当前位置:文档之家› 半桥有源广义软开关焊割电源的设计研究

半桥有源广义软开关焊割电源的设计研究

半桥有源广义软开关焊割电源的设计研究
半桥有源广义软开关焊割电源的设计研究

半桥有源广义软开关焊割电源的设计研究

吴月涛谢志峰

(深圳华意隆电气股份有限公司,广东深圳 518055)

摘要:介绍了一种新型的半桥有源软开关电路拓扑技术,该技术采用半桥主开关电路和有源辅助开关电路构成的特殊软开关电路。主开关负责传递逆变能量,辅助开关负责创造主开关和自身的软开通和软关断条件。电路拓扑结构简洁明了:只需在主回路一次侧串接饱和电感,通过辅助开关并接缓冲电容,就能在包括空载在内的全负载范围内实现主开关的零电流开通、零电压关断;辅助开关的零电流/零电压开通、零电流/零电压关断。使得开关损耗小、开关器件电力应力小、节能节材。特别适合逆变式焊割电源的高频化运用,该电路拓扑技术已获得中华人民共和国知识产权局发明专利授权,专利号:ZL 2010 1 0532734.6 。

关键词:半桥主开关;有源辅助开关;零电流开通、零电压关断;零电流/零电压开通;零电流/零电压关断

Abstract: This paper proposes a novel active soft switching circuit of half-bridge topol ogy technique, which is a special soft switching circuit consisting of half-bridge switching circuit and auxiliary active switching circuit .The main switching circuit is responsibl e for transferring the inverter power , the auxiliary circuit is responsibl e for creating soft switching conditions of the main switching circuit and itself. The half-bridge circuit topol ogy is cl ear and concise: there is only one saturabl e inductor connected to the main circuit . Through the connection of the auxiliary switch in parallel with the buffer capacitors, the main switch can achieve ZCS in the turn-on process and ZVS in the turn-off process whil e the auxiliary switch can achieve ZCS and ZVS both in the turn-on process and in the turn-off process in the range of full l oad including no-l oad. Consequently the switching-l oss is l ower, the current stress and the voltage stress is l ess, so the energy and material can be saved. The patent of the circuit topol ogy is granted by the state intellectual property office of the P.R.C with the patent No. :ZL 201010532734.6.

Key words: half-bridge switch; auxiliary active switch; ZCS; ZVS; ZCZVS

引言

近年来, 电力电子技术发展迅猛, 逆变式开关技术广泛应用于焊割电源, 笨重型、低效的传统焊割电源装置已被小型、高效的逆变式焊割电源所取代。为了实现逆变式焊割电源装置的高性能、高效率、高可靠性、减小体积和重量, 必须实现逆变式焊割电源的高频化。软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或

电压) 按正弦或准正弦规律变化,当电流自然过零时使器件开通/关断(或电压为零时使器件开通/关断) , 从而减少开关损耗。它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断等问题, 还能解决由硬开关引起的电磁骚扰问题。目前,使用在焊割电源上的软开关逆变电源技术有移相式全桥软开关技术和有限双极性全桥软开关技术。本文从另一角度提出一种新型的软开关逆变电源技术,将之运用于焊割电源,设计出新型的逆变式焊割电源。一,主回路电气器原理图:见图一

电网交流电能经过开关S1接入焊割电源,由整流桥BR1整流为直流电能存储于电容C d 上。由IGBT开关管Q1、Q2、Q1′、Q2′和半桥电容C d1、C d2缓冲电容C1、C2以及主变压器T1的一次侧绕组(存在漏感L K)、饱和电抗器L S等组成的半桥有源广义软开关逆变电路负责将储于电容C d上的直流电能逆变成中频交流电能,再由主变压器隔离变压后通过次级中频整流即可变成满足焊割需要的直流电能。

图一:主回路电气原理图

在主回路电气原理图中可以看出,一组IGBT开关管Q1、Q2顺向串接组成半桥拓扑结构,Q1、Q2称为主开关;而另一组IGBT开关管Q1′、Q2′背靠背串接组成一组合开关,Q1′、Q2′称为辅助开关。从主控制电路输出的主开关驱动信号为U Q1(输出端口为G1 S1)和U Q2(输出端口为G2S2),他们是相位相差180o 的PWM脉冲驱动信号;从主控制电路输出的辅助开关驱动信号为U Q1′(输出端口为G1′ S1′)和U Q2′(输出端口为G2′ S2′)他们是相位相差180o的定宽并留有足够死区时间的脉冲驱动信号。

在主开关驱动信号U Q1和U Q2辅助开关驱动信号U Q1′和U Q2′的驱动下,IGBT开关管Q1和Q1′将同时开通,Q1按PWM关断,Q1′滞后Q1一段时间后固定脉宽关断; Q2和Q2′同时

开通,Q2按PWM关断,Q2′滞后Q2一段时间固后定脉宽关断。

具体的驱动脉冲时序图见图二。

图二:驱动脉冲时序图

二,主回路的工作原理如下述:

在t1时刻前,电容C1已经被放完电荷,其端电压为Uc1=0;电容C2已经被充满电荷,其端电压为Uc2=U in,“1”点电位为U in。波形图见图十

图三:主开关Q1和辅助开关Q1′同时开通时电流路径1,t1时刻:见图三,主开关Q1和辅助开关Q1′同时开通,由于饱和电抗器L S此时还未进入饱和区,回路中总的电感L K + L S很大,故回路电流将从零开始缓慢上升的,因此Q1为零电流软开通;而此时“1”和“2”两点等电位,Q1′被Q1导通箝位,Q1′处于零偏状态,因此没有电流流过,Q1′属于零电流/零电压软开通。

此时电流流向为:U in + → Q1

→ L S → T1 → L K → C d1;C d2。

由于一次侧回路串联的饱和电感的作用,电流先以很小斜率上升,直到L K达到饱和安

T1

匝数饱和后才快速升到负载额定值再按副边电抗器决定的斜率上升,这个时间需设置稍大于t q(IGBT开通延迟的总时间)。原边能量在此过程中通过变压器T1传给副边,副边二极管D3导通,D4反偏截止。一段时间后,Q1 将PWM关断,进入时刻t2

2,t2至t6时刻:见图四和图五,t2时刻Q1PWM截止(Q1′仍保持导通),由于输出电抗器的作用,原边电流不能突变,原边电流在t2时刻切换通路。

此时电流流向改为:C1;C2 → D2′→ Q1′→ L S → T1 → L K→C d1;C d2。

图四:主开关Q1关断时电流路径

此后C1被充电;C2被放电,C1端电压从零开始缓慢上升,C2端电压从U in开始缓慢下降,“1”点电位从U in缓慢下降,所以IGBT Q1端电压是按一定斜率从其饱和压降(3V左右)开始缓慢上升的,Q1属于零电压软关断。

C1和C2充放电,实际上是“1”点电压与C d1和C d2的中点电压(半桥电容足够大,中点电压始终保持于U in/2)之差加在L S和L K上,随着时间的推移,这个电压会从开始的U in/2逐渐降到零(此时“1”点电压降至U in/2),这个过程中变压器一次侧电流也在减少,见图十中变压器一次侧电流t2 –t3段。此时原边能量仍通过变压器T1传给副边,副边二极管D3导通,D4反偏截止。当“1”点电压低于U in/2时,C1和C2继续充放电,但此时漏感和饱和电感被加上反压,变压器一次侧电压为零,副边二极管D3、D4同时导通为输出电感续流。一次侧电流路径仍然为: C1;C2 → D2′→ Q1′→ L S → T1→ L K →C d1;C d2,该电流将急剧减小,见图十t3– t4段。当C1和C2充放电,使得C1电压充至U in、C2电压放至零时,漏感和饱和电感仍被加上反压,变压器一次侧电压为零,副边二极管D3、D4仍然同时导通并为输出电感续流。一次侧电流改变路径为:U in- → D2→ L S → T1 → L K→

T1

D3

C d1;C d2。见图五,该电流仍将急剧减小,见图十t 4 – t 5段。

图五:主开关Q 1关断后期电流路径

当一次侧电流急剧减小到饱和电感的阀值时,饱和电感L S 电感量剧增,一次侧电流迅速减小到一个很小值然后以较小的斜率进一步缓慢下降到零并开始向相反方向缓慢发展,见图十t 5 – t 6段,此时辅助开关Q 1′关断。可见辅助开关Q 1′的关断属于零电流/零电压软关断,关断应力很小。此后,一次侧的电流完全截止,“2”点电位回到中点电位U in /2, 变压器一次侧及饱和电感上的电压都为零,副边二极管D 3、D 4仍然同时导通并继续为输出电感续流,见图六。

图六:主开关Q 1(Q 2)和辅助开关Q 1′(Q 2′)均关断后的电流路径

当辅助开关Q 1′驱动脉冲U Q1′死区时间过去后(死区时间由主控板辅助开关驱动电

T1

D3

T1D3

路设定产生)进入t7时刻。

3, t7时刻:见图七

图七:主开关Q2和辅助开关Q2′同时开通时电流路径

主开关Q2和辅助开关Q2′同时开通,由于饱和电抗器Ls此时还未进入饱和区,回路中总的电感L K+L S很大,故回路电流将从零开始,缓慢上升,因此Q2为零电流软开通;而此时“1”和“2”两点等电位,Q2′被Q2箝位,Q2′处于零偏状态,因此没有电流流过,Q2′属于零电流/零电压软开通。

此时电流流向为: C d1;C d2→ L K → T1 → L S → Q2→ U in - 。

电流先以很小斜率上升,直到L K达到饱和安匝数饱和后才快速升到负载额定值再按副边电抗器决定的斜率上升,这个时间设置同样稍大于t q(IGBT开通延迟的总时间)。原边能量在此过程中通过变压器T1传给副边,副边二极管D4导通,D3反偏截止。一段时间后,Q2将PWM关断,进入时刻t8

4,t8至t12时刻:见图八和图九

图八:主开关Q2关断时电流路径

T1

T1

D3

t 8时刻Q 2 PWM 截止(Q 2′仍保持开通),由于输出电抗器的作用,原边电流不能突

变,原边电流在t 8时刻切换通路。

此时电流流向改为:C d1;C d2 → L K → T 1 → L S →D 1′→ Q 2′→ C 1;C 2 。 此后C 2被充电;C 1被放电,C 2端电压从零开始缓慢上升,C 1端电压从U in 开始缓慢下降,“1”点电位从零缓慢上升降,所以Q 2端电压是按一定斜率从其饱和压降(3V 左右)开始缓慢上升的,Q 2属于零电压软关断。

