当前位置:文档之家› 拉盖尔高斯光束经透镜传输光场计算

拉盖尔高斯光束经透镜传输光场计算

拉盖尔高斯光束经透镜传输光场计算
拉盖尔高斯光束经透镜传输光场计算

成绩评定表

学生姓名吴宪班级学号1109020117

专业光信息科学

与技术课程设计题目拉盖尔高斯光束经

透镜传输光场计算

组长签字:

成绩

日期20 13 年12 月 27 日

学院理学院专业光信息科学与技术

学生姓名吴宪班级学号1109020117

课程设计题目拉盖尔高斯光束经透镜传输光场计算

实践教学要求与任务:

要求:

1)角向节线0,径向节线2的拉盖尔高斯光束(共焦参数=12000倍波长)通过薄透镜;

2)薄透镜(前置圆形光阑)焦距=1500倍波长,光腰在透镜处;

3)光阑半径=120倍波长。

任务:

1)计算该拉盖尔高斯光束经过薄透镜后时的轴上光强变化,分析焦点变化;

2)计算该拉盖尔高斯光束经过薄透镜前时的径向光强变化,计算截断参数;

3)计算该拉盖尔高斯光束经过薄透镜后的径向–轴向光强变化;

4)撰写设计论文。

工作计划与进度安排:

1. 第一周教师讲解题目内容、任务和论文要求,学生查阅资料,星期四提出设计方案;

2. 第一周星期四到第二周星期三(包括星期六星期日)完成设计;

3. 第二周星期四上交论文;

4. 星期四教师审查论文,合格者星期五论文答辩。

指导教师:

2013年月日专业负责人:

2013年月日

学院教学副院长:

2013年月日

目录

摘要 (4)

设计原理 (5)

一.普通球面波的传播规律 (5)

二.高斯光束的基本性质及特征参数 (6)

三.柯林斯(Collins)公式 (7)

四.基模高级光束的特征参数 (6)

计算结果10

一. 计算该拉盖尔高斯光束经过薄透镜前时的轴上光强变化,分析焦点变化 (10)

二. 计算该拉盖尔高斯光束经过薄透镜前时的径向光强变化,计算截断参数 (11)

三.计算该拉盖尔高斯光束经过薄透镜后的径向–轴向光强变化 (12)

摘要

使用Collins(柯林斯)公式推导了拉盖尔高阶高斯光束通过光阑透镜分离系统的光强分布。利用mathcad软件计算高斯光束经透镜后的光强变化并给出函数图形说明,分析焦点移动情况。

高斯光束在其传输轴线附近可看作是一种非匀速球面波,其曲率中心随着传输过程而不断改变,但其振幅和强度在横截面内始终保持高斯分布特性,且其等相应面始终保持为球面。

关键词:拉盖尔高斯光束;柯林斯积分公式;基模高斯光束在自由空间的传输规律。

设计原理

一.普通球面波的传播规律

考察沿z 轴传播的普通球面波,其曲率中心为O (如图所示)。该球面波的波前曲率半径R (z )随传播而变化

R 1=R (z 1)=z 1 R 2=R (z 2)=z 2

R 2=R 1+(z 2-z 1)=R 1+L (1) 式(1)表示了普通球面波在自由空间的传播规律。

当旁轴球面波通过焦距为F 的薄透镜时,其波前曲率半径满足

F

R R 1

-1112= (2) 这里,以R 1入射在透镜表面上的球面波面的曲率半径,以R 2表示经过透镜出射的球面波面的曲率半径。式(2)描述了旁轴球面波通过薄透镜的变化规律。

旁轴光线通过光学系统的变换矩阵

??

?

?????????=??????1122r θθr CD AB

当光线在自由空间中行进距离为L ,起变化矩阵为

??

????=??????=011L CD AB L T 而焦距为F 的薄透镜对旁轴光线的变化矩阵为

???

?

??

??=??

?

???=1F 1-0 1CD AB T F 以此,球面波的传播规律可以统写为

D

CR B

AR R ++=112

通过上述讨论可以看出,具有固体曲率中心的普通旁轴球面波可以由其曲率半径R 来描述,它的传播规律按上式由旁轴光线矩阵T 确定。

二.高斯光束的基本性质及特征参数

沿z 轴方向传播的基模高斯光束的表示

其中,c 为常数,r 2=x 2+y 2,k =2π/λ,

ω0为基模高斯光束的腰斑半径,f 称为高斯光束的共焦参数 振幅因子→光斑半径ω(z )

基模高斯光束在横截面内的场振幅分布按高斯函数所描述的规律从中心向外平滑地降落。由振幅降落到中心值的1/e 处的点所定义的光斑半径为ω(z ) 远场发散角θ0(定义在基模高斯光束强度的1/e 2点的远场发散角) far-field beam angle

]}

)2([exp{])(exp[)(),,(22200f

z

arctg R r z k i z r z c z y x -+--=ωωψ2

0)(1)(f

z

z +=ωω)(])(1[)(2z

f

f z f z f z z R R +=+==πλωλπωf f =

=02

0,0

02

)(2lim

πωλ

ωθ==∞→z z z

相位因子→等相位面的曲率半径R (z )

因子kr 2/2R 表示与横向坐标(x ,y )有关的相位移动,表明高斯光束的等相位面是以R 为半径的球面,其曲率半径随坐标而变化,且曲率中心也随z 不同而不同;当z =±f 时,|R (z )| =2f ;当z =0时, R (z )→∞; z →∞时, R (z )→∞ 。 曲率中心的位置= z -R (z ) ,说明球心在共焦腔腔外 曲率中心的位置=z+R(z),说明球心在共焦腔腔内

三.柯林斯(Collins )公式

对经典衍射理论最重要的有方法性意义的推广是柯林斯的工作,柯林斯证明,当衍射面与观察面间不是自由空间,而是变换矩阵

???

