当前位置:文档之家› 合并法换元法解元次方程组

合并法换元法解元次方程组

合并法换元法解元次方程组
合并法换元法解元次方程组

合并法、换元法解二元一次方程组

(一)知识教学点

1.掌握用合并法、换元法解二元一次方程组的步骤.

2.熟练运用合并法、换元法解二元一次方程组.

(二)能力训练点

1.培养学生的观察分析能力;

2.训练学生的运算技巧,养成检验的习惯.

(三)德育渗透点

消元,化未知为已知的数学思想.

(四)美育渗透点

通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

二、学法引导

1.教学方法:引导发现法、练习法,指导法.

2.学生学法:在前面已经学过二元一次方程组的解法,故在求解过程中始终应抓住消元的思想方法.

三、重点、难点、疑点及解决办法

(-)重点

使学生会用合并法、换元法解二元一次方程组.

(二)难点

灵活运用合并法、换元法的技巧.

(三)疑点

如何“消元”,把“二元”转化为“一元”.

四、课时安排

一课时.

五、教具学具准备

电脑 投影仪.

六、教学过程

一导 运用导学案 自主学习

(一)解二元一次方程组的基本思路是消元,即通过运用代入法和加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解.而对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错.若能根据题目的特点,适时改进方法,不仅可以减少运算量,而且可以又快又准地解出方程组.

(二)自主探究请同学们根据提示用合并法解二元一次方程组

(略)

设计意图:以学生的兴趣为主,由易至难,逐层递进,逐步完成各个任务。

(三)总结

二研 合作学习 研究探讨

(一)例题解析 (1) ???-=+=+② 10y 65x ①

1056y x

(2) ???=+-=-+-② 72009)-7(2010y 9)4(2x ①

3)20092010(3)92(2y x 设计意图:合作探究,探索比较,发现规律,使每位学生参与其中,成为课堂的主人,提高解题技巧

(二)练习题 (1)???=+=+② 79y 137x ①

61713y x (2)???=+=+② 74y 1911x ①

1061119y x

(3)?????-=--+=-++.1106,3106y x y x y x y x (4)???

????=--+=-++.86)32(55)1(3,36)32(5)1(2y x y x 设计意图:竞赛完成,激发学习热情,巩固强化

三验 课堂小测验(略)

设计意图:对学生完成情况及时了解,及时总结,对课堂教学及时反思,对下一步的教学进行适时,适当的调整。并对学生的解题情况进行总体的评价,要本着激励的原则,使学生有成就感。

《代入法解二元一次方程组》教案

用代入法解二元一次方程组 学习目标 :会运用代入消元法解二元一次方程组. 学习重难点:1、会用代入法解二元一次方程组。 2、灵活运用代入法的技巧. 学习过程: 一、基本概念 1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。 2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。 3、代入消元法的步骤: 二、自学、合作、探究 1、将方程5x-6y=12变形:若用y 的式子表示x ,则x=______,当y=-2时,x=_______;若用含x 的式子表示y ,则y=______,当x=0时,y=________ 。 2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。 3、若???-=-=+???-==1by ax 7by ax 2y 1x 是方程组的解,则a=______,b=_______。 4、若方程y=1-x 的解也是方程3x+2y=5的解,则x=____,y=____。

5、用代人法解方程组???=+-=7 y 3x 23x y ①②,把____代人____,可以消去未知数______。 6、已知方程组???=-=-1y 7x 45y x 3的解也是方程组? ??==-5by -x 34y 2ax 的解,则a=_______,b=________ ,3a+2b=___________。 7、已知x=1和x=2都满足关于x 的方程x 2+px+q=0,则p=_____, q=________ 。 8、当k=______时,方程组???=-+=+3y 1k kx 1y 3x 4)(的解中x 与y 的值相等。 9、用代入法解下列方程组: ⑴???=+=5x y 3x ⑵???==+y 3x 2y 32x ⑶? ??=-=+8y 2x 57y x 3 二、训练 1、方程组{1 y 2x 11y -x 2+==的解是( )

