当前位置:文档之家› 人教A版数学必修四第二章平面向量导学案

人教A版数学必修四第二章平面向量导学案

人教A版数学必修四第二章平面向量导学案
人教A版数学必修四第二章平面向量导学案

第二章 平面向量

1.向量和差作图全攻略

两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握.

一、向量a 、b 共线

例1.如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向;

(2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |.

作法.在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB →

=a +b ,具体作法是:当a 与b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下:

例2.如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向.

作法.在平面上任取一点O ,作OA →=a ,OB →=b ,则BA →

=a -b .事实上a -b 可看作是a +(-

b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下:

二、向量a 、b 不共线

如果向量不共线,可以应用三角形法则或平行四边形法则作图.

例3.如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1.(应用三角形法则)

(1)一般情况下,应在两已知向量所在的位置之外任取一点O .

第一步:作OA →

=a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA →

与a 同向.

第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB →

作成与b 的方向相反.)

第三步:作OB →,即连接OB ,在B 处打上箭头,OB →

即为a +b . 作图如下:

(2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB →

=b ; 第三步:连接AB ,在A 处加上箭头,向量BA →

即为a -b . 作图如下:

点评.向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”. 作法2.(应用平行四边形法则)

在平面上任取一点A ,以点A 为起点作AB →

=a , AD →

=b ,以AB ,AD 为邻边作?ABCD ,则AC →=a +b ,DB →

=a -b .作图如下:

点评.向量的平行四边形法则和三角法则在本质上是一样的,但在解决某些问题时平行四边形法则有一定的优越性,因此两种法则都应熟练掌握.

向量和差作图,要注意的是保证所作向量与目标向量“方向相同,长度相等”,最忌讳的是“作法不一”,比如作法中要求的是作AB →=b ,可实际上作的是AB →

=-b .只要作图的过程与作法的每一步相对应,一定能作出正确的图形.

2.向量线性运算的应用

平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面. 一、化简

例1 化简下列各式: (1)(2AB →-CD →)-(AC →-2BD →

); (2)1

24[3(2a +8b )-6(4a -2b )]. 解.(1)(2AB →-CD →)-(AC →-2BD →

)

=2AB →-CD →-AC →+2BD →=2AB →+DC →+CA →+2BD → =2(AB →+BD →)+(DC →+CA →)=2AD →+DA →=AD →. (2)1

24

[3(2a +8b )-6(4a -2b )] =124(6a +24b -24a +12b )=1

24(-18a +36b ) =-34a +32

b .

点评.向量的基本运算主要有两个途径:一是基于“形”,通过作出向量,运用平行四边形法则或三角形法则进行化简;二是基于“数”,满足“首尾相接且相加”或“起点相同且相减”的两个向量进行化简,解题时要注意观察是否有这两种形式出现,同时注意向量加法法则、减法法则的逆向应用.数乘运算,可类比实数积的运算方法进行,将向量a ,b ,c 等看成一般字母符号,其中向量数乘之间的和差运算,相当于合并同类项或提取公因式,这里的“同类项”与“公因式”指的是向量. 二、求参数

例2 如图,已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →

成立,则

m =________.

解析.如图,因为MA →+MB →+MC →

=0,

即MA →=-(MB →+MC →), 即AM →=MB →+MC →, 延长AM ,交BC 于D 点,

所以D 是BC 边的中点,所以AM →=2MD →

, 所以AD →=32AM →,所以AB →+AC →=2AD →=3AM →,

所以m =3. 答案.3

点评.求解含参数的向量线性运算问题,只需把参数当作已知条件,根据向量的加法、减法及数乘运算将问题中所涉及的向量用两个不共线的向量表示,列出向量方程,对比系数求参数的值. 三、表示向量

例3 如图所示,在△ABC 中,AD →=23AB →

,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于点N ,

设AB →=a ,AC →=b ,用向量a ,b 表示AE →、BC →、DE →、DN →、AM →.

解.因为DE ∥BC ,AD →=23

AB →

所以AE →=23AC →=23b ,BC →=AC →-AB →

=b -a ,

由△ADE ∽△ABC ,得DE →=23BC →=2

3(b -a ),

又M 是△ABC 底边BC 的中点,DE ∥BC , 所以DN →=12DE →=1

3

(b -a ),

AM →=AB →+BM →

=a +12BC →=a +12(b -a )=12

(a +b ).

点评.用已知向量表示另外一些向量,应尽量将所求向量转化到平行四边形或三角形中,利用向量共线条件和平面几何知识的一些定理、性质,如三角形中位线性质,相似三角形对应边成比例等,再利用向量加法、减法法则,即可用已知向量表示所求向量.

3.平面向量的基本定理应用三技巧

技巧一.构造某一向量在同一基底下的两种不同的表达形式,用“若e 1,e 2为基底,且a =

x 1e 1+y 1e 2=x 2e 1+y 2e 2,则用?

??

??

x 1=x 2

y 1=y 2来求解.

例1.在△OAB 的边OA ,OB 上分别取点M ,N ,使|OM →|∶|OA →|=1∶3,|ON →|∶|OB →

|=1∶4,设线段AN 与BM 交于点P ,记OA →=a ,OB →=b ,用a ,b 表示向量OP →

. 解.∵B ,P ,M 共线,

∴存在常数s ,使BP →=sPM →

, 则OP →

=11+s OB →+s 1+s OM →.

即OP →=11+s OB →+s 3(1+s )OA →

s

3(1+s )

a +

1

1+s

b . ①

同理,存在常数t ,使AP →=tPN →

, 则OP →

=11+t a +t 4(1+t )

b .

∵a ,b 不共线,∴?????

11+t =s 3(1+s )

11+s =t

4(1+t )

解之得?????

s =92

t =8

3

,∴OP →=3

11a +211

b .