???D C B A 表征的复杂光学系统时,如菲涅尔积分公式(公式2.1)不能直接应用,按柯林斯的方法,将衍射积分写为(为清楚起见,设121==n n ,对21n n ≠情况可以类推) IA ?zf ()E ?zf f ?()()2

:=?zf 0.6-0.58-, 0.6..:=

(柯林斯积分公式2.2,其中IA 为光强)

入射平面是矩形孔的柯林斯公式的代数计算方法,给出近似计算公式,为数值计算光衍射场作准备。

由于任意形状的衍射孔总可以由不同尺寸及不同数量的矩形孔的叠加足够准确地描述,只要研究入射平面上的透光孔是一个任意位置矩形孔的衍射问题,便能根据衍射积分的线性叠加性质综合出入射平面是任意形状透光孔时的柯林斯公式的计算方法。因此,设光学系统的入射平面是一个边长分别为2L xi ,2L yi 的矩形孔,照明光源的复振幅为U 0 (X 。,Y 0),矩形孔的两边分别与坐标轴平行,中心在( X 0i ,Y oi )处。

E ?z ()i λB ?z ()?exp i -2?π?z ?z ()?λ? ?????02π?0

a

2r0ω0?? ????l Lagu l p , 2r02?ω02, ? ??????e 1-r0

2

?ω02?cos l φ0?()?exp i -π?λB ?z ()?A ?z ()r ?(

??????????

?????

??????????????

?:=

通过数值分析,并引入符号函数sgn(),得出以下计算式

()()??

????=),(,22y x 2A

i exp i ik exp y x KC A

L U

()[]y x y x y x 0x 0x 00,),(),(U U U ++ (1) 式中,

()()()[]()()()()()[]{}y -y isgn y -y 1i 2i 1i 2i ηηηηS S AB C C +? (2) 当U 0代表未经变换的,直接来自激光设备的激光振幅分布时,光束分布的空间变化率不高,在光学系统的傍轴区,只使用(2)式简明研究光波通过矩形孔衍射时的光场分布,也能够得到很好的结果。(2)式中,S(x),C(x)是菲涅耳函数,可以近似为:

S (x )=

(3)

()

[]???

??>+

≤)1(),2(sin )1-(2-exp 121.0-12

1)

1x 6855x .0xcos 2

2x x x x ππ,( (4) 通过验证,(3)式、(4)式的计算结果与菲涅耳函数准确值的相对误差通常不到1% ,使用这个结果显著提高了计算衍射问题的效率。于是,入射平面透光孔是矩形孔的柯林斯公式可以转化为代数式计算。

根据上述公式,则可以通过下式计算光波经过矩形孔径光阑及ABCD 系统衍射后的强度分布:

I(x,y)=U(x,y)U*(x,y) (5) 可见,对于一个复杂的衍射孔,只要将其分解为若干不同尺寸的矩形孔之和,便能够通过各矩形衍射孑L 衍射场复振幅的叠加获得其解。

当照射光为单位振幅均匀平面波,矩形孔的边长足够大时,利用上述结果,有下述直边衍射条纹的间距公式。

从几何投影边界算起,第/7,个衍射亮条纹到投影边界的距离为: ),2,1,0(,2

2

/1212)(m a x ???=?+++=

n BA n n n D λ (6)

以零级衍射亮条纹为基准,相邻衍射亮条纹与零级衍射亮条纹的间隔为: ]2/112/1212[2

1)(--+++?=

n n AB n S λ (7)

不难看出,(7)式简明地描述了直边衍射条纹分布与ABCD 系统参数的关系,它是由柯林斯公式的代数运算方法得出,因此,可以利用(7)式来计算衍射条纹间隔并通过与实验结果的比较,以证明近似计算的可行性。

四.基模高级光束的特征参数

用参数ω0(或f )及束腰位置表征高斯光束 用参数ω(z )和R (z )表征高斯光束

如果知道了某给定位置处的ω(z )和R (z ),可决定高斯光束腰斑的大小ω0和位置z

高斯光束的q 参数

引入一个新的参数q (z ),定义为

)]

(exp[]})()(1[2exp{)(),,(2200f

z arctg kz i z i z R r ik z c z y x ----=πωλωψ)

()(1)(12z i

z R z q πωλ-=

计算结果

1.计算该拉盖尔高斯光束经过薄透镜前时的轴上光强变化,

分析焦点变化

拉盖尔 - 高斯光束共焦参数Z 0通过光阑半径a-透镜f 分离系统的轴上光强分布和焦移

L ,m 角向,p ,n 径向 等相位面曲率半径R ,截断参数α

(公式3.1)

p:=2 l:=0 λ:=1 a:=120 f=1.5?103 得:Z 0:=12000 419.56:0

0=?=π

λωZ f s ?=1:

55.1055.30=?ω

f

z

z A ?-=

?:)(

(公式2.2)

IA ?zf ()E ?zf f ?()()2

:=?zf 0.6-0.58-, 0.6..:=

软件绘图结果为:

(图 P3.1)

焦点变化由图可知,在光强极大值处即为焦点处。

2.计算该拉盖尔高斯光束经过薄透镜前时的径向光强变化,

计算截断参数

该高斯光束经过薄透镜前的径向光强变化如图所示

(图P3.2)

计算截断参数:p:=2 l:=0 λ:=1 a:=120 f=1.5?103

419.56:0

0=?=πλωZ 142.3:2

0=???

? ??=ωαa 3.计算该拉盖尔高斯光束经过薄透镜后的径向 – 轴向光

强变化

2

00:)(z z z z R +=

(公式3.3.1)

=?:),,(φr z E

(公式3.3.2)

(图P3.3.1)

(图

P3.3.2)

总结

经过这一个课程设计,让我在学习的过程拓宽了知识,扩展了柯林斯公式的概念,对激光的传播方式有了更深的理解,对高阶光束也有了更深一层的理解。

希望以后能够更进一步的学习,也希望老师多多讲解高斯光束的一些更深的知识。

由于可能会跟别的同学任务有相似的地方,望老师理解。

2

001000))0,,((:),(φφr Ep r I =

A0rz r zf , ()Epl r 0, zf Z0?, ():=

《光纤通信》精彩试题计算分析报告题练习

实用文档 要自信,绝对的自信,无条件的自信,时刻自信,即使在错的时候!!! 《光纤通信》计算、综合、分析练习公布 精选精炼+课后精讲(QQ在线讲解) 张延锋 2014/8/1 忍人之所不能忍,方能为人知所不能为!!!