C 2和C 1充放电,实际上是C d1和C d2的中点电压与“1”点电压之差加在L S 和L K 上,随着时间的推移,这个电压会从开始的U in /2逐渐降到零(此时“1”点电压升至U in /2),这个过程中变压器一次侧电流也在减少,见图十中变压器一次侧电流t 8–t 9段。此时原边能量仍通过变压器T 1传给副边,副边二极管

D 4导通,D 3反偏截止。当“1”点电压高于U in /2时,C 2和C 1继续充放电,但此时漏感和饱和电感被加上反压,变压器一次侧电压为零,副边二极管D 3、D 4同时导通为输出电感续流。一次侧电流路径仍然为: C d1;C d2 → L K → T 1 → L S →D 1′→ Q 2′→ C 1;C 2。该电流将急剧减小,见图十t 9 –t 10段。当C 2和C 1充放电,使得C 2电压充至U in 、C 1电压放至零时,漏感和饱和电感仍被加上反压,变压器一次侧电压仍为零,副边二极管D 3、D 4仍同时导通并为输出电感续流。一次侧电流改变路径为:C d1;C d2 → L K → T 1 → L S →D 1→ U in + 。见图九,该电流仍将急剧减小,见图十

t 10–t 11段。

图九:主开关Q 2关断后期电流路径

当一次侧电流急剧减小到饱和电感的阀值时,饱和电感L S 电感量剧增,一次侧电流迅速减小到一个很小值然后以较小的斜率进一步缓慢下降到零并开始向相反方向缓慢发展,

D3

T1

见图十t11– t12段,此时辅助开关Q2′关断。可见辅助开关Q2′的关断属于零电流/零电压软关断,关断应力很小。此后,一次侧的电流完全截止,“2”点电位回到中点电位U in/2, 变压器一次侧及饱和电感上的电压都为零,副边二极管D3、D4仍然同时导通并继续为输出电感续流,见图六。

当辅助开关Q2′驱动脉冲U Q2′死区时间过去,一个完整的PWM周期结束,将开始完全相同的下一个周期。如此周而复始,完成半桥有源广义软开关PWM逆变的整个过程。

图十是该半桥有源广义软开关逆变波形图。

图十:半桥有源广义软开关逆变波形图

三,关键器件选择和有关参数设置:

要保证焊割电源在包括空载在内全负载范围内都能能满足软开关条件,需要选择缓冲电容C1和C2的容量,饱和电感L S的电感量和饱和伏秒数值等。保证电源能可靠运行还需要确

定合适的主开关IGBT器件和辅助开关IGBT器件的电流、电压和功率等级。

1,主开关零电流软开通条件的满足:

要满足主开关零电流软开通的条件,必须:

a,饱和电感必须有足够的饱和伏秒数,可保证从主开关驱动脉冲U Q1或U Q2变高开始,主开关经过开通延时(Turn-on Delay Time)t d(on)和上升时间(Rise Time)t r后才完全饱和,即饱和伏秒数中一重要要素饱和电感控制时间t q(IGBT开通延迟的总时间)必须大于等于t d(on)+t r 。

b,饱和电感在饱和时刻的最大电流必须小到可以忽略不计以满足零电流软开通条件。

c,选择矩形系数大的制作工艺简单的铁氧体磁环。

根据零电流软开通条件要求,要求饱和电感饱和时的电流为一很小值I S

可算出电感量为:L S = ( U in * t q )/ 2I S-----------------(1)

再根据(2)和(3)式即可计算出需要的磁芯的截面积和需要的绕组匝数

U in * t q = 2N * B S * S -----------------------(2)

L S = N2 * μ0 * μr * S / l C ------------------(3)

其中:U in为一次侧直流电压

t q 为饱和电感控制时间(大于等于t d(on)+t r)

L S为饱和电感电感量

I S为饱和电感饱和电流

N为饱和电感绕组匝数

B S为饱和电感磁芯饱和磁密

S为饱和电感磁芯截面积

μ0为真空磁导率,μ0 = 4л*10-7

μr为磁芯相对磁导率

l C为磁芯平均磁路长度

2,主开关零电压软关断条件的满足:

要满足主开关零电压软关断的条件,必须在每一次主开关关断时,电容C1和C2保证充放电完毕。空载情况下一次侧电流最小,只要我们在空载情况下能保证电容C1和C2充放电完毕,就能保证全负载范围内主开关能零电压软关断的条件。

设一次侧空载励磁电流为I m一次侧电感总和为L S+L K ,根据能量守恒定律可知:(C1+C2) * U in2 = (L S + L K) * Im 2 ------------------(4)

一般地:我们选择C1 = C2 = C ,通过上式即可算出电容C1和C2的值C

3,主开关器件和辅助开关器件的选取:

主开关IGBT器件的电压、电流容量和功率容量按电源需要满载输出电流、电压以及功率来选择,辅助开关IGBT器件因为工作在大电流期间的时间较短,其电流量及功率容量均可按主开关IGBT器件电流容量的1/3~1/4来选择。

四,结论:

通过对一个完整PWM周期的理论分析可看出本电路拓扑结构中:主开关均为零电流软开通,零电压软关断;而辅助开关均为零电流/零电压软开通,零电流/零电压软关断,开关管开关应力很小,开关损耗非常低。通过参数计算和设置,可使本电源在包括空载在内的全负载范围内达到软开关条件。根据本文制作的一台ZX7-250逆变式手工焊机逆变频率为40KHZ,负载持续率达100%(环境温度40o C条件下),电能变换效率达90%,该电路拓扑技术已获得国家知识产权局发明专利授权,专利号:ZL 2010 1 0532734.6。

参考文献:

1,陈树君、卢振洋、黄鹏飞、殷树言、蒲春华双零软开关弧焊逆变电源《焊接学报》2 0 0 2 年6 月第23 卷第3 期

2,张光先逆变焊机功率因素的研究《电焊机》1996第6期

3,朱伟建、陈国呈、尤志春、韩天军一种实用软开关拓扑在弧焊逆变电源中的应用《电气传动》2007年第37卷第5期

4,张光先,邹增大,尹海,李思海软开关逆变式弧焊电源的设计《电焊机》32卷第4期

5,严伟加,谢运祥一种新颖有源箝ZVS正激变换器的研究《通信电源技术》200年5月25日第24卷第3期

6,方臣富、侯润石、殷树言逆变式弧焊电源轻载状态下零电压软开关的实现《电焊机》34卷第12期

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

UC3842开关电源毕业论文

UC3842开关电源毕业论文 目录 第一章开关电源概述 第一节开关电源的产生与发展 第二节隔离式高频开关电源 第三节开关电源所用的术语 第二章输入电路 第一节电压倍压整流技术 第二节输入保护器件 第三节输入阳间电压保护 第三章隔离单端反激式变换器电路 第一节单端反激式变换器电路中的开关晶体管 第二节单端反激式变换器电路中的变压器绕组 第四章 UC3842的原理及技术参数 第一节原理与特点 第二节工作描述 第三节技术参数 第五章 UC3842常用的电压反馈电路的选用 第一节概述 第二节 UC3842常用的电压反馈电路 2.1 输出电压直接分压作为误差放大器的输入 2.2 辅助电源输出电压分压作为误差放大器的输入 2.3 采用线性光偶改变误差放大器的输入误差电压 2.4 结语 第六章UC3842在开关电源电路的应用 第一节UC3842 组成的开关电源电路 1.1 启动过程 1.2 稳压过程 1.3 过流保护原理 1.4 过压保护原理 1.5 开关管保护电路 1.6 设计中的注意事项 第二节显示器开关电源电路 2.1 特点 2.2 采用开关稳压电源激励行输出的优缺点如下: 2.3 UC3842在显示器电路的应用 第七章电源市场的概况

第一节直流稳压电源(出口)购市场概况 第二节开关电源的市场概况 参考文献 开关电源概述 第一节开关电源的产生与发展 随着大规模和超大规模集成电路的快速发展,特别是微处理器和半导体存储器的开发利用,孕育了电子系统的新一代产品。显然,那种体积大而笨重的使用工频变压器的线性调节稳压电源已经过时。取而代之的是小型化、重量轻、效率高的隔离式开关电源。 隔离式开关电源的核心是一种高频电源变换电路。它使交流电源高效率地产生一路或多路经调整的稳定直流电压。 早在70年代,随着电子技术的不断发展,集成化的开关电源就已被广泛地应用于电子计算机、彩色电视机、卫星通信设备、程控交换机、精密仪表等电子设备。这是由于开关电源能够满足现代电子设备对多种电压和电流的需求。 随着半导体技术的高度发展,高反压快速开关晶体管使无工频变压器的开关电源迅速实用化。而半导体集成电路技术的迅速发展又为开关电源控制电路的集成化奠定了基础,适应各类开关电源控制要求的集成开关稳压器应运而生,其功能不断完善,集成化水平也不断提高,外接元件越来越少,使得开关电源的设计、生产和调整工作日益简化,成本也不断下降。目前己形成了各类功能完善的集成开关稳压器系列。近年来高反压Mos大功率管的迅速发展,又将开关电源的工作频率从20kHz提高到150一200kHz,其结果是使整个开关电源的体积更小,重量更轻,效率更高。开关电源的性能价格比达到了前所未有的水平,使它在与线性电源的竞争中具有先导之势。当然开关电源能被工业所接受,首先是它在体积、重量和效率上的优势。在70年代后期,功率在100w以上的开关电源是有竞争力的。到1980年,功率在50w以上就具有竞争力了。随着开关电源性能的改善,到80年代后期,电子设备的消耗功率在20w以上,就要考虑使用开关电源了。过去,开关电源在小功率范围内成本较高,但进入90年代后,其成本下降非常显著‘当然这包括了功率元件,控制元件和磁性元件成本的大幅度下降。此外,能源成本的提高也是促进开关电源发展的因素之一* 第二节隔离式高频开关电源 隔离式开关电源的变换器具有多种形式。主要分为半桥式、全桥式、推挽式、单端反激式、单端正激式等等。在设计电源时,设计者采取那种变换器电路形式,主要根据成本、要达到的性能指标等因素来决定。各种形式的电源电路的基本功能块是相同的,只是完成这些功能的技术手段有所不同。隔离式高频开关电源电路的共同特点就是具有高频变压器,直流稳压是从变压器次级绕组约脉冲电压整流滤波而来。开关电源的基本功能方框如图1—1所示。 在图1—l中,交流线路电压无论是来自电网的,还是经过变压器降压的.首先要经过整流、滤波电路变成含有””定脉动电压成分的直流电压,然后进入高频变换部分。高频变换部分的核心是有一个高频功率开关元件,比如开关晶体管、场效应管(MOsFE丁)等元件,高频变换部分产生高频(20kHz以上)高压方波,所