利用换元法解方程组

2 例如:x 2 3x x 2 3x 2 3x 2 2x 3x 2 2x 4x 2 5x 观察发现 2 3x 2 3x 2x 4x 2 5x 1,故可设 x 2 3x 2 3x 2 2x v ,原方程变为u 2 uv v 2 ,方程由繁变简,可得解? 第 6 讲利用换元法解方程 、方法技巧 (一) 换元法 解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的 . (二) 运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程 解分式方程、无理方程、 整式(高次)方程的基本思想是将分式方程化为整式方程、 无理方程化为有理方程、整式(高次)方程逐步降次 (三) 换元的方法是以所讨论方程的特有性质为依据的, 不同的方程就有不同的换元方 法,因此, 这种方法灵活性大,技巧性强?恰当地换元,可将复杂方程化简,以 便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 82,使方程变得易解,这是均值换元法 例如: 5 — 6 0,可使用局部换元法, x 1 ②x 2 0,变形后也可使用局部换元法,设 2x 2 ~2 x x 2 1 19 —,看着很繁冗,变形整理成 6 x 2 x 2 2 x 2 x 19 一 —时,就可使用局部换兀法 6 82 , 可设 口 x 2,方程变成 ⑤6x 4 5x 3 38x 2 5x 符合与中间项等距离的项的系数相等, 如6x 4 与6 , 5x 3与5x 系数相等,可构造 x 1换元,是倒数换元法. x ⑥x 3 2、.3x 2 3x .3 1 0 ,不易求解,若反过来看,把设 x 看作已知数, 把.3设为设t ,则方程就变成x t 2 2x 2 1 t 数字换元法不常用,但不失为一种巧妙的解题方法 有时根 据方程各部分特点可设双元,达到化繁为简, 求解的目的

合并法换元法解元次方程组

合并法、换元法解二元一次方程组 (一)知识教学点 1.掌握用合并法、换元法解二元一次方程组的步骤. 2.熟练运用合并法、换元法解二元一次方程组. (二)能力训练点 1.培养学生的观察分析能力; 2.训练学生的运算技巧,养成检验的习惯. (三)德育渗透点 消元,化未知为已知的数学思想. (四)美育渗透点 通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美. 二、学法引导 1.教学方法:引导发现法、练习法,指导法. 2.学生学法:在前面已经学过二元一次方程组的解法,故在求解过程中始终应抓住消元的思想方法. 三、重点、难点、疑点及解决办法 (-)重点 使学生会用合并法、换元法解二元一次方程组. (二)难点 灵活运用合并法、换元法的技巧. (三)疑点 如何“消元”,把“二元”转化为“一元”.

四、课时安排 一课时. 五、教具学具准备 电脑 投影仪. 六、教学过程 一导 运用导学案 自主学习 (一)解二元一次方程组的基本思路是消元,即通过运用代入法和加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解.而对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错.若能根据题目的特点,适时改进方法,不仅可以减少运算量,而且可以又快又准地解出方程组. (二)自主探究请同学们根据提示用合并法解二元一次方程组 (略) 设计意图:以学生的兴趣为主,由易至难,逐层递进,逐步完成各个任务。 (三)总结 二研 合作学习 研究探讨 (一)例题解析 (1) ???-=+=+② 10y 65x ① 1056y x

(2) ???=+-=-+-② 72009)-7(2010y 9)4(2x ① 3)20092010(3)92(2y x 设计意图:合作探究,探索比较,发现规律,使每位学生参与其中,成为课堂的主人,提高解题技巧 (二)练习题 (1)???=+=+② 79y 137x ① 61713y x (2)???=+=+② 74y 1911x ① 1061119y x (3)?????-=--+=-++.1106,3106y x y x y x y x (4)??? ????=--+=-++.86)32(55)1(3,36)32(5)1(2y x y x 设计意图:竞赛完成,激发学习热情,巩固强化 三验 课堂小测验(略) 设计意图:对学生完成情况及时了解,及时总结,对课堂教学及时反思,对下一步的教学进行适时,适当的调整。并对学生的解题情况进行总体的评价,要本着激励的原则,使学生有成就感。