计算、综合、分析题练习 1. 一阶跃折射率光纤,纤芯折射率n 1=1.5,相对折射率差% 1 = ?,工作波长为 1310nm,试计算: (1) 为了保证单模传输,其芯径应取多大? (2) 若取芯径m 5 aμ =,求其数值孔径及其模式数。 2.设PIN光电二极管的量子效率为75%,渡越时间为10ps。问: (1) 计算该检测器的3dB带宽; (2) 计算在1.3um和1.55um波长时的响应度,并说明为什么在1.55um处光电 二极管比较灵敏。 3.已知阶跃型光纤的n 1 =1.5,△=0.5%,工作波长λ=1.31μm光纤中的导模M=2求: (1) 光纤的数值孔径NA。(2分) (2) 全反射临界角θc。(3分) (3) 光纤的纤芯半径a。(5分) 4.一个GaAsPIN光电二极管平均每两个入射光子,产生一个电子-空穴对,假设所有的电子都被接收。 (1) 计算该器件的量子效率; (2) 设在1.31um波段接收功率是10-7W,计算平均输出光生电流。 (3) 计算这个光电铒极管的长波长截止点λc(超过此波长光电二极管将不工 作)。 5. 某SI型光纤,光纤的芯径d=2a为100μm,折射率n1=1.458,包层的折射率 n2=1.450,在该光纤中传输的光波的波长λ=850nm。 (1)计算该光纤的V参数; (2)估算在该光纤传输的模式数量; (3)计算该光纤的数值孔径; (4)计算该光纤单模工作的波长。 6. 有一GaAlAs半导体激光器,其谐振腔长为300m μ,材料折射率n=3.0,两端的解理面的反射率为0.35。 (1)求因非全反射导致的等效损耗系数。 (2)求相邻纵模间的频率间隔和波长间隔。 (3)若此激光器的中心波长λ=1310nm,与此相应的纵模序数。 7.设140Mb/s的数字光纤通信系统,工作波长1300 nm,其他参数如下: 发射光功率为-3dBm,接收机的灵敏度为-38 dBm (BER=10-9),系统余量为4 dB,连接器损耗为0.5 dB /个,平均接头损耗为0.05 dB/km,光纤损耗为0.4 dB/km,试计算损耗限制传输距离。 8. 分光比为3:1的定向耦合器,假设从输入口0输入的功率为1mW,从输入口 0到输入口1的插入损耗为1.5dB,求两个输出口的输出光功率。

802.11N的传输速率计算方法

802.11n采用了MIMO多天线技术,当存在两根天线(即假如是2X2时),在每种带宽下它存在16 种速率(记为MCS0-MCS15 , MCS : Modulation and coding scheme)(当有 3 根或者 4 根天线都同时能够发射数据的时候, 理论上应该是1根天线时的3倍或4倍)。这16种速率 分别是: HT20 时:(MCS0-MCS7) 6.5M、13M、19.5M、26M、39M、52M、58.5M、65M (MCS8-MCS15) 13M、26M、39M、52M、78M、104M、117M、130M HT40 时:(MCS0-MCS7) 13.5M、27M、40.5M、54M、81M、108M、121.5M、135M (MCS8-MCS15) 27M、54M、81M、108M、162M、216M、243M、270M。 从上面可以看出,MCS8-MCS15分别是对应的MCS0-MCS7的两倍。这是因为在 MCS8-MCS15时,采用了MIMO技术,一个数据流会分成两部分,分别由两个stream发出 去,所以速度提高了一倍;而在MCS0-MCS7时,虽然两根天线也是同时发出信号,但这 两路信号是一样的,所以速度只有MCS8-MCS15的一半。 802.11 n采用多种调制技术,但是在上表中每一列速率对应的码率(即有效数据和发出的数据的比率)是不一样的,例如在MCS7和MCS15时,码率是5/6,而在MCS6和MCS14时,码率是3/4。 由于11n采用的是和11a/g 一样的OFDM方式,而OFDM是将一个宽的带宽正交地分割成几个小的子载波,这些子载波并行地传输数据。所以为了得到某个理论上的速率是如何计算出来的,可以从这方面着手。 下面示范HT20在MCS7时速率的计算方式。 首先,每次传输的时间是4us(这点对于11a/11g相同),由于MCS7采用的是64QAM的调制技术,即每个子载波每次可传输6bit数据,同时,在MCS7时,码率(coding rate)是5/6, 在HT20时,OFDM将20M带宽分割成56个子载波,其中有效传输数据的子载波数目为 52。所以在HT20的MCS7时,速率=(1/4us)*(52*6bit)*5/6 = 65Mbit/s ,而当有多根天线时只要乘以天线的个数就可以。其它速率的计算方式是一样的。 上述计算速率的方法同样适用于11a/11g。

光传输设备技术要求

1.总则 1.1本技术要求适用于新疆华电红雁池发电有限责任公司光传输设备改造的技术要求。 1.2本技术要求提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范条文,供方保证提供符合招标书和工业标准的优质产品。 1.3如供方没有以书面形式对本技术要求的条文明确提出异议,需方则认为供方提供的产品完全满足技术要求。 1.4在签定合同之后,供方应积极主动地实施合同内容。 1.5本技术要求为供方提供产品依据,在执行本技术要求所列要求、标准,本规范书中未提及的内容均应满足或优于本要求所列的国家标准、行业标准和有关国际标准。有矛盾时,按较高标准执行。 1.6供方提供的产品,是成熟的、技术先进的、具有制造经验的复制品,而不是试制品,并提供安全、经济、可靠的设备和可行的布置。 2. 遵循的主要现行标准 本技术要求中涉及的所有规范、标准或材料规格(包括一切有效的补充或附录)均应为最新版本,若发现本技术要求与参照的文献之间有不一致之处,卖方应向买方指明,并按较高标准执行。 2.1引用的规范和标准 国际及国标 (1)中华人民共和国标准《同步数字体系(SDH)光缆线路系统进网要求》;(2)信息产业部《光同步传送网技术体制》; (3)ANSI T1.101 同步接口规范; (4)ITU-T G.812 局间时钟的定时要求(9/97版); (5)ITU-T G.811 国际局间原始参考钟(PRC)的定时要求; 3、设备运行的环境条件 电源:额定电压:直流-48V; 电压范围:直流–39V~–57V 工作温度:0℃~50℃

