或 e rx (r 2+pr +q )= 因为e rx ≠ 0 r 2 +pr +q = 由此可见,若 r r 2+pr +q = 0 (7.2) 的根,那么e rx 就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1) 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2 有三种可能的情况,下面 (1)若特证方程(7.2)有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程(7.1)

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

分数阶微积分发展现状及展望教学文稿

分数阶微积分发展现状及展望 在数学领域中,大体分为五种研究方向:基础数学,应用数学,计 算数学,概率论与数理统计,统计学与控制论。这五个方向对数学在当 代的发展都有不可或缺的作用。从研究内容来讲,方程、算子、群论、 图论、代数、几何等等都是数学领域重要的研究对象。作为基础数学专 业分数阶微分方程方向的博士生,本文将从分数阶微分方程的发展的历 史及现状、本人对分数阶微分方程未来发展的看法来介绍分数阶微分的 基本知识。 (一)、发展历史及现状 牛顿和莱布尼兹发明的微积分是现代数学与古典数学的分水岭。分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有了比较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到一些问题,如:需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件;因材料或外界条件的微小改变就需要构造新的模型等等。基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 对大多数研究人员和工程师而言,分数阶微积分也许还是比较陌生的,但它实际上早在300多年前就被提出。1695年9月,洛必达 (L’Hospital)在给莱布尼兹的著名信件中就写到“对于简单的线性函数 f(x)=x,如果函数导数次数为分数而不是整数那会怎样”。这是公认的第一次提及分数阶微分。1832年,刘维尔(Liouville)成功的应用了自己提出的分数阶导数的定义,解决了势理论问题。之后刘维尔发表的一系列文 章使他成为分数阶微积分理论的实际级创始人。1974年,Oldham与Spanier出版了第一本关于分数阶微积分理论的专著。 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,但是从近几十年,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

分数阶微分方程数值解的一种逼近方法.

分数阶微分方程数值解的一种逼近方法 By:Pankaj Kumar, Om Prakash Agrawal 摘要 本文提出了一类分数阶微分方程(FDEs)的数值解方案.在这种方法中,FDEs 被Caputo型分数阶导数所表现. Caputo型分数阶导数的属性可以让一个分数阶微分方程减弱为一个Volterra型积分方程. 这样做了之后,许多研究Volterra 型积分方程的数值方法也可以应用于寻找FDEs的数值解. 本文总时间被划分为一组小区间,在两个连续区间中,用二次多项式逼近未知函数. 这些近似被替换成转化的Volterra型积分方程由此获得一组方程. 这些方程的解提供了FDE的解. 这种方法被应用于解决两种类型的FDEs,线性和非线性. 用这里给出的方法得到的解能与解析解和其他方法的数值解较好的吻合. 同时结果说明这种数值方法是稳定的. 1.引言 本文讨论分数阶微分方程的数值解. 分数阶导数和分数阶积分近年来收到了广泛的关注. 在许多实际应用中,分数阶导数和分数阶积分为考虑的系统提供了更加精确地模型. 比如,分数阶导数已经被成功地运用到模拟许多粘性材料的依赖频率的阻尼行为.1980年之前,Bagley 和Torvik提出了这个领域已经被研究的工作的一个回顾,并且说明了半阶导数模型可以非常好地描述阻尼材料的频率以来. 另一些学者说明了分数阶导数和分数阶积分在电化学过程,电解质极化,有色噪声,粘性材料和混沌领域的应用. Mainardi,Rossikhin和Shitikova 提出了分数阶导数和分数阶积分在一般固体力学,特定粘弹性阻尼模型中的应用的调查. Magin提出了分数阶微积分在生物工程的三个关键部分的回顾. 分数阶导数和分数阶积分在其他领域的应用以及相关的数学工具和技巧还可以在许多其他文献上找到. 系统模型中分数阶导数的引进大多会导致分数阶微分方程的出现. 对某些特定的分数阶微分方程在通常系统条件下的解,已经有几种方法被找到. 这些方法包括,拉普拉斯变换,傅里叶变换,模态综合法和特征向量展开法,数值法以

微分方程模型建模实例

微分方程模型建模实例 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变) (2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐? 7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落 伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8. 1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常 数,()