《代入法解二元一次方程组》-教学设计

消元——二元一次方程组的解法(代入消元法) 学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。 三维目标 知识与技能 1、会用代入法解二元一次方程组 2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成 未知向已知的转化,培养学生观察能力,体会化归 思想。 情感态度与价值观 :通过研究解决问题的方法,培养学生合作交 流意识和探究精神。 教学重点: 用加减消元法解二元一次方程组。 教学难点: 理解加减消元思想和选择适当的消元方法解二元一次方程组。教学过程 (一)创设情境,激趣导入 在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场), 可以列方程组 x y22 2x y40 += ? ? += ?表示本章引言中问题的数量关系。如果只 设一个未知数(设胜x场),这个问题也可以用一元一次方程

________________________[1]来解。 分析:[1]2x+(22-x)=40。 观察 上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。这正是下面要讨论的内容。 (二)新课教学 可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。解这个方程,得x=18。把x=18代入y=22-x,得y=4。从而得到这个方程组的解。 二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。[3] [3]通过对上面具体方程组的讨论,归纳出“将未知数的个数由多化少、逐一解决”的消元思想,这是从具体到抽象,从特殊到一般的认识过程。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解它。 归纳: 上面的解法,是由二元一次方程组中的一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法[4]

特殊法解二元一次方程组优秀教学设计

特殊法解二元一次方程组专题 命题人:易晓萍 班级:________姓名:__________ 学习目标:掌握整体代入法、换元法、轮换对称方程、含参方程等特殊的方法解方程 一、整体代入法 例1、对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组: 变式练习:(1)???=+=+11325y x y x (2)?????=--=-12264532y y x y x 归纳总结:在运用消元法解二元一次方程组时,要注重整体思想的运用,以探求消元捷径,提高解题速度和准确性。 二、换元法 请阅读下列材料,解答问题: 材料:解方程组 ,若设x +y =m ,x ﹣y =n ,则原方程组可变形为,用加减消元法解得,所以,再解这个方程组得.由此可以看出,在上述解方程组过程中,把某个式子看成一个整体,用一个字母去代替它,我们把这种解方程组的方法叫换元法. 问题:请你用上述方法解方程组 . 变式练习:(1)???=-++=--+11)(2)(35)()(2n m n m n m n m (2)???????=-++=-++1732)(3732y x y x y x y x 归纳总结:具备这种特征的二元一次方程组,如果按照常规解法,不仅计算量大,而且特别容易出错,若根据

其特征,适当进行换元,不仅可以减少运算量,而且可以更快更准确。 三、轮换对称方程 定义:在解方程组 时,我们可以先①+②,得x +y =1,再②﹣①,得x ﹣y =9,最后重新组成方程组,这种解二元一次方程组的解法我们称为二元一次方程组的轮换对称解法. 变式练习:(1)???=+=+13 341 43y x y x (2) ???=+=+15151491494951y x y x 归纳总结:具备这种特征的二元一次方程组,如果按照常规解法,不仅计算量大,而且特别容易出错,若根据 其特征,将两个方程相加相减得出新的方程,会大大减低计算量。(依据是等式的性质) 四、含参方程 例、解方程组 ???-=+=14 434:3:2::c b a c b a 变式练习:已知x 、y 的值满足等式 54321y x y x +=+=+,求式子32123++++y x y x 的值 归纳总结:连比或者连等,通常利用设参法,先将连比或连等中的未知数设参数表示,再求解,以达到消元的目的。

方程解的情况及换元法

知识点:方程解的情况及换元法 1.一元二次方程的根的情况是. A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 2.不解方程,判别方程3x2-5x+3=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 3.不解方程,判别方程3x2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 4.不解方程,判别方程4x2+4x-1=0的根的情况是 . A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 5.不解方程,判别方程5x2-7x+5=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 6.不解方程,判别方程5x2+7x=-5的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 7.不解方程,判别方程x2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 8. 不解方程,判断方程5y+1=2y的根的情况是 A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 9. 用换元法解方程时, 令= y,于是原方程变为. A.y-5y+4=0 B.y-5y-4=0 C.y-4y-5=0 D.y+4y-5=0 10. 用换元法解方程时,令= y ,于是原方程变为. A.5y-4y+1=0 B.5y-4y-1=0 C.-5y-4y-1=0 D.-5y-4y-1=0 11. 用换元法解方程()2-5()+6=0时,设=y,则原方程化为关于y的方程是 . A.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0