湿度:10%~90%,不结露 4、技术要求 4.1一般要求 4.1.1买方光传输设备属于新疆电网干线上的一个环网节点,改造后的设备必须与之匹配运行。 4.1.2买方原设备2M业务有48端口,备用端口有19个,改造后2M业务端口必须大于48端口,并有足够的扩展槽位。 4.1.3卖方应保证改造后设备至少有2块光板,速率不小于622Mb/s,并能平滑升级,满足将来电网通信需求。 4.1.4卖方应保证改造后设备支持多业务(MSTP),应有以太网端口,满足现在和将来电网通信需求。 4.2光纤通道应能可靠的传输以下信息 4.2.1电话 4.2.2 调度自动化信息 4.2.3 通信监控 4.2.4 线路继电保护和安全自动装置信息 4.2.5 数据信息 4.2.6 综合业务数字网信息 4.2.7 MIS网络信息 4.3 光纤通信系统参考数字通道 数字传输模型 (a)假设参考数字通道(HRDP)长度为6900km。 (b)假设参考数字段(HRDS)长度为280km。 4.4 传输与复用设备类型及性能要求 4.4.1 数字光纤通信传输系统采用SDH、STM-16等级,本期工程传输速率为622Mb/s, 将来设备只需更换光卡板,便能平滑升级到STM-16,2.5Gb/s或者STM-64,10Gb/s。本工程中,需要在红雁池电厂新增1套SDH光传输设备。 4.4.2 SDH622/2.5Gb/10G/s设备应具有功能强大的交叉矩阵,可在VC-12级别

传输速度的计算

传输速度的计算 ------分隔线---------------------------- 时间:2009-10-06 10:00来源:未知作者:admin 点击:341次 就传输线a点至b点,我们都必须计算讯号在电路板上的传导速度才行,但这又和许多系数息息相关,包括导体(通常为铜箔)的厚度与宽度,基板厚度与其材质的电介系数(Permittivity)。尤其以基板的电介系数的影响最大,一般而言,传导速度与基板电介系数的平方根 就传输线a点至b点,我们都必须计算讯号在电路板上的传导速度才行,但这又和许多系数息 息相关,包括导体(通常为铜箔)的厚度与宽度,基板厚度与其材质的电介系数(Permittivity)。 尤其以基板的电介系数的影响最大,一般而言,传导速度与基板电介系数的平方根成反比。 以常见的FR-4而言,其电介系数随着频率而改变,其 公式:ε =4.97-0.257 log 以Pentium II 的频率信号为例,其上升或下降缘速率典型值约在2V/ns,对2.5V的频率信号而 言,从10%到90%的信号水平约需1ns的时间,依 公式:BW=0.35/ 可知频宽为350MHZ。代入公式可知电介系数大约是4.57。 如果传导的是两片无穷大的导体所组成的完美传输线,那么传输的速度应为5.43 inch/ns。 但对电路板这种信号线(Trace)远比接地层要细长的情况,则可以用微条(Micro strip)或条线 (Strip line)的模型来估算。对于走在外层的信号线,以 微条的公式:inch/ns 可得知其传输速度约为6.98 inch/ns 对于走内层的信号线,以 条线的公式:inch/ns 可得知其传输速度约为5.50 inch/ns 除此之外,也不要忽视贯穿孔(Via)的影响。一个贯穿孔会造成24 ps左右的延迟,举例而言,频率产生器到芯片A的频率线长为12 inch,并打了4个贯穿孔;到B为7 inch,没有贯穿孔,则两者之间的频率歪斜为 (12-7)/6.98+(0.024X4)=0.81 ns。

光接口传输距离计算方法

光接口传输距离计算方法 再生段距离确定及系统富裕度计算: 再生段距离由光接口参数,光传输损耗,光纤色散,接续水平等因素决定。按照光传输衰耗、色散,光系统分为衰耗受限系统和色散受限系统。再生段距离计算采用ITU-T建议G.957 的最坏值法,即所有参数都按最坏值考虑。该法较为保守,计算的中继距离短,实际系统的余度较大,但可以实现设备的横向兼容,还可以在系统寿命终了(所有系统和光缆余量均已用尽)前,并处于允许的最恶劣环境条件下,仍保证系统指标要求。 再生段距离计算公式: 1)衰耗受限的再生段距离计算: L1=(Pt-Pr-Pp-Mc-∑Ac)/(Af+As) 式中:L1—衰减受限再生段长度(km); Pt— S点寿命终了时光发送功率(dBm); Pr— R点寿命终了时光接收灵敏度(dBm); Pp—光通道功率代价(dB); Mc—光缆线路光功率余量(dB); ∑Ac—S,R点间其它连接器衰减之和(dB); Af—光纤衰减常数(dB/km); As—光缆固定接头平均衰减(dB/km)。 2)色散受限的再生段距离计算: L2=Dmax/Dm 式中:Dmax —S、R间通道允许的最大总色散值(ps/nm); Dm —光纤工作波长范围内的最大色散系数(ps/(nm.km)); L2 —色散受限的再生段长度(km)。 根据以上两公式计算结果,取较小值即为再生段中继距离。 155M光接口 (1)S1.1, =[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km (2)L1.1,

=[-5-(-34)-1-1]/(0.36+0.03+0.04)=62.7km (3)L1.2, =[-5-(-34)-1-1]/(0.22+0.03+0.04)=93.1km 622M光接口? (1)S4.1, =[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km (2)L4.1, =[-3-(-28)-1-1]/(0.36+0.03+0.04)=53.4km (3)L4.2, =[-3-(-28)-1-1]/(0.22+0.03+0.04)=79.3km ? 2.5G光接口 (1)S16.1 =[-5-(-18)-1-1]/(0.36+0.03+0.04)=25.5km (2)S16.2 =[-5-(-18)-1-1]/(0.22+0.03+0.04)=37.9km (3)L16.2 =[-2-(-28)-2-1]/(0.22+0.03+0.04)=79.3km 光传输中继距离 2009-03-01 00:06 一、概述 为了规范合理地组建光传输网,光传输中继距离是前提。光传输中继传输距离与设备的性能、所采用的光纤性能、两端光设备间线路传输的连接器件等有关。传输距离的长短影响着组建光传输网灵活性、投资规模。为提高我们组建光传输网设计的科学性,有必要对各光中继传输距离进行核算。下面将分别总结影响光传输中继距离的各种因素及计算方法。 二、影响光传输距离因素 在发送机与接收机之间影响信号传输距离的因素有很多,不同的物理媒介会给信号带来不同的影响。 从上面的示意图看我们可以从光设备、光缆设施和光连接器三个方面考虑影响信号传输距离的因素。 1. 光设备对信号传输的影响 光信号的传输距离受限于光设备的光口类型。SDH中的光接口按传输距离和所用的技术可分为三种,即局内连接、短距离局间连接和长距离局间连接。为了便于应用,将不同的光口类型用不同的代码(如S-16.1)来表示:

OTDR测试传输距离计算说明手册

测试传输距离计算说明手册 备纤测试时OTDR的典型测试距离及计算方法: 元器件件插入损耗典型值:光连接器(Adapter)插入损耗=0. 3 dB; 光开关(OSW) 插入损耗=0. 5dB; 光纤传输的平均损耗定义:1550nm波长典型损耗0.2 dB/km;光缆接头损耗0.05dB/km(光缆盘长为2KM) 头端损耗=OSW(0. 5) +4个接头(1. 2)=1. 7 dB; 为确保测试曲线清晰,保证余量3dB,末端波形不精确区和冗余3dB; ?动态范围为39dB的典型离线测试距离(无中继): 【39dB - 3dB (末端波形不精确区和冗余) -3dB (保证余量)– 1. 7dB (头端光损耗)】/ (0. 20+0. 05) = 125.2km; ?动态范围为45dB的典型离线测试距离(无中继): 【45dB - 3dB (末端波形不精确区和冗余) -3dB (保证余量)– 1. 7dB (头端光损耗)】/ (0. 20+0. 05) = 150km; 备纤测试时光源设计: 光源选用1550nm波长的模块,150km×0.2 + -2dB(出光功率) –5dB(接头损耗) = -37dBm

OTDR的动态范围和可测试距离 1. 测试距离公式 光纤测试距离指OTDR可监测光缆的长度。其由OTDR的动态范围、光器件的介入损耗、光缆的传 输损耗、光纤接头(机械接头、熔接接头)的损耗等因素决定的;需要根据工程的具体情况进行计算确定。监测距离计算公式如右: 其中: L:光纤测试系统监测光纤最大长度 P:OTDR模块的动态范围(如安立9081D为38/36dB) Ac:介入损耗,指OTDR、光开关、WDM、滤波器等设备的介入损耗的和 Af:光缆平均衰减系数(dB/km) As:光熔接接头平均衰减系统(dB/km) Mc:光缆线路富余度(dB) Ma:测试精度富余度(dB) 公式中变量的取值: P由系统供货商提供(37/40dB) Af取值由光缆生产厂商提供,如不能提供1625nm时的平均损耗,可用光缆在1550nm 时的平均损耗替代。 As取值按光缆每2公里一个熔接接头,每个熔接接头衰减为0.08dB计算,As为0.04dB。 Ma取值为10dB。 Mc光缆线路富余度取值为3.5dB Ac的计算要将OTDR、光开关、WDM、滤波器、机械接头的介入耗损耗。 对于光缆监测距离的计算,需要先以各项目数据代入公式计算,再根据工程情况加以一定经验修正,弥补理想情况与实际情况的差距。 2. 光纤监测设备对光传输系统的介入损耗 系统对光纤在线测试(只有少数OTDR有此功能),会对传输系统产生一定的介入损耗。 这主要由接入在实用光纤中的无源光器件的介入损耗产生的。其计算方法将接入光纤中的所有光器件的介入损耗累加即可得出对光传输系统的介入损耗。在一个测试区段中,对于在用纤测试,介入损耗主要是OTDR和滤波器的影响。

数据传输速率的定义

数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为:S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中:1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为:Rmax=2.f(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax与信道带宽B、信噪比S/N 的关系为:Rmax=B.log2(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。若S/N=30(dB),那么信噪比根据公式:S/N(dB)=10.lg(S/N) 可得,S/N=1000。若带宽B=3000Hz,则Rmax≈30kbps。香农定律给出了一个有限带宽、有热噪声信道的最大数据传输速率的极限值。它表示对于带宽只有3000Hz的通信信道,信噪比在30db时,无论数据采用二进制或更多的离散电平值表示,都不能用越过0kbps的速率传输数据。 因此通信信道最大传输速率与信道带宽之间存在着明确的关系,所以人们可以用“带宽”去取代“速率”。例如,人们常把网络的“高数据传输速率”用网络的“高带宽”去表述。因此“带宽”与“速率”在网络技术的讨论中几乎成了同义词。 频带就是指频率范围 带宽的两种概念 如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固有通信频带,这个概念或许比较抽象,我们有必要作进一步解释。大家都知道,各类复杂的电子电路无一例外都存在电感、电容或相当功能的储能元件,即使没有采用现成的电感线圈或电容,导线自身就是一个电感,而导线与导线之间、导线与地之间便可以组成电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容、电感,都会对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质。这种效应与交流电信号的频率成正比关系,当频率高到一定程度、令信号难以保持稳定时,整个电子电路自然就无法正常工作。为此,电子学上就提出了“带宽”的概念,它指的是电路可以保持稳定工作的频率范围。而属于该体系的有显示器带宽、通讯/网络中的带宽等等。 而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带宽、总线带宽、网络带宽等等,都是以“字节/秒”为单位。我们不清楚从什么时候起这些数据传输率的概念被称为“带宽”,但因业界与公众都接受了这种说法,代表数据传输率的带宽概念非常流行,尽管它与电子电路中“带宽”的本意相差很远。 对于电子电路中的带宽,决定因素在于电路设计。它主要是由高频放大部分元件的特性决定,而高频电路的设计是比较困难的部分,成本也比普通电路要高很多。这部分内容涉及到电路设计的知识,对此我们就