点评.这里选取OA →,OB →作为基底,构造OP →

在此基底下的两种不同的表达形式,再根据相同基底的系数对应相等得到实数方程组,最后进行求解.

技巧二.构造两个共线向量在同一基底下的表达形式,用“若e 1,e 2为基底,a =x 1e 1+y 1e 2,

b =x 2e 1+y 2e 2,且a ∥b ,则x 1y 2-x 2y 1=0”来求解.

例2.如图,在△OAB 中,OC →=14OA →,OD →=12

OB →,AD 与BC 交于点M ,设OA →=a ,OB →

=b

.

(1)用a 、b 表示OM →

(2)已知在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE →=pOA →,OF →=qOB →

,求证:17p +3

7q =1.

(1)解.设OM →

=m a +n b ,则 AM →

=(m -1)a +n b ,AD →

=-a +12

b .

∵点A 、M 、D 共线,∴AM →与AD →

共线, ∴1

2

(m -1)-(-1)×n =0,∴m +2n =1.

而CM →=OM →-OC →=(m -14)a +n b ,CB →

=-14a +b .

∵C 、M 、B 共线,∴CM →与CB →

共线, ∴-14n -(m -1

4)=0.∴4m +n =1.

联立①②可得m =17,n =37,

∴OM →=1

7a +37

b .

(2)证明.EM →

=(17-p )a +37

b ,EF →=-p a +q b ,

∵EF →与EM →

共线,

∴(17-p )q -3

7×(-p )=0. ∴17q -pq =-37p ,即17p +3

7q

=1. 点评.这里多次运用构造一组共线向量的表达形式,再根据共线向量基底的系数关系建立方程组求解.

技巧三.将题目中的已知条件转化成λ1e 1+λ2e 2=0的形式(e 1,e 2不共线),根据λ1=λ2=0来求解.

例3.如图,已知P 是△ABC 内一点,且满足条件AP →+2BP →+3CP →

=0,设Q 为CP 的延长线与AB 的交点,令CP →=p ,试用向量p 表示CQ →

.

解.∵AP →=AQ →+QP →,BP →=BQ →+QP →, ∴(AQ →+QP →)+2(BQ →+QP →)+3CP →

=0, ∴AQ →+3QP →+2BQ →+3CP →

=0,

又∵A ,B ,Q 三点共线,C ,P ,Q 三点共线, ∴AQ →=λBQ →,CP →=μQP →, ∴λBQ →+3QP →+2BQ →+3μQP →

=0, ∴(λ+2)BQ →+(3+3μ)QP →

=0.

而BQ →,QP →

为不共线向量,∴???

??

λ+2=0,3+3μ=0.

∴λ=-2,μ=-1.∴CP →=-QP →=PQ →

. 故CQ →=CP →+PQ →=2CP →

=2p .

点评.这里选取BQ →,QP →

两个不共线的向量作为基底,运用化归与转化思想,最终变成λ1e 1+λ2e 2=0的形式来求解.

4.直线的方向向量和法向量的应用

直线的方向向量和法向量是处理直线问题的有力工具.由于直线和平面向量的学习分散在必

修2和必修4先后进行,学习中对它们的认识还不到位,重视程度还不够,下面对直线的方向向量和法向量的灵活应用结合例子加以剖析. 一、直线的方向向量 1.定义

设P 1,P 2是直线l :Ax +By +C =0上的不同两点,那么向量P 1P 2→

以及与它平行的非零向量都称为直线l 的方向向量,若P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→

的坐标为(x 2-x 1,y 2-y 1);特别当直线l 与x 轴不垂直时,即x 2-x 1≠0,直线的斜率k 存在时,那么(1,k )是它的一个方向向量;当直线l 与x 轴平行时,方向向量可为(1,0);而无论斜率存在与否,其方向向量均可表示为(-B ,A ). 2.应用 (1)求直线方程

例1.已知三角形三顶点坐标分别为A (2,-3),B (-7,9),C (18,9),求AB 边上的中线、高线方程以及∠C 的内角平分线方程. 解.①求中线方程

由于CB →=(-25,0),CA →=(-16,-12),那么AB 边上的中线CD 的方向向量为CB →+CA →

=(-41,-12),

也就是? ????1,1241,因而直线CD 的斜率为1241, 那么直线CD 的方程为y -9=12

41(x -18),

整理得12x -41y +153=0. ②求高线方程

由于k AB =9+3-7-2=-4

3,

因而AB 的方向向量为? ????1,-43,

而AB 边上的高CE ⊥AB ,

则直线CE 的方向向量为? ??

??1,34, 那么高线CE 的方程为y -9=3

4(x -18),

整理得3x -4y -18=0. ③求∠C 的内角平分线方程

CB

|CB →|=(-1,0),CA →

|CA →|=? ????-4

5

,-35,

则∠C 的内角平分线的方向向量为 CB

|CB →|

CA

|CA →|

=? ????-95,-35,也就是? ????1,13, 因而内角平分线CF 的方程为y -9=1

3(x -18),

整理得x -3y +9=0.

点评.一般地,经过点(x 0,y 0),与直线Ax +By +C =0平行的直线方程是A (x -x 0)+B (y -y 0)=0;与直线Ax +By +C =0垂直的直线方程是B (x -x 0)-A (y -y 0)=0. (2)求直线夹角

例2.已知l 1:x +3y -15=0与l 2:y -3mx +6=0的夹角为π

4,求m 的值.

解.直线l 1的方向向量为v 1=(-3,1), 直线l 2的方向向量为v 2=(1,3m ), ∵l 1与l 2的夹角为π

4

∴|cos〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|=|3m -3|9+1·1+9m 2

=2

2, 化简得18m 2

+9m -2=0.解得m =-23或m =16

.