二元一次方程解法大全

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=

当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程:

综合解一元二次方程—换元法

综合解一元二次方程— 换元法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

2.2.5《解一元二次方程—换元法》典例解析与同步训练 【知识要点】 1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理. 2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的. 【典例解析】 例1.用适当方法解下列方程: (1)2x2﹣5x﹣3=0 (2)16(x+5)2﹣9=0 (3)(x2+x)2+(x2+x)=6. 例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法 (1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可; (2)用直接开平方法解一元二次方程,先将方程化为(x+5)2=,直接开方即可; (3)设t=x2+x,将原方程转化为一元二次方程,求解即可. 解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49, ∴x===, ∴x1=3,x2=﹣; (2)整理得,(x+5)2=, 开方得,x+5=±, 即x1=﹣4,x2=﹣5, (3)设t=x2+x,将原方程转化为t2+t=6, 因式分解得,(t﹣2)(t+3)=0, 解得t1=2,t2=﹣3. ∴x2+x=2或x2+x=﹣3(△<0,无解), ∴原方程的解为x1=1,x2=﹣2. 例2.解方程:(1)(x+3)(x﹣1)=5

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

换元法解方程

换元法解方程 西安市第八十五中学江树基 换元法是用新元代替方程中含有未知数的某个部分,达到化简的目的.换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径.常用方法有均值代换、多元代换、常数代换等. 解分式方程、无理方程、高次方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、高次方程逐步降次,实现这一基本思想的方法有多种,其中换元法是常用的一种重要方法,本文注重研究用换元法解方程的技能、技巧. 一、分式方程 分析:这个方程左边两个分式互为倒数关系,抓住这一特点,可设 ∴(y-1)2=0,解得y=1. 经检验,x 1,x 2 都是原方程的根. 分析:观察方程的分母,发现各分母均是关于x的二次三项式,仅常数项不同,抓住这一特点,可设y=x2+2x. 解:设y=x2+2x,则原方程可化为 即y2-y-12=0,解得y1=4,y2=-3.

x2+2x=-3,无实数解. 例3 解方程 分析:观察方程的分母,发现三个分母都是关于x的二次三项式,仅一次项不同,抓住这一特点,可设y=x2+2x+10. 解:设y=x2+2x+10,则原方程可化为 解得y =9x,y2=-5x. 1 由x2+2x+10=9x,解得x =5,x2=2. 1 由x2+2x+10=-5x,解得x =-5,x4=-2. 3 经检验知,它们都是原方程的解. 注:以上三个例子可看出,换元时必须对原方程进行仔细观察、分析,抓住方程的特点,恰当换元,化繁为简,达到解方程的目的. 二、无理方程 两边立方,并整理得 y3-2y2+3y=0,即y(y2-2y+3)=0, ∴y=0或y2-2y+3=0,无解. 经检验知x=-1是原方程的解. 可设两个未知数,利用韦达定理解. 原方程为m+n=1,又∵(m+n)3=m3+n3+3mn·(m+n)=4+3mn=1,∴mn=-1.

利用换元法解方程(组)教学内容

第6讲 利用换元法解方程 一、方法技巧 (一)换元法解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的. (二)运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程. 解分式方程、无理方程、整式(高次)方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、整式(高次)方程逐步降次. (三)换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方 法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 例如:① 256011x x x x ????++= ? ?++? ??? ,可使用局部换元法,设1x y x =+ ②22110x x x x +++=,变形后也可使用局部换元法,设1x t x += ③222212219116 x x x x x x x +++++=+++,看着很繁冗,变形整理成222211191116 x x x x x x +++++=+++时,就可使用局部换元法. ④()()443182x x +++=,可设()()3122x x y x +++==+,方程变成 ()()441182y y ++-=,使方程变得易解,这是均值换元法. ⑤4326538560x x x x +-++=,符合与中间项等距离的项的系数相等, 如46x 与6,35x 与5x 系数相等,可构造1x x + 换元,是倒数换元法. ⑥32310x x +++=,不易求解,若反过来看,把设x 看作已 t ,则方程就变成()() 2232110x t x t x ?+++-=, 数字换元法不常用,但不失为一种巧妙的解题方法. 有时根据方程各部分特点可设双元,达到化繁为简,求解的目的. 例如:

代入法解二元一次方程组练习

七年级数学导学案 课题:代入法解方程组练习 第1课时 班级________ 姓名_________ 学习过程: 一、基本概念 1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。 2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。 3、代入消元法的步骤:代入消元法的第一步是:将其中一个方程中的某个未知数用____的式子表示出来;第二步是:用这个式子代入____,从而消去一个未知数,化二元一次方程组为一元一次方程. 二、自学、合作、探究 1.将方程5x-6y=12变形:若用含y 的式子表示x ,则x=______,当y=-2时,x=_______;若用含x 的式子表示y ,则y=______,当x=0时,y=________ 。 2.用代人法解方程组? ??=+-=7y 3x 23 x y ①②,把____代人____,可以消去未知 数______,方程变为: 3.若方程y=1-x 的解也是方程3x+2y=5的解,则x=____,y=____。 4.若? ? ?-=-=+???-==1by ax 7 by ax 2y 1x 是方程组的解,则a=______,b=_______。 5.已知方程组?? ?=-=-1y 7x 45y x 3的解也是方程组???==-5 by -x 34 y 2ax 的解,则 a=_______,b=________ ,3a+2b=___________。 6.已知x=1和x=2都满足关于x 的方程x 2 +px+q=0,则p=_____, q=________ 。 7.用代入法解下列方程组: ⑴???=+=5x y 3x ⑵???==+y 3x 2y 32x ⑶???=-=+8 y 2x 57 y x 3 二、训练 1.方程组{ 1 y 2x 11 y -x 2+==的解是( ) A.???==0y 0x B.???==37y x C.???==73y x D.? ??-===37 y x 2.若2a y+5b 3x 与-4a 2x b 2-4y 是同类项,则a=______,b=_______。 3.用代入法解下列方程组

一元二次方程中的整体思想(换元法)

一元二次方程中的整体思想(换元法) 一、内容概述 所谓整体思想就是从问题整体性质出发,发现问题及整体结构的特性,从而导出局部结构和元素的特性,这是中学数学竞赛常用解题思想之一。最具体的代表就是换元法的运用。 二、例题解析 初中阶段,在各年级的数学代数学习中,时常会碰到换元法。何为换元法呢?解数学题时,把某个式子看成一个整体,用一个变量去替换从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,它可以变高次为低次,化无理为有理。 (一)换元法在解方程中的应用 我们知道,解分式方程时一般用“去分母”的方法,把分式方程化成整式方程来解;解无理方程一般用“两边乘方”的方法,将无理方程化成有理方程来解。然而我们会碰到这样的困难:利用这些常规的变形方法解题,往往会产生高次方程,解起来相当繁琐,甚至有时难于解得结果,这可怎么办呢?对于某些方程,我们可以用新的未知数来替换原有未知数的某些代数式,把原方程化成一个易解的方程。 1.利用倒数关系换元 例1 解分式方程:224343x x x x +=-- 分析:此分式方程若两边同时去分母的话,会产生高次方程,比较复杂难解。但是若稍加整理成2243403x x x x -+ +=-,则可利用式子之间的倒数关系换元,这样问题就简单了。 解:移项整理得 2243403x x x x -+ +=- 设23x x y -=,则原方程可化为440y y ++= 去分母得2440y y ++= 解得122y y ==- 当2y =-时,232x x -=- 解得11x = 22x = 经检验:11x = 22x =是原方程的根 所以,原方程的根为11x = 22x = 练习1 103 =

换元法解方程

换元法 在因式分解中,把一个较复杂的数学式子的某一部分看成一个整体,用一个字母去代替这一部分,使原式变成含有新元的简单式子,在分解后再将新元换出,这种方法叫换元法. 1.10)3)(4(22+++-+x x x x 2.24)4)(3)(2)(1(-++++x x x x 3.20)5)(1)(3(2-+-+x x x 4.90)384)(23(22-++++x x x x 5.)(4)(22222y x xy y xy x +-++ 6.2)1()2)(2(-+-+-+xy y x xy y x 7.4482--a a 8.yz z y x 2222+-- 9. 644+x 10. 2214176y xy x -- 11. 581337622-++--y x y xy x 12.1433181892022-+--+y x y xy x 13. 2820152-+--y x xy x 14.12)2)(1(22-++++x x x x