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

毕业设计--12V5A开关电源设计

毕业综合实践 课题名称: 12V/5A开关电源设计 作者:学号: 09034224系别:电气电子工程系 专业:电子工程信息技术 指导老师:专业技术职务教授

毕业综合实践开题报告 姓名:学号: 09034224 专业:电子信息工程技术 课题名称: 12V/5A开关电源设计 指导教师: 2011 年 12 月 19 日

本课题意义及现状、需解决的问题和拟采用的解决方案 随着电子技术的高速发展、电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益紧密,任何电子设备都离不开可靠的电源,他们对电源的要求也越来越高。特别是随着小型电子设备的应用越来越广泛,也要求能够提供稳定的电源,以满足小型电子设备的用电需要。现状:电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。 本设计基于这个思想,设计、制作了一个开关稳压电源,输入交流电220V,输出12V/5A的直流稳压电源,具有过电流、过电压、短路保护。 本电路采用自激式震荡电路(RCC),它是经济开关电源、安装方便、调试简单,元器件少。这个电路的功能适用于手机充电器和一些仪表电源是很实用的一个电路。 指导教师意见: 指导教师: 年月日 专业教研室审查意见: 教研室负责人: 年月日

课题摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用典型的正激式开关电源结构设计形式,以(RCC)作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,这就为开关电源的高效性提供保障。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,降低了电磁串扰,达到绿色环保的目的。输出电压可调,使其可适用于不同场合。 关键词高频变压器场效应管正激式变换器脉宽调制

开关电源课程设计

太原理工大学课程设计任务书 指导教师签名:日期:

前言 随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。 本论文根据输入电压经EMI滤波设计整流桥,再与直流变压器开关管构成反激电路。通过输出反馈经UC3842控制占空比,从而使输出电压稳定。反激电路中开关管开通原边线圈储存能量,副边不导通。原边关断时,线圈储存的能量通过互感向负载提供能量。输出电压反馈由TL431和光耦构成,当输出稳定时,有一个稳定的电流;当输出电压增大时,TL431分流增加,发光二极管亮度改变,使三级管电流改变,致使开关管控制导通占空比改变,从而使输出电压减小。另外,芯片UC3842引脚接一电流反馈,通过控制分压值实现截流保护,防止输出过电流。 设计中,直流变压器的设计是重点,需要计算其原边电感,原副边匝数,铁芯的选择,根据这些参数构造电路图,计算各电容电阻值及二极管承受的反压,选择合适的型号。 论文先介绍了开关电源及反激式开关电源,然后介绍器件选型,再分部分介绍主电路、控制电路和保护电路,最后附表为选择时参数参考表和总电路图。

目录 前言 第一章开关电源概述 (1) 1.1开关电源综述 (1) 1.2反激式开关电源介绍 (2) 第二章总体方案的确定 (2) 2.1总体设计思路及框图 (2) 2.2仿真原理图 (3) 第三章具体电路设计 (5) 3.1EMI滤波电路 (5) 3.2整流滤波电路设计 (6) 3.3高频变压器的设计 (7) 3.4控制反馈电路的设计 (15) 3.5保护电路的设计 (17) 3.6输出侧滤波电路设计 (18) 第四章电路仿真与结果 (19) 4.1 EMI滤波电路 (19) 4.2整流电路 (21) 4.3反激型电路 (22) 4.4反馈电路 (23) 4.5总电路 (24) 心得体会 (25) 参考文献 (26)

DC-DC变换器设计毕业设计

绪论 一.开关电源概述 开关电源(Switch Mode Paver Supply,即SMPS)被誉为高效节能型电源,它代表着稳压电源的主流产品。半个世纪以来,开关电源大致经历了四个阶段。 早期的开关电源全部有分立元件构成,不仅开关频率低,效率高,而且电路复杂,不宜调试。在20世纪70年代研制出的脉宽调制器集成电路,仅对开关电源中的控制电路实现了集成化;80年代问世的单片开关稳压器,从本质上讲仍DC/DC电源变换器。随着各种类型单片开关电源集成电路的问世,AC/DC电源变换器的集成化才变为现实。 稳压电源是各种电子的动力源,被人称为电路的心脏,所有用电设备,包括电子仪器仪表,家用电器。等对供电电压都有一定的要求。至于精密的电子仪器,对供电电压的要求更为严格。所谓的DC——DC直流稳压是指电压或电流的变化小到可允许的程度,并不是绝对的不变。 目前,随着单片开关电源集成电源的应用,开关电源正朝着短、小、轻、薄的方向发展。单片开关电源自20世纪90年代中期问世以来便显示出来强大的生命力,它作为一项颇具发展和影响力的新产品,引起了国内外电源界的普遍重视。 尤其是最近两年来,国外一些著名的芯片厂家又竞相推出了一大批单片开关电源集成电路,更为新型开关电源的推广及奠定了良好的基础。单片开关电源具有集成度高、高性价化、最简外围电路,最佳性能等指标,现已成为开发中小功率开关电源、精密开关电源及电源模块的优选集成电路。 二. 开关电源的技术追求 1.小型化、薄型化、轻量化、高频化——开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小储能元件的体积。在一定范围内,开关频率的提高,不仅能有效地减小电容、电感和变压器的尺寸,而且还能抑制干扰,改善系统的动态性能。因此高频化是开关电源的主要发展方向。 2.高可能性——开关电源使用的元器件比连续工作电源少数十倍,因此提高了可靠性。从寿命角度出发,电解电容、光电偶合器及排风扇等器件的寿命决定着电