点评.一般地,设直线l 1:y =k 1x +b 1,其方向向量为v 1=(1,k 1),直线l 2:y =k 2x +b 2,其方向向量为v 2=(1,k 2),当1+k 1k 2=0时,两直线的夹角为90°;当1+k 1k 2≠0时,设夹角为θ,则cos θ=|v 1·v 2||v 1|·|v 2|=|1+k 1k 2|

1+k 21·1+k 2

2;若设直线l 1:A 1x +B 1y +C 1=0,其方向向量为(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0,其方向向量为(-B 2,A 2),那么cos θ=|A 1A 2+B 1B 2|

A 21+

B 21·A 22+B 2

2

.

二、直线的法向量 1.定义

直线Ax +By +C =0的法向量:如果向量n 与直线l 垂直,则称向量n 为直线l 的法向量.因此若直线的方向向量为v ,则n ·v =0,从而对于直线Ax +By +C =0而言,其方向向量为v =(B ,-A ),则由于n ·v =0,于是可取n =(A ,B ). 2.应用

(1)判断直线的位置关系

例3.已知直线l 1:ax -y +2a =0与直线l 2:(2a -1)x +ay +a =0. (1)若l 1⊥l 2,求实数a 的值; (2)若l 1∥l 2,求实数a 的值.

解.直线l 1,l 2的法向量分别为n 1=(a ,-1),n 2=(2a -1,a ),

(1)若l 1⊥l 2,则n 1·n 2=a (2a -1)+(-1)×a =0,解得a =0或a =1.∴a =0或1时,

l 1⊥l 2.

(2)若l 1∥l 2,则n 1∥n 2,∴a 2

-(2a -1)×(-1)=0.解得a =-1±2,且a 2a -1=-1

a

≠2.∴a =-1±2时,l 1∥l 2.

点评.一般地,设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,它们的法向量分别为n 1=(A 1,B 1),n 2=(A 2,B 2),当n 1⊥n 2,即A 1A 2+B 1B 2=0时,l 1⊥l 2,反之亦然;当n 1∥n 2,即

A 1

B 2-A 2B 1=0时,l 1∥l 2或l 1与l 2重合.

(2)求点到直线的距离

例4.已知点M (x 0,y 0)为直线l :Ax +By +C =0外一点. 求证:点M (x 0,y 0)到直线l 的距离d =|Ax 0+By 0+C |

A 2+

B 2

.

证明.设P (x 1,y 1)是直线Ax +By +C =0上任一点,n 是直线l 的一个法向量,不妨取n =(A ,

B ).则M (x 0,y 0)到直线l :Ax +By +

C =0的距离d 等于向量PM →

在n 方向上投影的长度,如图

所示.

d =|PM →|·|cos〈PM →

,n 〉|

=|PM →·n ||n |

|(x 0-x 1,y 0-y 1)·(A ,B )|

A 2+

B 2

|A (x 0-x 1)+B (y 0-y 1)|

A 2+

B 2

|Ax 0+By 0-(Ax 1+By 1)|

A 2+

B 2

.

∵点P (x 1,y 1)在直线l 上,

∴Ax 1+By 1+C =0,∴Ax 1+By 1=-C ,

∴d =|Ax 0+By 0+C |A 2+B 2

.

点评.同理应用直线的法向量可以证明平行直线l 1:Ax +By +C 1=0与直线l 2:Ax +By +C 2=0(A 2+B 2

≠0且C 1≠C 2)的距离为d =|C 2-C 1|A 2+B 2.

证明过程如下:

设P 1(x 1,y 1),P 2(x 2,y 2)分别为直线l 1:Ax +By +C 1=0,直线l 2:Ax +By +C 2=0上任意两点,取直线l 1,l 2的一个法向量n =(A ,B ),则P 1P 2→

=(x 2-x 1,y 2-y 1)在向量n 上的投影的长度,就是两平行线l 1、l 2的距离.

d =|P 1P 2→

||cos 〈P 1P 2→

,n 〉|=|P 1P 2,→

·n |

|n |

=|(x 2-x 1,y 2-y 1)·(A ,B )|

A 2+

B 2

|A (x 2-x 1)+B (y 2-y 1)|

A 2+

B 2

|(Ax 2+By 2)-(Ax 1+By 1)|A 2+B 2=|C 2-C 1|

A 2+

B 2

.

5.向量法证明三点共线

平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力.下面就一道习题的应用探究为例进行说明. 典例.已知OB →=λOA →+μOC →

,其中λ+μ=1.求证:A 、B 、C 三点共线. 思路.通过向量共线(如AB →=kAC →

)得三点共线.

证明.如图,由λ+μ=1得λ=1-μ,则OB →=λOA →+μOC →=(1-μ)OA →+μOC →.∴OB →-OA →

=μ(OC →-OA →),

∴AB →=μAC →, ∴A 、B 、C 三点共线.

思考.1.此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;

2.反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满足OB →=λOA →

+μOC →

,且λ+μ=1.揭示了三点共线的又一个性质;

3.特别地,λ=μ=12时,OB →=12(OA →+OC →),点B 为AC →

的中点,揭示了△OAC 中线OB 的一个向

量公式,应用广泛. 应用举例

例1.如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =1

3BD .利用向量法

证明:M 、N 、C 三点共线.

思路分析.选择点B ,只须证明BN →=λBM →+μBC →

,且λ+μ=1.

证明.由已知BD →=BA →+BC →,又点N 在BD 上,且BN =13BD ,得BN →=13BD →=13(BA →+BC →)=13BA →+13BC →

.

又点M 是AB 的中点,

∴BM →=12BA →,即BA →=2BM →.∴BN →=23BM →+13BC →

.

而23+1

3=1.∴M 、N 、C 三点共线. 点评.证明过程比证明MN →=mMC →

简洁.