15.1)1(2)(3---++y x xy y x 16. 222222)1(2)1)(16(5)16(2++++++++x x x x x x 17. 已知乘法公式 a 5+b 5=(a+b)(a 4-a 3b+a 2b 2-ab 3+b 4),a 5-b 5=(a-b)(a 4+a 3b+a 2b 2+ab 3+b 4),利用或不利用上述公式,分解因式:x 8+x 6+x 4+x 2+1. 五.待定系数法 1. 192256112--x x 2.744272234+---x x x x 3.156234+-+-x x x x 六.因式定理 余数定理 ).()()(a f a x x f 的余数等于 除以多项式- 因式定理 整除能被则即的值为零,多项式如果a x x f a f x f a x -==)(,0)( )(,).)(a x x f -含有因式(即

综合解一元二次方程—换元法

2.2.5《解一元二次方程—换元法》典例解析与同步训练 【知识要点】 1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法. 换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理. 2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的. 【典例解析】 例1.用适当方法解下列方程: (1)2x2﹣5x﹣3=0 (2)16(x+5)2﹣9=0 (3)(x2+x)2+(x2+x)=6. 例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可; (2)用直接开平方法解一元二次方程,先将方程化为(x+5)2=,直接开方即可; (3)设t=x2+x,将原方程转化为一元二次方程,求解即可. 解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49, ∴x===, ∴x1=3,x2=﹣; (2)整理得,(x+5)2=, 开方得,x+5=±, 即x1=﹣4,x2=﹣5, (3)设t=x2+x,将原方程转化为t2+t=6, 因式分解得,(t﹣2)(t+3)=0, 解得t1=2,t2=﹣3. ∴x2+x=2或x2+x=﹣3(△<0,无解), ∴原方程的解为x1=1,x2=﹣2.

二元一次方程的解法(代入消元法)

二元一次方程的解法 1.用一个未知数表示另一个未知数 (1)24x y +=,所以________x =; (2)345x y +=,所以________x =,________y =; (3) 5x-2y=10,所以x = ,________y =. 2.用代入法解二元一次方程组 例1:方程组(1)92x y y x ……①………②ì+=??í?=?? (2) ???-=+=1521 2x y y x (3)???-=+=-.154,653y x y x (4)???=-=-.43,532y x y x (5)?? ?=-=+. 72, 852y x y x 练习巩固:解下列方程组: (1)???-==+236y x y x (2)???=+-=-10235y x y x (3)? ? ?-=-=-2.32872x y y x (4) ?? ?-==+. 2,72y x y x (5) ?? ?=-=+. 2,6y x y x (6) ?? ?=+=-4 23,52y x y x (7) ???=+=-.63,72y x y x (8) ???=+=-.543,72y x y x (9) ???-==+. 1, 623x y y x

(10)???=-=+.102,8y x y x (11)???=+=+.52,42y x y x (12)? ??=-=-.1383,32y x y x 将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示,并代入到另一个方程中,消去一个未知数,得到一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法,简称代入法. 代入消元法解方程组的步骤是: ①用一个未知数表示另一个未知数; ②把新的方程代入另一个方程,得到一元一次方程(代入消元); ③解一元一次方程,求出一个未知数的值; ④把这个未知数的值代入一方程,求出另一个未知数的值; ⑤检验,并写出方程组的解. 例2、(1)? ??-=-=+8547 32y x y x (2)541538x y x y -=?? +=?①② 1.对于方程432=-y x ,用含x 的代数式表示y ,则结果是 ;如果用含y 的代数式表示x ,结果是 , 2.已知方程25-=-y x ,如果用含x 的代数式表示y ,则结果是 ;如果用含y 的代数式表示x ,结果是 . 3.根据你的喜爱,把下列方程变形为用含一个未知数的代数式表示另一个未知数的形式. 131=-y x )( (2)15105=-y x (3)1267=+y x (4)1035=-y x 4.解下列方程组:

用换元法解各种复杂方程

用换元法解各种复杂方程 用换元思想探索双二次方程、无理方程、分式方程这三类方程的解法。 [内容综述] “换元法”是一种重要的数学方法,它可以把较复杂的问题转化为较简单的问题去解决。在解高次方程、分式方程、无理方程的过程中都可以应用换元方法,其要点是把方程中的一些表达形式相同的部分看成一个整体并设新的字母表示,从而达到化简方程并把原方程化归为已经会解的一元一次或一元二次方程的目的。 [问题精讲] 1.在中学课程中,只要求学生会解一些特殊的高次方程,最常见的就是“双二次方程”,即只含有未知数的四次项、二次项和常数项的方程。对于这类方程,可以经过对二次项的换元转化为一元二次方程。例1,解方程(x 2+1)2=x 2+3 分析:思路1:以x 2+1为一个整体进行换元,因此要对方程右边进行变形使其含有x 2+1。 思路2:把方程展开成标准的双二次方程,再对x 2 进行换元。 解法一:原方程可化为(x 2+1)2-(x 2+1)-2=0,设x 2+1=y 得y 2-y-2=0, 解得 y 1=2,y 2=-1,x 2+1=-1无实根, 由x 2+1=2解得x 1=1,x 2=-1。 解法二:由原方程得x 4+x 2-2=0,设x 2=y (解题熟练时,这一换元过程也可以不写出) 得y 2+y-2=0,解得y 1=1,y 2=-2,x 2=-2无实根, 由x 2=1解得x 1=1,x 2=-1。 注意:换元的关键是善于发现或构造方程中表达形式相同的部分作为换元的对象。在解方程的过程中换元的方法常常不是唯一的,解高次方程时,只要能达到降次目的的换元方法都可以应用。例如在牛刀小试题1中,可以设4x 2+2=y ,则原方程化为y 2+y-12=0;也可以设4x 2+1=y ,则原方程化为y 2+3y-10=0(选C ),(还可以设4x 2=y 等等,学生可以自己练习)。但是无论采用哪一种换元方法,所得方程的解都是相同的。 2.解无理方程时,常把原方程中的一个含有未知数的根式作为整体进行换元,达到化去根号转化为可解方程的目的。这时经过变形,原方程的某个整式部分常可表示为新元的平方。 例2,解方程051356222=-----x x x x 分析:为使原方程中出现形式相同的部分,可以将其变形为 03135)13(222=------x x x x 。 解:设y x x =--132,则原方程可以化为2y 2-5y-3=0 解得(不符合算术根的定义,舍去。) 由3132=--x x 得x 1=5,x 2=-2,经检验是原方程的根。

代入法解二元一次方程组练习题

作业 1、解方程组 (1) ?? ?=+-=18050y x y x (2) ???=-=+1 73x y y x (3) (4) 233511 x y x y +=??-=? (5) 523,611;x y x y -=??+=? (6)???????=+=+24 4263n m n m (7) 32522(32)28x y x x y x +=+??+=+? (8)357,23423 2.3 5x y x y ++?+=???--?+=?? 2.已知 是方程组 的解,求a 和b 的值. m =1 n =2 am +bn =2 am -bn =3 ???=-=2 273y x x y

3、若方程组2(1)(1)4x y k x k y +=??-++=? 的解x 与y 相等,求k 的值. 4、已知方程组4234ax by x y -=??+=?与2432ax by x y +=??-=? 的解相同,求a b +=. 5、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少? ↑ ↓60cm 6.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨? 7.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部 分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13 ,若从树上飞下去一只,则树上、树下的鸽子就一样多了。”你知道树上、树下各有多少只鸽子吗? 8、在解方程组2,78ax by cx y +=??-=?时,哥哥正确地解得3,2.x y =??=-? ,弟弟因把c 写错而解得2,2. x y =-??=?,求a+b+c 的值.