如何根据所需要的信号传输距离

如何根据所需要的信号传输距离,计算光链路损耗? 首先光学损耗值是发射机和接收机之间各个独立部件损耗的总和。导致光学损耗的主要原因有以下几点: 1、光纤每公里的损耗(该损耗一般可根据如下参数估算:62.5/125多模光纤,在采用850nm波长时为3.0 dB/km,采用1300nm波长时为1.0 dB/km;9/125单模光纤,在采用1310nm波长时为0.35 dB/km,采用1550nm波长时为0.25 dB/km。 2、光纤熔接点的损耗(一般每2公里光纤有一个熔接点,每个熔接点损耗按0.1~0.2 dB计算)。 3、光纤连接器的损耗(一般ST连接器损耗为1dB,FC/SC连接器损耗为0.5dB)。 但在工程实际情况下,计算这些损耗并不可能十分准确。因此在工程中还可使用光学仪器来测量实际的损耗,如光功率计等仪器。当光链路损耗的实际损耗低于光端机的光功率预算时,光端机即可正常工作。 光纤传输链路测试及技术参数 2)光纤传输链路测试技术参数(1)1楼宇内布线使用的多模光纤,其主要的技术参数为:衰减、带宽。光纤工作在850nm,1300nm双波长窗口。在850nm下满足工作带宽160MHz?km(62.5μm),400MHz?km(50μm);在1300nm下满足工作带宽500MHz?km(62.5μm,50μm);在保证工作带宽下传输衰减是光纤链路最重要的技术参数。A光=aL=10logp1/p2 式中a——衰减系数;L——光纤光度;P1——光信号发生器在光纤链路始端注入光纤光功率;P2——光信号接收器在光纤链路末端接收到的光功率。光纤链路衰减计算:A(总)=Lc+Ls+Lf+Lm 公式(6-2) 各环节衰减分配:式中Lc——连接器衰减:≤0.5dB×2;Ls——连接头衰减:≤0.3dB×2;Lf——光纤衰减:850nm,≤3.5dB/km,1300nm,≤1.2dB/km;Lm——余量:由用户选定。一般情况下,楼宇内光纤长度不超过km/2时,在设定测试标准时,A(总)应为:850nm 下:≤3.5dB (0.5×2)+(0.3×2)+(3.5dB/km÷2)+余量=3.5dB(余量=0.15dB) 1300nm下;≤2.2dB (0.5×2)+(0.3×2)+(1.2dB/km÷2)+余量=2.2dB(余量=0dB) (2)光纤链路测试测量仪表设备(a)主机测试系统包含一个检波器,光源模块接口,发送和接收电路,主机通常使用水平链路测试仪主机配以光接收器,可以在测试中作为光功率计使用。(b)光源模块它包含有发光二极管(LED),可在850nm,1300nm,1550nm波长上(通过切换)发出预选波长的光功率,发送功率可以预置。(3)测试前校准工作测试前需要对测试系统进行校准,校准可以排除测试系统带来的偏差,因为在实际测试光链路衰减料小的情况下,系统本身的偏差可能导致测试结果出现数值不合理。校准按下图连接方法进行光纤测试的校准(4)光纤链路的测试(a)测试光纤链路的目的是要了解光信号在光纤路径上传输衰耗,该衰耗与光纤链路的长度、传导特性、连接器的数目、接头的多少有关。(b)测试按下面框图进行连接。(c)测试连接前应对光连接的插头、插座进行清洁处理,防止由于接头不干净带来附加损耗,造成测试结果不准确。(d)向主机输入测量损耗标准值。光纤链路衰减测量(e)操作测试仪,在所选择的波长上分别进行A8,B A 两个方向的光传输衰耗测试。(f)报告在不同波长下不同方向的链路衰减测试结果。“通过”与“失败”。单模光纤链路的测试同样可以参考上述过程进行,但光功率计和光源模块应当换为单模的。

传输带宽计算方法

在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线 路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以 介绍 比特率是指每秒传送的比特(bit)。单位为bps(BitPerSecond) ,比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要 么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码 率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码 流越大,压缩比就越小,画面质量就越咼。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算:比特率大小X摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是 512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1

SDH设备光传输距离计算指导

ZXMP-S360/S380/S390 光传输距离计算指导 本部用服部

安全/保密警告 文件信息和修改信息

目录 传输距离受限的理论分析及计算方法...................................................................................... - 1 - 衰减受限传输距离理论计算------最坏值法...................................................................... - 1 - 色散受限传输距离理论计算.............................................................................................. - 2 - DCM模块在系统中的位置........................................................................................................ - 3 - 我司设备性能参数...................................................................................................................... - 3 - 2.5Gb/s光板类型及参数 .................................................................................................... - 3 - 10Gb/s光板类型及参数 ..................................................................................................... - 4 - 光放大板类型及参数.......................................................................................................... - 4 - 色散补偿模块的类型及参数.............................................................................................. - 4 - 2.5Gb/s光口配置实例 ................................................................................................................ - 5 - 10Gb/s光口计算和配置实例 ..................................................................................................... - 6 - 附录:光接口规范.................................................................................................................... - 10 -

数字通信中的数据传输速率等的计算

数字通信中的数据传输速率、波特率、符号率计算在数字通信中的数据传输速率与调制速率是两个容易混淆的概念。 数据传输速率(又称码率、比特率或数据带宽)描述通信中每秒传送数据代码的比特数,单位是bps。 当要将数据进行远距离传送时,往往是将数据通过调制解调技术进行传送的,即将数据信号先调制在载波上传送,如QPSK、各种QAM调制等,在接收端再通过解调得到数据信号。 数据信号在对载波调制过程中会使载波的各种参数产生变化(幅度变化、相位变化、频率变化、载波的有或无等,视调制方式而定),波特率是描述数据信号对模拟载波调制过程中,载波每秒中变化的数值,又称为调制速率,波特率又称符号率。 在数据调制中,数据是由符号组成的,随着采用的调制技术的不同,调制符号所映射的比特数也不同。 符号又称单位码元,它是一个单元传送周期内的数据信息。 如果一个单位码元对应二个比特数(一个二进制数有两种状态0和1,所以为二个比特)的数据信息,那么符号率等于比特率;如果一个单位码元对应多个比特数的数据信息(m个),则称单位码元为多进制码元。 此时比特率与符号率的关系是: 比特率=符号率*log2 m,比如QPSK调制是四相位码,它的一个单位码元对应四个比特数据信息,即m=4,则比特率=2*符号率,这里“log2 m”又称为频带利用率,单位是: bps/hz。 另外已调信号传输时,符号率(SR)和传输带宽(BW)的关系是: BW=SR(1+α),α是低通滤波器的滚降系数,当它的取值为0时,频带利用率最高,占用的带宽最小,但由于波形拖尾振荡起伏大(如图5-15b),容易造成

码间干扰;当它的取值为1时,带外特性呈平坦特性,占用的带宽最大是为0时的两倍;由此可见,提高频带利用率与"拖尾"收敛相互矛盾,为此它的取值一般不小于 0.1 5。 例如,在数字电视系统,当α= 0.16时,一个模拟频道的带宽为8M,那么其符号率=8/(1+ 0.16)= 6.896Ms/s。 如果采用64QAM调制方式,那么其比特率= 6.896*log2 64= 6.896*6= 41.376Mbps。