例2.如图,平行四边形OACB 中,BD =13BC ,OD 与AB 相交于E ,求证:BE =1

4

BA .

思路分析.可以借助向量知识,只需证明:

BE →=14

BA →,而BA →=BO →+BC →

,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且λ+μ=1,使BE →

=λBO →

+μBD →

,从而得到BE →与BA →

的关系.

证明.由已知条件,BA →=BO →+BC →,又B 、E 、A 三点共线,可设BE →=kBA →

,则

BE →

=kBO →+kBC →

又O 、E 、D 三点共线,则存在唯一实数对λ、μ, 使BE →=λBO →+μBD →

,且λ+μ=1. 又BD →=13BC →,

∴BE →=λBO →+13

μBC →,

根据①②得?????

k =λ,k =1

3μ,

λ+μ=1,

解得?????

k =14,

λ=1

4,

μ=34.

∴BE →=14BA →

,∴BE =14

BA .

点评.借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁.

6.平面向量中的三角形“四心”问题

在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,还培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍: 1.重心

三角形三条中线的交点叫重心,它到三角形顶点距离与该点到对边中心距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA →+GB →+GC →=0或PG →=13(PA →+PB →+PC →)(其中P 为平面任意一点).反之,若GA →+GB →+GC →

=0,则点G 是

△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且坐标分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =

x 1+x 2+x 3

3

,y =

y 1+y 2+y 3

3

.

例.已知△ABC 内一点O 满足关系OA →+2OB →+3OC →

=0,试求S △BOC ∶S △COA ∶S △AOB 的值. 解.如图,延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1.

则OB 1→=2OB →,OC 1→=3OC →. 由条件,得OA →+OB 1→+OC 1→

=0, ∴点O 是△AB 1C 1的重心.

从而S △B 1OC 1=S △C 1OA =S △AOB 1=1

3S ,其中S 表示△AB 1C 1的面积.

∴S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=1

18S .

于是S △BOC ∶S △COA ∶S △AOB =118∶19∶1

6

=1∶2∶3.

点评.本题条件OA →+2OB →+3OC →=0与三角形的重心性质GA →+GB →+GC →

=0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.

引申推广.已知△ABC 内一点O 满足关系λ1OA →+λ2OB →+λ3OC →

=0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3. 2.垂心

三角形三条高线的交点叫垂心,它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA →·HB →=HB →·HC →=HC →·HA →或HA →2+BC →2=HB →2+CA →2=HC →2+AB →2.反之,若HA →·HB →

=HB →·HC →=HC →·HA →

,则H 是△ABC 的垂心. 3.内心

三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC →|·IA →+|CA →|·IB →+|AB →|·IC →

=0.反之,若|BC →|·IA →+|CA →|·IB →+|AB →|·IC →

=0,则点I 是△ABC 的内心. 4.外心

三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA →+OB →)·BA →=(OB →+OC →)·CB →

=(OC →+OA →)·AC →=0或|OA →|=|OB →|=|OC →|.反之,若|OA →|=|OB →|=|OC →

|,则点O 是△ABC 的外心.

数学必修4_第二章_平面向量知识点word版本

数学必修4第二章 平面向量知识点 2.1 平面向量的实际背景及基本概念 1. 向量:既有大小又有方向的量。 2. 向量的模:向量的大小即向量的模(长度),如,AB a uu r r 的模分别记作|AB u u u r |和||a r 。 注:向量不能比较大小,但向量的模可以比较大小。 3. 几类特殊向量 (1)零向量:长度为0的向量,记为0r ,其方向是任意的,0r 与任意向量平行, 零向量a =0r |a |=0。由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) (2)单位向量:模为1个单位长度的向量,向量0a 为单位向量0||1a u u r 。将一个 向量除以它的模即得到单位向量,如a r 的单位向量为: ||a a e a r r r (3)平行向量(共线向量):方向相同或相反的非零向量,称为平行向量.记作a ∥b 。 规定:0r 与任何向量平等, 任意一组平行向量都可以移到同一直线上,由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。 (4)相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a r 。 关于相反向量有:① 零向量的相反向量仍是零向量, ②)(a =a ; ③ ()0a a v v v ; ④若a 、b 是互为相反向量,则 a = b ,b =a ,a +b =0 。

人教版高中数学必修二全册导学案

必修2 第一章 §2-1 柱、锥、台体性质及表面积、体积计 算 【课前预习】阅读教材P1-7,23-28完成下面填空 1.棱柱、棱锥、棱台的本质特征 ⑴棱柱:①有两个互相平行的面(即底面),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都). ⑵棱锥:①有一个面(即底面)是,②其余各面(即侧面)是 . ⑶棱台:①每条侧棱延长后交于同一点, ②两底面是平行且相似的多边形。 2.圆柱、圆锥、圆台、球的本质特征 ⑴圆柱: . ⑵圆锥: . ⑶圆台:①平行于底面的截面都是圆, ②过轴的截面都是全等的等腰梯形, ③母线长都相等,每条母线延长后都与轴交于同一点. (4)球: . 3.棱柱、棱锥、棱台的展开图与表面积和体积的计算公式 (1)直棱柱、正棱锥、正棱台的侧面展开图分别是 ①若干个小矩形拼成的一个, ②若干个, ③若干个 . (2)表面积及体积公式: 4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式 5.球的表面积和体积的计算公式【课初5分钟】课前完成下列练习,课前5分钟回答下列问题 1.下列命题正确的是() (A).有两个面平行,其余各面都是四边形的几何体叫棱柱。 (B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱。 (C) 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。 (D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。 2.根据下列对于几何体结构特征的描述,说出几何体的名称: (1)由8个面围成,其中两个面是互相平行且全等的六边形,其他面都是全等的矩形。 (2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形。 3.五棱台的上下底面均是正五边形,边长分别是 6cm和16cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积。 4.一个气球的半径扩大a倍,它的体积扩大到原来的几倍? 强调(笔记): 【课中35分钟】边听边练边落实 5 .如图:右边长方体由左边的平面图形围成的