二元一次方程解题技巧及练习

二元一次方程解题技巧及练习 基本思路:二元一次方程→化简→消元/转化→一元一次方程 基本方法:代入消元或者加减消元法 适用情况: 1. 代入 当有一个未知数系数为1或者-1; 2. 加减 当同一个字母的未知数的系数相同或者相反时; 当同一个字母的未知数的系数互为倍数时; 3. 代入加减一起使用 两个相同的未知数系数之和分别相等时; 其中一个未知数系数相差1时; 4. 整体代入,即两个方程中有相同整式时; 练习1: y =x-3 2x+3y =11 5x+2y =7 7x+2y =-1 2x-y =1 x+y =5 x-y =3 3x-8y =14 4x+8y =12 3x+2y =5 6x+4y =10 4x+6y =20 4x+7y =222 5x+6y =217 2x+3y =1 3x+5y =12.9 练习2: 一.解答题(共16小题) 1.求适合的x ,y 的值. 2.解下列方程组 (1)(2)(3)(4). 3.解方程组:

4.解方程组: 5.解方程组: 6.已知关于x,y的二元一次方程y=kx+b的解有和. (1)求k,b的值. (2)当x=2时,y的值. (3)当x为何值时,y=3? 7.解方程组: (1);(2). 8.解方程组: 9.解方程组: 10.解下列方程组: (1)(2) 11.解方程组: (1)(2)

12.解二元一次方程组: (1);(2). 13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为. (1)甲把a看成了什么,乙把b看成了什么? (2)求出原方程组的正确解. 14. 15.解下列方程组: (1);(2). 16.解下列方程组:(1)(2)

分式方程增根与换元法解分式方程(含详细解析)

分式方程增根与换元法解分式方程 1.若关于x的方程只有一个实数根,则符合条件的所有实数a的值的总和为() A.﹣6 B.﹣30 C.﹣32 D.﹣38 2.关于x的分式方程+=3的解为正实数,则实数m的取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2 3.若数a使关于x的不等式组,有且仅有四个整数解,且使关于y的分式方程﹣=2有整数解,则所有满足条件的整数a的值之和是() A.﹣3 B.﹣2 C.2 D.3 4.若分式方程=a无解,则a的值为() A.0 B.﹣1 C.0或﹣1 D.1或﹣1 5.若关于x的分式方程的解为正数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4 6.若关于x的方程=1﹣无解,则k的值为() A.3 B.1 C.0 D.﹣1 7.关于x的分式方程有增根,则m的值为() A.0 B.﹣5 C.﹣2 D.﹣7 8.解方程会产生增根,则m等于() A.﹣10 B.﹣10或﹣3 C.﹣3 D.﹣10或﹣4 9.关于x的方程有增根,那么a=() A.﹣2 B.0 C.1 D.3

10.用换元法解方程组时,如设=u,=v,则将原方程组可 化为关于u和v的整式方程组() A.B.C.D. 11.用换元法解分式方程﹣=5时,设=y,原方程变形为() A.2y2﹣5y﹣3=0 B.6y2+10y﹣1=0 C.3y2+5y﹣2=0 D.y2﹣10y﹣6=0 12.已知﹣x2=2+x,则代数式2x2+2x的值是() A.2 B.﹣6 C.2或﹣6 D.﹣2或6 13.已知x为实数,且,那么x2+9x的值为() A.1 B.﹣3或1 C.3 D.﹣1或3 14.已知x为实数,且﹣(x2+x)=2,则x2+x的值为() A.0 B.1 C.2 D.x2 15.解方程﹣=2时,如果设=y,则原方程可化为关于y的整式方程是() A.3y2+2y+1=0 B.3y2+2y﹣1=0 C.3y2+y+2=0 D.3y2+y﹣2=0 16.若1﹣+=9,则的值是() A.4 B.﹣2 C.4或﹣2 D.±3 17.用换元法解方程时,设x+=y,则原方程可化为()A.y2﹣2y﹣3=0 B.y2﹣2y﹣1=0 C.y2﹣y﹣1=0 D.y2﹣2y+3=0 18.若关于x的方程有增根,则m的值是 三.解答题(共11小题) 19.若解关于x的分式方程+=会产生增根,求m的值.

相关主题
文本预览
相关文档 最新文档