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

UC3846构成的ZVZCS软开关电源的设计要领

设计要领 软开关电源的设计要领UC3846构成的ZVZCS软开关电源的 1.主电路 P0=3KW,U0=30V,fs=20KHz。 从功率容量和尽可能降低开关电源装置的损耗和制作成本考虑,主电路采用了主开关器件为IGBT的全桥PWM变换电路。电路如图2所示。 2.控制电路 PWM控制电路采用的是UC3846。其应用电路主要部分如图3(a)所示,脚1所接R1、R2,决定初级限流值,并决定当过电流时器件是闭锁还是重新运行。CS+和CS-两端接过流信号,实施过流、过压自动保护。EA+和EA-两端是内部误差放大器输入端,接受来自输出电压和输出电流的误差信号,以实行导通/短开时间的控制,达到PWM占空比控制的目的。脚16 ShutDown端是封锁输出脉冲的接线端,接收过流、过压封锁信号,脚8和脚9外接决定开关频率的电阻RT和电容CT。控制输出端Bout(14脚)和Aout(11脚)分别接D 触发器的置“1”端和置“0”端,通过触发器的延时翻转,在滞后桥臂上得到滞后超前臂开关信号一些时间的开关信号,通过主电路的软开关电路实现ZVS和ZCS。S1-S4是输出到IGBT 驱动电路的控制信号,如图3(b)所示是一个IGBT的驱动电路。

3.电路参数计算 对元件和参数作一个计算。开关频率及PWM控制脉冲宽度(占空比)是输出稳定性高低的关键,IGBT和高频整流快速恢复二极管是电源工作恢复高低的关键。 3.1 开关频率及占空比的计算 为了计算这两个参数,先设计高频变压器的匝比为10:1。因为电源输出电压U0为28V,所以高频变压器输入端的平均电压US’应为280V。由DC-DC变换原理可知:Us,/ Ud =D/T,而Ud=1.35UL,式中:UL---- 三相供电线有效值(380V),所以,D/T=280/513=0.545=0.55,由于是全桥式变换,所以每组开关的占空比Dp=D/2*T=0.2757T图4-a所示为一组开关的工 作波形示意图。 综合对电源可靠性要求高,对电源体积要求较高等因素,确定开关电源频率为20KHZ,容易算 出最小死区时间为760ns。 可见,有这样大的死区时间,可以保证在输入电压有较大波动情况下仍能使输出稳定不变。 3.2IGBT的选择 对IGBT的选择,主要考虑正常工作时流过IGBT的电流有效值、平均电流和反向电压Uces。因为象开关损耗发热、工作条件严酷等因素都不能忽略,所以选择时,其元件的参数应取2倍以上安全系数,。由于是全桥式电路,且高频变压器变比为10 : 1 ,次级输出电流为连续的100A电流,所以流过变压器初级电流平均值IL(av)应为10A,流过每个IGBT的稳定电 流波形如图4-b所示,其电流计算如下 因为 所以IGBT的稳态幅值电流为: IGBT电流的有效值为:

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源中的光耦经典电路设计分析

开关电源中的光耦经典电路设计分析 光耦(opticalcoupler )亦称光电隔离器、光耦合器或光电耦合器。它是以光 为 媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED 与受光器(光敏 半导体管)封装在同一管壳。当输入端加电信号时发光二极管发出光线,光敏三 极管接受光线之后就产生光电流,从输出端流出,从而实现了 “电一光一电”转换 典型应用电路如下图1-1所示。 光耦典型电路 TTL ? i=ow 0=OFF ■ 1_1 ■耦开关控 制流电机怕路图 光耦的主要优点是:信号单向传输,输入端与输出端完全实现了前端与负载 完 全的电气隔离,输出信号对输入端无影响,减小电路干扰,简化电路设计,工 作稳定,无触点,使用寿命长,传输效率高。光耦合器是 70年代发展起来的新 型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、 斩 波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离 5V icon R3 330 -----------------------

信号传输、脉冲放大、固态继电器(SSR )仪器仪表、通信设备及微机接口中。 在单片开关电源中,利用线性光耦合器可构成光耦反馈电路, 通过调节控制端电 流来改变占空比,达到精密稳压目的。 常用于反馈的光耦型号有 TLP521、PC817等。这里以TLP521为例,介绍这 类 光耦的特性。图2-1所示为光耦部结构图以及引脚图。 21 TLP521内部結构及管脚庄 TLP521的原边相当于一个发光二极管,原边电流 If 越大,光强越强,副边 三 极管的电流Ic 越大。副边三极管电流Ic 与原边二极管电流If 的比值称为光耦 的电 流放大系数,该系数随温度变化而变化,且受温度影响较大。作反馈用的光 耦正是 利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变 化剧烈 的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。此外, 6