新课标高中数学必修1全册导学案及答案

§1.1.1集合的含义及其表示 [自学目标] 1.认识并理解集合的含义,知道常用数集及其记法; 2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ?. 2.集合中元素的特性:确定性;无序性;互异性. 3.集合的表示方法:列举法;描述法;Venn 图. 4.集合的分类:有限集;无限集;空集. 5.常用数集及其记法:自然数集记作N ,正整数集记作* N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测] 例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数; (5)平面直角坐标系内,第一、三象限的平分线上的所有点. 分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性. 例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形 例3.设()()() {} 2 2 ,,2,,5,a N b N a b A x y x a y a b ∈∈+== -+-=若()3,2A ∈,求,a b 的值. 分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A. 例4.已知{}2,,M a b =,{} 22,2,N a b =,且M N =,求实数,a b 的值. [课内练习] 1.下列说法正确的是( ) (A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合? ?????∈= =+N n n x x A ,1 是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是 ( ) A .}33|{=+x x B },,|),{(2 2R y x x y y x ∈-= C .}0|{2 ≤x x D .}01|{2 =+-x x x 3.方程组2 0{ =+=-y x y x 的解构成的集合是 ( ) A .)}1,1{( B .}1,1{ C .(1,1) D .}1{. 4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B = 5.若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B= . [归纳反思] 1.列举法:把集合中的元素一一列举出来,写在花括号“{ }”内表示集合的方法.当集合中的元素 较少 时,用列举法表示方便. .例:x 2 -3x +2=0的解集可表示为{1,2}. 有些集合元素的个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如何用列举法表示从1到100的所有整数组成的集合及自然数集N. 答 分别表示为{1,2,3,…,100},{1,2,3,4,…,n ,…}. 小结 用列举法表示集合时,应把集合中的元素一一列举出来,并且写在大括号内,元素和元素之间要用“,”隔开.花括号“{ }”表示“所有”、“整体”的含义,如实数集R 可以写为{实数},但如果写成{实数集}、{全体实数}、{R}都是不确切的. 1 用列举法表示下列集合: (1)小于10的所有自然数组成的集合;

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章平面向量 16、向量:既有大小,又有方向得量、数量:只有大小,没有方向得量、 有向线段得三要素:起点、方向、长度、零向量:长度为得向量、 单位向量:长度等于个单位得向量、 平行向量(共线向量):方向相同或相反得非零向量、零向量与任一向量平行、 相等向量:长度相等且方向相同得向量、 17、向量加法运算: ⑴三角形法则得特点:首尾相连、 ⑵平行四边形法则得特点:共起点、 ⑶三角形不等式:、 ⑷运算性质:①交换律:; ②结合律:;③、 ⑸坐标运算:设,,则、 18、向量减法运算: ⑴三角形法则得特点:共起点,连终点,方向指向被减向量、 ⑵坐标运算:设,,则、 设、两点得坐标分别为,,则、 19、向量数乘运算: ⑴实数与向量得积就就是一个向量得运算叫做向量得数乘,记作、 ①; ②当时,得方向与得方向相同;当时,得方向与得方向相反;当时,、 ⑵运算律:①;②;③、 ⑶坐标运算:设,则、 20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使、 设,,其中,则当且仅当时,向量、共线、 21、平面向量基本定理:如果、就就是同一平面内得两个不共线向量,那么对于这一平面内得任意向量,有且只有一对实数、,使、(不共线得向量、作为这一平面内所有向量得一组基底) 22、分点坐标公式:设点就就是线段上得一点,、得坐标分别就就是,,当时,点得坐标就就是、(当 23、平面向量得数量积: ⑴、零向量与任一向量得数量积为、 ⑵性质:设与都就就是非零向量,则①、②当与同向时,;当与反向时,;或、③、 ⑶运算律:①;②;③、 ⑷坐标运算:设两个非零向量,,则、 若,则,或、设,,则、 设、都就就是非零向量,,,就就是与得夹角,则、 第三章三角恒等变换 24、两角与与差得正弦、余弦与正切公式: ⑴;⑵; ⑶;⑷; ⑸(); ⑹()、 25、二倍角得正弦、余弦与正切公式:

数学必修二导学案

1.1.1柱、锥、台、球的结构特征导学案 【问题导学】 1.空间几何体 (1)多面体:由若干个围成的几何体叫做多面体.围成多面体的各个叫做多面体的面;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点. (2)旋转体:由一个平面图形绕它所在平面内的一条旋转所形成的封闭几何体叫做旋转体,这条叫做旋转体的轴. 2 多面体结构特征图形表示法 棱柱有两个面互相,其余各面都是, 并且每相邻两个四边形的公共边都互 相,由这些面所围成的多面体叫做棱 柱.棱柱中, 的面叫做棱柱的 底面,简称底;叫做棱柱的侧面; 相邻的侧面的叫做棱柱的侧棱;侧面 与底面的叫做棱柱的顶点 如上、下底面分别是四 边形A′B′C′D′、四 边形ABCD的四棱柱,可记为棱 柱ABCD-A′ B′C′D′ 棱锥有一个面是,其余各面都是有一个 公共顶点的,由这些面所围成的 多面体叫做棱锥.这个面叫做棱锥的 底面或底;有公共顶点的各 个叫做棱锥的侧面;各侧面 的叫做棱锥的顶点;相邻侧面 的叫做棱锥的侧棱 如图所示,该棱锥可表示为棱 锥S -ABCD 棱台用一个的平面去截棱锥,底面 和截面之间的部分叫做棱台.原棱锥的 和分别叫做棱台的下底面和上 底面 如上、下底面分别是四边形A′ B′C′D′、四边形ABCD的四 棱台,可记为棱台ABCD-A′B′ C′D′ 试一试:如图所示,是由两个相同形状的三棱柱叠放在一起形成的几何体,请问这个几何体是棱柱吗? 旋转体结构特征图形表示法 圆柱以所在直线为旋转轴, 其余三边旋转形成的面所围成 的叫做圆柱,叫做 圆柱的轴;的边旋转而成 的叫做圆柱的底面; 的边旋转而成的曲面叫做圆柱的 侧面;无论旋转到什么位置, 的边都叫做圆柱侧面 圆柱用表示它的轴的字母表 示,左图中圆柱表示为圆柱 OO′