802.11ac 传输速率计算方式

Guard Interval The Guard Interval is the ratio of the Cyclic Prefix "CP" time to the inverse FFT time "T(IFFT)." The guard interval is used to eliminate inter-symbol and inter-carrier interference. A copy of the last guard interval T(GI) of the useful symbol period "T(IFFT)", termed Cyclic Prefix "CP", is used to collect multipath, while maintaining the orthogonality of the subcarriers. Each symbol is transmitted for a slightly longer time, extended symbol time T(s), than the active (or useful) symbol time T(IFFT). The extra time is the guard interval. 1/8: Sets the Guard Interval to 1/8 (see Guard Interval Time Calculation below) 1/4: Sets the Guard Interval to 1/4 (see Guard Interval Time Calculation below) Other: Enables you to enter Guard Interval values between 0 to 1. The Guard Interval time period T(GI) is specified as a fraction (percentage) of the inverse FFT time period T(IFFT). For 802.11a, the only selection is a Guard Interval of 1/4 (1/8 is greyed). For HIPERLAN/2, both 1/4 and 1/8 are selections. The Other selection allows the input of a non-standard Guard Interval value between 0 and 1. where: T(FFT)= FFT time period for the OFDM signal T(GI) = Guard Interval time period = Guard Interval ′ T(FFT)

光传输中继距离计算 (杰赛通信设计)

概述 为了规范合理地组建光传输网,光传输中继距离是前提。光传输中继传输距离与设备的性能、所采用的光纤性能、两端光设备间线路传输的连接器件等有关。传输距离的长短影响着组建光传输网灵活性、投资规模。为提高我们组建光传输网设计的科学性,有必要对各光中继传输距离进行核算。下面将分别总结影响光传输中继距离的各种因素及计算方法。 影响光传输距离因素 在发送机与接收机之间影响信号传输距离的因素有很多,不同的物理媒介会给信号带来不同的影响。 从上面的示意图看我们可以从光设备、光缆设施和光连接器三个方面考虑影响信号传输距离的因素。 1.光设备对信号传输的影响 光信号的传输距离受限于光设备的光口类型。SDH中的光接口按传输距离和所用的技术可分为三种,即局内连接、短距离局间连接和长距离局间连接。为了便于应用,将不同的光口类型用不同的代码(如S-16.1)来表示: 第一个字母表示应用场合:I表示局内通信;S表示近距通信;L表示长距通信;V表示甚长距通信;U表示超长距; 字母后第一个字母表示STM的等级; 字母后第二个字母表示工作窗口和所用光纤类型:空白或1表示工作波长是1310nm所用光纤为G.652,2表示工作波长为1550nm所用光纤为G.652、G.654,5表示波长1550nm所用光纤为G.655。 另:电接口仅限STM-1等级、PDH接口。

2. 光纤对信号传输的影响 光在光纤中传输,主要受到光纤的衰减及色散的影响,另外我们在工程实际设计中还要考虑到两段光纤间接头的损耗、光通道代价、光缆富余度和高速传输存在的偏振模色散(PMD )等。 在光传输系统中,光纤的衰减是不可确定的因素,不同厂家的光纤在不同的环境均有不同的衰减值,不同工艺的光纤接续的衰减也不同;光纤在不同的光波长传输,损耗也不同的。具体的参数见有关厂家的资料及参照国家通信行业的有关标准。 这里介绍六种典型单模光纤的性能和应用: a .

光传输设备功率受限距离与色散受限距离的计算

功率受限距离与色散受限距离的计算 功率受限距离L1(km) 计算 色散受限距离 由光源的类型和光通道总色散所限定。 色散主要是指集中的光能(例如光脉冲)经过光纤传输后在输出端发生能量分散,导致传输信号畸变。在数字通信系统中,由于信号的各频率成分或各模式成分的传输速度不同,在光纤中传输一段距离后,将互相散开,脉冲加宽。严重时,前后脉冲将互相重叠,形成码间干扰,增加误码率,影响了光纤的带宽,限制了光纤的传输容量。 与光纤色散有关的系统性能损伤有多种因素,主要有码间干扰、模分配噪声和啁啾噪声(chirping)三种。 对于高比特率的传输系统,色散是限制中继段传输长度的主要因素。色散功率代价随传输距离、光谱宽度和色散系数这些参数值的增加而迅速增加。为了防

范由于色散功率代价的迅速增加而导致的系统性能恶化,应该使系统有足够的工作余度,避开高功率代价区。一般认为1dB功率代价所对应的光通道色散值(D*L)定义为通道最大色散值。 就目前含EDFA的光通信系统工程应用的情况来看:光缆均采用G.652光纤,波长范围在1535nm~1565nm,属于单模传输,故不存在模分配噪声;对于STM-1和STM-4系统,系统一般采用DFB光源,由于速率不高,输出功率不大(≤3dBm),虽采用内调制方式,但啁啾噪声很小,可以忽略;而STM-16和STM-64系统一般采用外调制,激光器中没有啁啾噪声。因而系统色散对于目前的光通信系统的损伤主要是码间干扰。 其理论计算公式如下: Ld=ε/ Dm,ε为光源的色散容限值,由光源的性能决定,Dm为光纤色散系数,对于G.652光纤的色散系数一般取18ps/(nm?km),而G.655光纤的色散系数一般取6ps/(nm?km)。 由于色散受限引起的色散受限距离小于实际需要传输距离,则要配置色散补偿模块DCM,进行色散补偿。 OptiX 155&622H STM-1&STM-4