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

分数阶微分方程_课件

分数阶微分方程 一、 预备知识 1、 分数阶微积分经典定义回顾 作为分数阶微积分方程的基础,本书在第二章中对分数阶微积分的定义及性质做了系统的介绍,为了接下来讨论的需要,我们首先对其进行一个简要的回顾。 (1)分数阶微积分的主要思想 如上图所示,分数阶微积分的主要思想是推广经典的整数阶微积分,从而将微积分的概念延拓到整个实数轴,甚至是整个复平面。但由于延拓的方法多种多样,因而根据不同的需求人们给出了分数阶微积分的不同定义方式。然而这些定义方式不仅只能针对某些特定条件下的函数给出,而且只能满足人们的某些特定需求,迄今为止,人们仍然没能给出分数阶微积分的一个统一的定义, 这对分数阶微积分的研究与应用造成了一定的困难。 1、分数阶微分的定义 为了满足实际需要,下面我们试图从形式上对分数阶微积分给出一种统一的表达式。 分数阶微积分的主要思想是推广经典的累次微积分,所有推广方法的共同目标是以非整数参数p 取代经典微积分符号中的整数参数n ,实际上,任意的n 阶微分都可以看成是一列一阶微分的叠加: ()()n n n d f t d d d f t dt dt dt dt = (1) 由此,我们可以给出一种在很多实际应用中十分重要的分数阶微积分的推广方 式。首先,我们假设已有一种合适的推广方式来将一阶微分推广为α(01α≤≤) 阶微分,即d D dt α→是可实现的。那么类似地可得到(1)的推广式为: ()()n n D f t D D D f t αααα= (2) 这种推广方式最初是由..K S Miller 和.B Ross 提出来的,其中D α采用的是R L -分数阶微分定义,他们称之为序列分数阶微分。序列分数阶微分的其他形式可以通过将D α替换为G L -分数阶微分、Caputo 分数阶微分或其他任意形式

二阶常微分方程解

二阶常微分方程解 Document number:BGCG-0857-BTDO-0089-2022

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 § 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 2 2dx y d +p dx dy +qy =0 其中p 、q 是常数,由上节定理二知,要求方程的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法。 我们先分析方程可能具有什么形式的特解,从方程的形式上来看,它 的特点是2 2dx y d ,dx dy ,y 各乘以常数因子后相加等于零,如果能找到一个函数y ,其2 2dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函数有可能是方程的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y =e rx (其中r 为待定常数)来试解

将y =e rx ,dx dy =re rx ,2 2dx y d =r 2 e rx 代入方程 得 r 2e rx +pre rx +qe rx =0 或 e rx (r 2 +pr +q )=0 因为e rx ≠0,故得 r 2+pr +q =0 由此可见,若r 是二次方程 r 2+pr +q =0 的根,那么e rx 就是方程的特解,于是方程的求解问题,就转化为求代数方程的根问题。称式为微分方程的特征方程。 特征方程是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程的两个特解。 因为 x r x r 2 1e e =e x )r r (21-≠常数 所以e r1x ,e r2x 为线性无关函数,由解的结构定理知,方程的通解为 y =C 1e r1x +C 2e r2x (2)若特征方程有两个相等的实根r 1=r 2,此时p 2-4q =0,即 有r 1 =r 2 =2 p -,这样只能得到方程的一个特解y 1 =e r 1x ,因此,我

二阶常系数齐次线性微分方程的通解证明教学提纲

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为 12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? (1)

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时) (第5章 微分方程模型) 1.(验证)传染病模型2(SI 模型)p136~138 传染病模型2(SI 模型): 0(1),(0)di k i i i i dt =-= 其中, i (t )是第t 天病人在总人数中所占的比例。 k 是每个病人每天有效接触的平均人数(日接触率)。 i 0是初始时刻(t =0)病人的比例。 1.1 画~di i dt 曲线图p136~138 取k =0.1,画出i dt di ~的曲线图,求i 为何值时dt di 达到最大值,并在曲线图上标注。 参考程序:

提示:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图 用fplot函数,调用格式如下: fplot(fun,lims) fun必须为一个M文件的函数名或对变量x的可执行字符串。 若lims取[xmin xmax],则x轴被限制在此区间上。 若lims取[xmin xmax ymin ymax],则y轴也被限制。 本题可用 fplot('0.1*x*(1-x)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2) fun必须为一个M文件的函数名或对变量x的可执行字符串。 返回自变量x在区间x1

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

稳定性分析与分数阶微分方程

东华大学 2013~ 2014学年第II 学期研究生期末考试试题 考试学院:理学院 考试专业:基础数学应用数学 考试课程名称:稳定性分析与分数阶微分方程 学号姓名得分 (考生注意:答案必须写在答题上,写在本试题纸上一律不给分)[试题部分] 一、根据所学知识,概述Lyapunov第二方法的核心思想和基本理 论。 二、针对某一类问题或某个模型,运用Lyapunov第二方法进行 稳定性分析。 三、综述分数阶微积分的三种定义方式及其性质和联系。 四、谈谈你对分数阶微分方程研究的认识和看法。 要求:1. 第二题结合每人曾经报告过的文献来完成; 2. 用电子文档打印,并提交电子文件。