人教新课标版数学高一必修1导学案 对数函数及其性质(二)学生版

2.2.2 对数函数及其性质(二) 学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法. 2.掌握对数型复合函数奇偶性的判定方法. 3.会解简单的对数不等式. 4.了解反函数的概念及它们的图象特点. 学习过程 一、自主学习 1.一般地,形如函数f (x )=log a g (x )的单调区间的求法:①先求g (x )>0的解集(也就是函数的定义域);②当底数a 大于1时,g (x )>0限制之下g (x )的单调增区间是f (x )的单调增区间,g (x )>0限制之下g (x )的单调减区间是f (x )的单调减区间;③当底数a 大于0且小于1时,g (x )>0限制之下g (x )的单调区间与f (x )的单调区间正好相反. 2.一般地,对数不等式的常见类型: 当a >1时, log a f (x )>log a g (x )?????? f x >0可省略,g x >0,f x >g x ; 当0<a <1时, log a f (x )>log a g (x )?????? f x >0,g x >0可省略,f x <g x . 3.一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形 5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。 A、B、C、D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、B、 C、D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心 8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题: (1)( ·b)2= 2·b2(2)| +b|≥| -b|(3)| +b|2=( +b)2 (4)(b) -(a)b与不一定垂直。其中真命题的个数是()。 A、1 B、2 C、3 D、4

9.在ΔABC中,A=60°,b=1,,则 等于()。 A、B、C、D、 10.设、b不共线,则关于x的方程x2+b x+ =0的解的情况是()。 A、至少有一个实数解 B、至多只有一个实数解 C、至多有两个实数解 D、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 2,则 =_________ 11.在等腰直角三角形ABC中,斜边AC=2 12.已知ABCDEF为正六边形,且AC=a,AD=b,则用a,b表示AB为______. 13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量与b的夹角为θ,那么我们称×b为向量与b的“向 量积”,×b是一个向量,它的长度| ×b|=| ||b|sinθ,如果| |=3, |b|=2, ·b=-2,则| ×b|=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量= , 求向量b,使|b|=2| |,并且与b的夹角为 。(10分) 16、已知平面上3个向量、b、的模均为1,它们相互之间的夹角均

人教版高中数学必修2全册学案(完整版)

第一章 立体几何初步 一、知识结构 二、重点难点 重点:空间直线,平面的位置关系。柱、锥、台、球的表面积和体积的计算公式。平行、垂直的定义,判定和性质。 难点:柱、锥、台、球的结构特征的概括。文字语言,图形语言和符号语言的转化。平行,垂直判定 与性质定理证明与应用。 第一课时 棱柱、棱锥、棱台 【学习导航】 学习要求 1.初步理解棱柱、棱锥、棱台的概念。掌握它们的形成特点。 2.了解棱柱、棱锥、棱台中一些常用 名称的含义。 3.了解棱柱、棱锥、棱台这几种几何 体简单作图方法 4.了解多面体的概念和分类. 【课堂互动】 自学评价 1. 棱柱的定义: 表示法: 思考:棱柱的特点:. 【答】 2. 棱锥的定义: 表示法: 思考:棱锥的特点:. 【答】 3.棱台的定义: 表示法: 思考:棱台的特点:. 【答】

4.多面体的定义: 5.多面体的分类: ⑴棱柱的分类 ⑵棱锥的分类 ⑶棱台的分类 【精典范例】 例1:设有三个命题: 甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱; 乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥; 丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。 以上各命题中,真命题的个数是(A)A.0 B. 1 C. 2 D. 3 例2:画一个四棱柱和一个三棱台。 【解】四棱柱的作法: ⑴画上四棱柱的底面----画一个四边形; ⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段; ⑶画下底面------顺次连结这些线段的另一个端点 互助参考7页例1 ⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去. 互助参考7页例1 点评:(1)被遮挡的线要画成虚线(2)画台由锥截得 思维点拔: 解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点: 例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。反过来,若一个几何体,具有上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗? 答:不能. 点评:就棱柱来验证这三条性质,无一例外,能不能找到反例,是上面三条能作为棱柱的定义的关键。 自主训练一 1. 如图,四棱柱的六个面都是平行四边形。这个四棱柱可以由哪个平面图形按怎样的方向平移得到? 答由四边形ABCD沿AA1方向平移得到. 2.右图中的几何体是不是棱台?为什么? 答:不是,因为四条侧棱延长不交于一点.3.多面体至少有几个面?这个多面体是怎样的几何体。 答:4个面,四面体. 第二课时圆柱、圆锥、圆台、球 【学习导航】 知识网络 A C B D A1 C1 B1 D1