RCC开关电源设计详细讲解39308

目录 摘要 ABSTRACT 绪论 第一章.RCC电路基础简介 1.1RCC电路工作原理 1.2RCC电路的稳压问题 1.3RCC电路占空比的计算 1.4RCC电路振荡频率的计算 1.5RCC电路变压器的设计 第二章.简易RCC基极驱动的缺点及改进设计 2.1 简易RCC电路的缺点 2.2 开关晶体管恒流驱动的设计 第三章.RCC电路的建模及仿真 3.1 RCC电路的建模及参数设计 3.1.1 主要技术指标 3.1.2 变压器的设计 3.1.3 电压控制电路的设计 3.1.4 驱动电路的设计 3.1.5 副边电容、二极管参数的设计

3.1.6 其他辅助电路的设计 3.2 RCC电路的仿真 3.2.1 RCC电路带额定负载时的仿真及设计标准的验证 3.2.2 RCC电路带轻载时的仿真 3.3 RCC电路的改进及改进后的仿真 3.3.1 RCC电路的恒流设计 3.3.2带有恒流源的RCC电路的仿真 第四章 RCC电路间歇振荡的应用实例 4.1 三星S10型放像机中的RCC型开关电源

RCC电路间歇振荡现象的研究 摘要:RCC变换器通常是指自振式反激变换器。它是由较少的几个器件就可以组成的高效电路,已经广泛用于小功率电路离线工作状态。由于控制电路能够与少量分立元件一起工作而不会出现差错,所以电路的总的花费要比普通的PWM反激逆变器低。一方面,当其控制电流过高时就会出现一种间歇振荡现象,从而使得电路的振荡周期在很大围变化,类如例如从数百赫兹到数千赫兹之间变化,因而在较大功率输出时将引起变压器等产生异常的噪音,所以需要抑制这种现象的产生。另一方面,当电路的输出功率输出较小时,却可以利用这种间歇振荡,使开关电路处于低能耗状态。当需要电路工作时,只需给电路一个信号脉冲即可。电路本文主要通过实验仿真的方法在RCC电路中加入某些特定的电路从而达到抑制消除这种间歇振荡,同时还简要阐述一些利用间歇振荡的例子。 Abstract:The self-oscillating flyback converter, often referred to as the ringing choke converter (RCC), is a robust, low component-count circuit that has been widely used in low power off-line applications. Since the control of the circuit can be implemented with very few discrete components without loss of performance, the overall cost of the circuit is generally lower than the conventional PWM flyback converter that employs a commercially available integrated control .

反激式开关电源理工科毕业设计开题报告(最新整理)

华南理工大学广州学院 本科生毕业设计(论文)开题报告 反激开关电源的设计 学院电气工程学院 专业班级10电力工程及其自动化5班 姓名吴宏达 学生学号201039488139 指导教师张冬梅 填表日期2014-1-10

说明 1.开题报告是保证毕业设计(论文)质量的一个重要环节,为规范毕业设计的开题报告,特印发此表。 2.学生应在开题报告前,通过调研和资料搜集,主动与指导教师讨论,在指导教师的指导下,完成开题报告。 3.此表一式三份,一份交学院装入毕业设计(论文)档案袋,一份交指导教师,一份学生自存。 4.选题需经基层教学单位(专业教研室)讨论审核、二级学院主管院长批准、报教务处备案, 方可正式进入下一步毕业设计(论文)阶段。

标等特点,现己成为开发中小功率开关电源、精密开关电源及开关电源模块的优选集成电路。 高效反激式开关电源以其电路抗干扰、高效、稳定性好、成本低廉等许多优点,特别适合小功率的电源以及各种电源适配器,具有较高的实用性。随着电力电子技术的发展,工作在高频的开关电源己经广泛应用于电气和电子设备的各个领域。开关电源设计的目的是通过能量处理将输入能量变化为所需要的能量输出,通常的形式是产生一个符合要求的输出电压,这个输出电压的值不能受输入电压或者负载电流的影响。 本设计开关电源是为满足一款实验用嵌入式开发板的供电需要,基于当前流行的单片集成开关电源芯片设计了一款反激开关电源。 二、研究目标、内容(论文提纲)及拟解决关键问题 通过学习和研究,收集和整理所设计开关电源的各项电气性能指标,计算和选取具体参数和器件,自主设计一个反激开关电源,论文提纲如下: 第一章绪论 1.1 开关电源及发展现状 1.2 课题背景和研究意义 1.3 本文主要工作和内容安排 第二章反激式开关电源简介 2.1 开关电源的分类 2.2 反激式开关电源的原理 第三章单端反激式开关电源系统级分析 3.1 电源设计指标 3.2 主电路拓扑 3.2.1 工作过程分析 3.2.2 工作方式选取 第四章单端反激式开关电源电路级设计 4.1 输入整流滤波器设计 4.1.1整流滤波器分析 4.1.2输入整流滤波器各个元器件选择和参数设置 4.2 钳位保护电路设计 4.2.1 钳位二级管的选择 4.3 反激变压器设计 4.2.1 反激变压器分析 4.2.2 反激变压器参数设置 4.4输出整流滤波电路设计