一、根据所学知识,概述Lyapunov 第二方法的核心思想和基本理论 李雅普诺夫(Lyapunov )提出了两种方法,分析运动的稳定性: 第一方法包含许多步骤,包括最终用微分方程的显式解来对稳定性近行分析,是一个间接的方法。 第二方法不是求解微分方程组,而是通过构造李雅普诺夫函数(标量函数)来直接判断运动的稳定性,因此又称为直接法。 李雅普诺夫直接法(也称第二方法)是整个稳定性理论的核心方法,李雅普诺夫1892年提出的稳定性理论、渐近稳定性定理及两个不稳定性定理,奠定了运动稳定性的基础,被誉为稳定性的基本定理。目前仍是研究非线性、时变系统最有效的方法,是许多系统控制律设计的基本工具。 李雅普诺夫第二方法的核心思想: 以二维自治系统为例,李雅普诺夫直接法借助于一个V 函数,利用方程右端的信息来探测解的稳定性的原始几何思想。 考虑方程 ?????==),(),(21222111 x x f dt dx x x f dt dx 0)0,0()0,0(21==f f 其中21,f f 连续,保证解的唯一性. 设),()(21x x V x V =是K 类函数,且],[)(1 21+∈R R C x V ,此方程的解 T t x t x t x ))(),(()(21=的信息是未知的,但它的导数满足 )),(),,((),(2122112. 1. x x f x x f x x =的信息是已知的,因为21,f f 是已知函数. 姑且把任意解)(t x 代入)(x V 得到))((:)(t x V t V =. 粗略的说,平凡解的稳定性(包括渐近稳定性、稳定、不稳定)是由解)(t x “走近”原点,“不远离”原点,“远离”原点来决定的,而这些信息分别等价于 ))((t x V 是t 的下降、不增、上升函数。由于],[)(121+∈R R C x V ,后者又分别等价于 0)) ((,0))((,0))((>≤

二阶常微分方程的几种解法

二阶常系数非齐次线性微分方程的几种解法 一 公式解法 目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]: '''()y ay by f x ++=通解的一般方法是将其转化为对应的齐次方程的通阶与它本 身的特解之和。微分方程阶数越高, 相对于低阶的解法越难。那么二阶常系数齐 次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系 数非齐次微分方程降为一阶微分方程求解。而由此产生的通解公式给出了该方程 通解的更一般的形式。 设二阶常系数线性非齐次方程为 '''()y ay by f x ++= (1) 这里b a 、都是常数。为了使上述方程能降阶, 考察相应的特征方程 20k ak b ++= (2) 对特征方程的根分三种情况来讨论。 1 若特征方程有两个相异实根12k 、k 。则方程(1) 可以写成 '''1212()()y k k y k k y f x --+= 即 '''212()()()y k y k y k y f x ---= 记'2z y k y =- , 则(1) 可降为一阶方程 '1()z k z f x -=由一阶线性方程的通解公 ()()[()]p x dx p x dx y e Q x e dx c -? ?=+?[5] (3) 知其通解为 1130[()]x k x k t z e f t e dt c -=+?这里0()x h t dt ?表示积分之后的函数是以x 为自变量的。再由11230[()]x k x k t dy k y z e f t e dt c dx --==+? 解得

12212()()340012 [(())]k k x x u k x k k u e y e e f t dt du c c k k --=++-?? 应用分部积分法, 上式即为 1212212()()3400121212 1[()()]k k x k k x x x k x k t k t e e y e f t e dt f t e dt c c k k k k k k ----=-++---?? 1122121200 121[()()]x x k x k t k x k t k k x e f t e dt e f t e dt c e c e k k --=-++-?? (4) 2 若特征方程有重根k , 这时方程为 '''22()y ky k y f x -+=或'''()()()y ky k y ky f x ---= 由公式(3) 得到 '10[()]x kx kt y ky e e f t dt c --=+? 再改写为 '10()x kx kx kt e y ke y e f t dt c ----=+? 即10()()x kx kt d e y e f t dt c dx --=+? 故120()()x kx kt kx kx y e x t e f t dt c xe c e -=-++? (5) 例1 求解方程'''256x y y y xe -+= 解 这里2560k k -+= 的两个实根是2 , 3 2()x f x xe =.由公式(4) 得到方程的解是 33222232 1200x x x t t x t t x x y e e te dt e e te dt c e c e --=-++?? 32321200x x x t x x x e te dt e tdt c e c e -=-++?? 2 232132x x x x x e c e c e ??=--++???? 这里321c c =-. 例2 求解方程'''2ln x y y y e x -+=

相关主题
文本预览
相关文档 最新文档