高中数学必修1导学案

班级: 组别: 组号:___________ 姓名: 2.2.1对数(1) 【学习目标】 1. 理解对数的概念; 2. 能够进行对数式与指数式的互化; 3.会根据对数的概念求一些特殊的对数式的值。 【自主学习】认真阅读教材62页至63页例2,探究并思考: 1.问题:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,30亿? 请问:(1)问题具有怎样的共性? (2)已知底数和幂的值,求指数 怎样求呢?例如:由1.01x m =,求x . 2.一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ). 记作 log a x N =,其中a 叫做对数的底数,N 叫做真数 试试:将问题1中的指数式化为对数式. 3我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技 术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N 试试:分别说说lg5 、lg3.5、ln10、ln3的意义. 4.思考: (1)指数与对数间的关系? 0,1a a >≠时,x a N =? . (2)负数与零是否有对数?为什么? (3)log 1a = , log a a = . (4) log ____;n a a = log _____a N a = 5. 1)将下列指数式写成对数式: (1)4 216=; (2)3 1 3 27 -= ; (3)520a =; (4)10.452b ??= ??? . 2)将下列对数式写成指数式: (1)5log 1253=; (2) log 32=-; (3)lg 0.012=-; (4) 2.303=. 小结:注意对数符号的书写,与真数才能构成整体. 【合作探究】 1.求下列各式的值: ⑴2log 64; ⑵2 1 log 16 ; (3)lg10000;

人教版必修四第二章平面向量教案

人教版必修四第二章平面向量教案 教学目标: 三维目标 1、知识与技能 (1)了解向量的实际背景,理解平面向量的概念和向量的几何表示; (2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念; 并能弄清平行向量、相等向量、共线向量的关系 (3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别. 2、过程与方法 引导发现法与讨论相结合。这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。体现了在老师的引导下,学生的的主体地位和作用。 3、情感目标与价值观 通过对向量与数量的比较,培养学生认识客观事物的数学本质的能力,并且意识到数学与现实生活是密不可分的,是源于生活,用于生活的。 教学重点:理解向量、相等向量等相关的概念,向量的几何表示等是本节课的重点。 教学难点:难点是学生对向量的概念和共线向量的概念的理解。 学情和教材分析:向量是近代数学中重要和基本的概念之一,有深刻的几何背景及代数意义,因此向量具有数形结合的特征,是深入学习数学及解决各类数学问题的有效工具,在其他学科中也有广泛应用。所以向量是历年高考的必考内容,本节课是向量的第一节课,是新知识的一个起点,所以这是十分关键、重要的一节课。本节教学内容的特点是:概念多,有向量、平行向量、相等向量、单位向量等相关概念及向量的几何表示。学生在学习过程中,诸多概念容易混淆,它们之间关系不易理清,这些是学习中的难点。 教法设计:引导启发式教学 学法设计:指导学生自主学习 课时计划:一课时 教具学具:多媒体、彩笔、三角板 教学过程 一、创设情景、导入新课 1.我们知道物理中的力、速度,位移等都是矢量,不同与路程、质量等量,他们具有什么样的共同特征?………(学生讨论作答) 2.你能举出几个具有以上特征的量吗?年龄、身高、体重、长度等具有这些特征吗?(学生思考作答) 3.在数学上,我们把具有这种特征的量称为向量,(教师在黑板上书写课题,然后大屏幕展示课题,学生阅读课本P74) 二、推进新课 1.定义:既有大小又有方向的量叫向量。例:力、速度、加速度等。 注意:1?数量与向量的区别:数量只有大小,可以比较大小;向量既有方向又 有大小,不能比较大小(强调)。 2.向量的表示方法: 1?几何表示法:有向线段——具有一定方向的线段

高中数学必修二学案

§1.1.1 柱、锥、台、球的结构特征 一、课前准备 (预习教材P2~ P4,找出疑惑之处) 引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫做空间几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧! 二、基础探究 1.观察下面的图片,请将这些图片中的物体分成两类,并说明分类的标准是什么? 图1 2.【研读课本】 (1)多面体的概念:叫多面体, 叫多面体的面,叫多面体的棱, 叫多面体的顶点。 ①棱柱:两个面,其余各面都是,并且每相邻两个四 边形的公共边都,这些面围成的几何体叫作棱柱 ②棱锥:有一个面是,其余各面都是的三角形,这些面 围成的几何体叫作棱锥 ③棱台:用一个棱锥底面的平面去截棱锥,, 叫作棱台。 (2)旋转体的概念: 叫旋转体,叫旋转体的轴。

①圆柱:所围成的 几何体叫做圆柱. ②圆锥:所围成的 几何体叫做圆锥. ③圆台:的部分叫 圆台. ④球的定义 三、能力探究 例1.(1)如图,观察四个几何体,其中判断正确的是() A.(1)是棱台 B.(2)是圆台 C.(3)是棱锥 D.(4)不是棱柱 (2)下列说法错误的是() A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 (3)下列命题中正确的是() A.棱台各侧棱的延长线交于一点 B.以直角梯形的一腰为轴旋转所得的旋转体是圆台 C.连接圆柱上、下底面圆周上两点的线段是圆柱的母线 D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径 (4)下列几个命题中, ①两个面平行且相似,其余各面都是梯形的多面体是棱台; ②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台; ③各侧面都是正方形的四棱柱一定是正方体; ④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱. 其中正确的有__________个.() A.1 B.2 C.3 D.4 (5)下列说法中不正确的是() A 棱与侧棱是同一概念 B 三棱锥与四面体是同一概念 C四棱柱有4条体对角线 D 存在这样的棱锥,它的各个面都是直角三角形 (6)一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为______cm. 例2有两个面互相平行,其余各面是平行四边形的几何体是棱柱吗?如果不是,请举例说明。

人教版高中数学必修5全册导学案

§1.1.1 正弦定理 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题. CB 及∠B ,使边AC 绕着 顶点C 转动. 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来? 二、新课导学 ※ 学习探究 探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ?ABC 中,设BC =a ,AC =b ,AB =c , 根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C == . ( 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当?ABC 是锐角三角形时,设边AB 上的高是 CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B = , 同理可得sin sin c b C B = , 从而sin sin a b A B =sin c C =. 类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立.请你试试导. 新知:正弦定理 在一个三角形中,各边和它所对角的 的比相等,即 sin sin a b A B = sin c C =. 试试: (1)在ABC ?中,一定成立的等式是( ) . A .sin sin a A b B = B .cos cos a A b B = C . sin sin a B b A = D .cos cos a B b A = (2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 . [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =; (2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C . (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b =;sin C = . (4)一般地,已知三角形的某些边和角,求其它 的边和角的过程叫作解三角形. ※ 典型例题 例1. 在ABC ?中, 已知45A =,60B =,42a =cm ,解三角形.