基于TL494的开关电源设计_毕业设计

毕业设计报告书设计题目:基于TL494的开关电源制作系部:电子信息系 专业:新能源应用技术 班级:能源1001

基于TL494的12V开关电源制作 摘要 随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如GTR、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于TL494的12V开关电源设计,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。 关键词:直流磁偏自激振荡TL494

目录 第1章开关电源基础技术 (1) 1.1 开关电源概述 (1) 1.1.1 开关电源的工作原理 (1) 1.1.2 开关电源的组成 (2) 1.1.3 开关电源的特点 (3) 1.2 关电源典型结构 (3) 1.2.1 串联开关电源结构 (3) 1.2.2 并联开关电源结构 (4) 第2章开关电源主控元件 (6) 2.1 功率晶体管(GTR) (6) 2.1.1 功率晶体管的结构 (6) 2.1.2 功率晶体管的工作原理 (7) 2.1.3 功率晶体管的特性与参数 (7) 2.2 电力场效应晶体管(MOSFET) (8) 2.2.1 电力场效应晶体管特点 (8) 2.2.2 MOSFET的结构和工作原理 (8) 第3章开关电源中的TL494 (10) 3.1 TL494的内部功能 (10) 3.2 TL494的特点 (10) 3.3 TL494的工作原理 (11) 3.4 TL494内部电路 (12) 第4章开关电源的原理图设计 (14) 4.1 交流滤波设计 (14) 4.2 整流桥电路设计 (14) 4.3 半桥逆变和全波整流设计 (16) 4.4 变压器电路设计 (16) 4.5 主控电路设计 (17) 4.6 滤波电路设计 (18)

史上最全的开关电源设计经验资料

三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。 则代入k 后,dB =μ0×I ×dl ×R/4πR 3 对其积分可得B = 3 40R C R Idl ?? π μ

毕业设计-低功耗小功率开关电源设计

1开关电源简介 小功率开关电源以其诸多优良的性能,在测控仪器仪表、通信设备、学习与娱乐等诸多电子产品中得到广泛的应用。随着环境和能源问题日益突出,人们对电子产品的环保要求不断提高,对电子产品的能源效率更加关注。设计无污染、低功耗、高效率的绿色模式电源已成为开关电源技术研究的热点。 本文研究一种中小功率开关电源,应用过渡模式有源功率因数校正、准谐振变频功率隔离变换控制和同步整流等多种先进的电源控制技术,以实现绿色开关电源设计的目的。 1.1开关电源的基本结构 所有事物都要遵循能量守恒定律,开关电源也不例外,实际上,开关电源也要通过以能量形式传递完成的。从能量上看,开关电源可以分为直流开关电源模式和交流开关电源模式,直流开关电源模式主要是输出为直流信号电能,而交流开关电源模式主要是输出为交流信号电能。直流开关电源模式为当前的主流模式,该开关电源模式的基本组成结构框图如下图1.1所示: 桥式整流 滤波LC组成 滤波器 DC/DC变 换器转换 输出 整流滤波 DC直流输出 控制电路 放大电路 占空比控 制电路 交流输 入 图1.1开关电源基本组成结构框图 由上图中可知:开关电源主要由整流滤波、DC/DC变换电路、开关占空比控制电路以及控制电路等模块组成。

交直流输入电压经LC滤波器,再通过桥式整流与母线电解电容平滑后变为直流电压,再经DC/DC变换器转换,再经二极管整流和电解电容的滤波至输出,为了能使电路成为一个闭环工作,在输出端引出一个控制电路再经放大电路到占空比控制电路至DC/DC变换器转换器形成一个闭环。占空比控制电路中占空比的表示方法如下图1.2所示: 图1.2占空比示意图 由上图中可知:占空比D=Toff/(TOff+Ton),周期T=Ton+Toff,频率f=1/T。 1.2传统开关电源的缺陷 传统开关电源基本上采用的都是传统电路,传统电路大部分采用的电路芯片都为PWM控制的KA38系列芯片,这当中也要用到开关MOSFET管,还有就是也要加个启动电阻,根据P=U*U/R可知该电路上的待机功耗至少要大于0.5W,而低功耗的要求待机功耗至少要小于0.5W,甚至有些要小于0.3W。如果功耗大,对人口密集的中国来说,电能的损耗无疑是巨大的。另外传统电源存在着某些有害物质,根据我国CCC标准中的《关于在电气电子设备中限制使用某些有害物质指令》,从而没能达到环保的功能。 1.3绿色开关电源的发展方向 由于传统电源存在着诸多的缺陷,为了能量的有效利用,人们从而提出了绿色开关电源,绿色开关电源产品主要向高频、高效率、低功耗、小型化、集成化、模块化、智能化、高可靠性、满足EMC标准和环保等诸多方向不断发展。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率比铁氧化体(Mn Zn)材料上加大科技创新,以提高在高频率和交大磁通密度(Bs)下获得提高的磁性能,而电容器的小型化也是一项关键技术。以下几个方面将是开关电源发展的方向: (1)小型化、薄型化、轻量化。开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小其中

相关主题
相关文档 最新文档