高中数学必修4第二章平面向量教案完整版

§ 平面向量的实际背景及基本概念 1、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:; ④向量的大小――长度称为向量的模,记作||. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段..... 的起点无关..... . 7、共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)..... . 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. A(起点) B (终点) a

(新教材)人教A版高中数学必修第二册学案 统计导学案含答案

9.1随机抽样 考点学习目标核心素养 抽样调查 理解全面调查、抽样调查、总体、个体、 样本、样本量、样本数据等概念 数学抽象 简单随机抽样 理解简单随机抽样的概念,掌握简单随机 抽 样的两种方法:抽签法和随机数法 数学抽象、逻辑推理分层随机抽样 理解分层随机抽样的概念,并会解决相关 问题 数学抽象、逻辑推理 问题导学 预习教材P173-P187的内容,思考以下问题: 1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么? 2.什么叫简单随机抽样? 3.最常用的简单随机抽样方法有哪两种? 4.抽签法是如何操作的? 5.随机数法是如何操作的? 6.什么叫分层随机抽样? 7.分层随机抽样适用于什么情况? 8.分层随机抽样时,每个个体被抽到的机会是相等的吗? 9.获取数据的途径有哪些? 1.全面调查与抽样调查 (1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W. (2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W. (3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况

作出估计和推断的调查方法,称为抽样调查W. (4)把从总体中抽取的那部分个体称为样本W. (5)样本中包含的个体数称为样本量W. (6)调查样本获得的变量值称为样本的观测数据,简称样本数据. 2.简单随机抽样 (1)有放回简单随机抽样 一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n

高一数学必修一第一章导学案

§1.2.1 函数的概念(1) 1. 通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; 2. 了解构成函数的要素; . 重点:理解函数的模型化思想。 一、课前准备 (预习教材P 15~ P 17,找出疑惑之处) 复习1:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 复习2:(初中对函数的定义)在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法. 二、新课导学 ※ 学习探究 探究任务一:函数模型思想及函数概念 问题:研究下面三个实例: A . 一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-. B . 近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况. C . 国际上常用恩格尔系数(食物支出金额÷总支出金 额)反映一个国家人民生活质量的高低. “八五”计划以来 我们城镇居民的恩格尔系数如下表 讨论:以上三个实例存在哪些变量?变量的变化范围分 别是什么?两个变量之间存在着这样的对应关系? 三个实 例有什么共同点?

归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →. 新知:函数定义. 设A 、B 是 ,如果按照某种确定的 ,使对于集合A 中的 一个数x ,在集合B 中都有 确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈. 其中,x 叫 ,x 的取值范围A 叫作 (domain ),与x 的值对应的y 值叫 ,函数值的集合{()|}f x x A ∈叫 (range ). 试试:如下图可作为函数()y f x =的图象的是( ). A. B. C. D. 小结: 函数的对应关系:每一个x 与y 的对应可以为:一对一,多对一,不可以一对多。 反思: (1)值域与B 的关系是 ;构成函数的三要素是 、 、 . 函数 解析式 定义域 值域 一次函数 (0)y ax b a =+≠ 二次函数 2y ax bx c =++, 其中0a ≠ 反比例函数 (0)k y k x =≠ 探究任务二:区间及写法 新知:设a 、b 是两个实数,且a a }= 、 {x |x ≤b }= 、{x |x 或= . (3)函数y =x 的定义域 , 值域是 . (观察法)

高中数学必修4第二章 平面向量公式及定义

平面向量公式 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λ b. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ. 3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b.若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a?b=x?x'+y?y'. 向量的数量积的运算律 a?b=b?a(交换律);

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()() a b c a b c ++=++ ;③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1 212 ,x x y y A B=-- . 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 20、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基 b a C B A a b C C -=A -AB =B

人教版-高一数学必修4全套导学案

第二章平面向量 2.1 向量的概念及表示 【学习目标】 1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量的概念;并会区分平行向量、相等向量和共线向量; 2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别; 3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。【学习重难点】 重点:平行向量的概念和向量的几何表示; 难点:区分平行向量、相等向量和共线向量; 【自主学习】 1.向量的定义:__________________________________________________________; 2.向量的表示: (1)图形表示: (2)字母表示: 3.向量的相关概念: (1)向量的长度(向量的模):_______________________记作:______________ (2)零向量:___________________,记作:_____________________ (3)单位向量:________________________________ (4)平行向量:________________________________ (5)共线向量:________________________________ (6)相等向量与相反向量:_________________________ 思考: (1)平面直角坐标系中,起点是原点的单位向量,它们的终点的轨迹是什么图形?____ (2)平行向量与共线向量的关系:____________________________________________ (3)向量“共线”与几何中“共线”有何区别:__________________________________ 【典型例题】 例1.判断下例说法是否正确,若不正确请改正: (1)零向量是唯一没有方向的向量; (2)平面内的向量单位只有一个; (3)方向相反的向量是共线向量,共线向量不一定是相反向量; b c,则a和c是方向相同的向量; (4)向量a和b是共线向量,//

相关主题
文本预览
相关文档 最新文档