速度运算

1.计算光纤传输的真实速度 使用光纤连接网络具有传输速度快。衰减少等特点。因此很多公司的网络出口都使用光纤。一般网络服务商声称光纤的速度为“ 5M”,那么他的下载真实速度是多少那?我们来计算一下,一般的情况下,“5M”实际上就是5000Kbit/s(按千进位计算)这就存在一个换算的问题。Byte和bit是不同的。1Byte=8bit.而我们常说的下载速度都指的是Byte/s 因此电信所说的“5M”经过还换算后就成为了(5000/8)KByte/s=625KByte/s这样我们平时下载速度最高就是625KByte/s常常表示625KB/S 在实际的情况中。理论值最高为625KB/S。那么还要排除网络损耗以及线路衰减等原因因此真正的下载速度可能还不到600KB/S 不过只要是550KB/S以上都算正常 2.计算ADSL的真实速度ADSL是大家经常使用的上网方式。那么电信和网通声称的“512K”ADSL下载速度是多少那? 换算方法为512Kbit/s=(512/8)KByte/s=64KByte/s,考虑线路等损耗实际的下载速度在50KB/S以上就算正常了那么“1MB”那?大家算算吧答案是125KByte/s 3.计算内网的传输速度 经常有人抱怨内网的传输的数度慢那么真实情况下的10/100MBPS网卡的速度应该有多块那?网卡的 100Mbps同样是以bit/s来定义的所以100Mb/S=100000KByte/s=(100000/8)KByte/s=12500KByte/s 在理论上1秒钟可以传输12.5MB的速据考虑到干扰的因素每秒传输只要超过10MB就是正常了现在出现了1000Mbps的网卡那么速度就是100MB/S 特别提示: (1)关于bit(比特)/second(秒)与Byte(字节)/s(秒)的换算说明:线路单位是bps,表示bit(比特)/second(秒),注意是小写字母b;用户在网上下载时显示的速率单位往往是Byte(字节)/s(秒),注意是大写字母B。字节和比特之间的关系为1Byte=8Bits;再加上IP包头、HTTP包头等因网络传输协议增加的传输量,显示1KByte/s下载速率时,线路实际传输速率约10kbps。例如:下载显示是50KByte/s时,实际已经达到了500Kbps的速度。切记注意单位!!! (2)用户申请的宽带业务速率指技术上所能达到的最大理论速率值,用户上网时还受到用户电脑软硬件的配置、所浏览网站的位置、对端网站带宽等情况的影响,故用户上网时的速率通常低于理论速率值。 (3)理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为103--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。4M(即4Mb/s)的宽带理论速率是:512KB/s,实际速率大约为200---440kB/s。 宽带网速计算方法 基础知识: 在计算机科学中,bit是表示信息的最小单位,叫做二进制位;一般用0和1表示。Byte叫做字节,由8个位(8bit)组成一个字节(1Byte),用于表示计算机中的一个字符。bit与Byte之间可以进行换算,其换算关系为:1Byte=8bit (或简写为:1B=8b);在实际应用中一般用简称,即1bit简写为1b(注意是小写英文字母b),1Byte简写为1B(注

光纤通信》试题计算分析题练习

要自信,绝对的自信,无条件的自信,时刻自信,即使在错的时候!!! 《光纤通信》计算、综合、 分析练习公布 精选精炼+课后精讲(QQ 在线讲解) 张延锋 2014/8/1 计算、综合、分析题练习 1. 一阶跃折射率光纤,纤芯折射率n 1=,相对折射率差%1=?,工作波长为1310nm ,试计算: (1) 为了保证单模传输,其芯径应取多大 (2) 若取芯径m 5a μ=,求其数值孔径及其模式数。 2. 设PIN 光电二极管的量子效率为75%,渡越时间为10ps 。问: (1) 计算该检测器的3dB 带宽; (2) 计算在和波长时的响应度,并说明为什么在处光电二极管比较灵敏。 3.已知阶跃型光纤的n 1=,△=%,工作波长λ=μm 光纤中的导模M=2求: (1) 光纤的数值孔径NA 。(2分) (2) 全反射临界角θc 。(3分) (3) 光纤的纤芯半径a 。(5分) 4. 一个GaAsPIN 光电二极管平均每两个入射光子,产生一个电子-空穴对,假设所有的电子都被接收。 (1) 计算该器件的量子效率; (2) 设在波段接收功率是10-7W ,计算平均输出光生电流。 (3) 计算这个光电铒极管的长波长截止点λc (超过此波长光电二极管将不工作)。 忍人之所不能忍,方能为人知所不能为!!!

5. 某SI 型光纤,光纤的芯径d=2a 为100μm ,折射率n1=,包层的折射率n2=,在该光纤中传输的光波的波长λ=850nm 。 (1)计算该光纤的V 参数; (2)估算在该光纤内传输的模式数量; (3)计算该光纤的数值孔径; (4)计算该光纤单模工作的波长。 6. 有一GaAlAs 半导体激光器,其谐振腔长为300m μ,材料折射率n=,两端的解理面的反射率为。 (1)求因非全反射导致的等效损耗系数。 (2)求相邻纵模间的频率间隔和波长间隔。 (3)若此激光器的中心波长λ=1310nm ,与此相应的纵模序数。 7. 设140Mb/s 的数字光纤通信系统,工作波长1300 nm ,其他参数如下: 发射光功率为-3dBm ,接收机的灵敏度为-38 dBm (BER=10-9),系统余量为4 dB ,连接器损耗为 dB /个,平均接头损耗为 dB/km ,光纤损耗为 dB/km ,试计算损耗限制传输距离。 8. 分光比为3:1的定向耦合器,假设从输入口0输入的功率为1mW ,从输入口0到输入口1的插入损耗为,求两个输出口的输出光功率。 9. 已知阶跃折射率光纤中n 1=,n 2=。 (1)光纤浸没在水中(n0=,求光从水中入射到光纤输入端面的光纤最大接收 角; (2)光纤放置在空气中,求数值孔径。 10. 若一个565Mbit/s 单模光缆传输系统,其系统总体要求如下: 光纤通信系统光纤损耗为km ,光纤接头损耗为km ,光源的入纤功率为,接收机灵敏度为-37dbm ,线路码型5B6B ,传输速率为677990kbit/s,光源采用MLM -LD ,光源谱宽为2nm ,光纤的色散系数为(km nm),ε光通道功率参数取。设计中取光功率代价为1db,光连接器衰减为1db ,光纤富余度为km,设备富余度为。 试求:系统的最大中继距离。 11. 弱导波阶跃光纤芯子和包层的折射指数分别为n 1=,n 2=,试计算: (1)纤芯和包层的相对折射指数差Δ; (2)光纤的数值孔径NA 。 12. 光波从空气中以角度1θ=33°投射到平板玻璃表面上,这里的1θ是入射光与玻 璃表面之间的夹角。根据投射到玻璃表面的角度,光束一部分被反射,另一 部分发生折射,如果折射光束和反射光束之间的夹角正好为90°,请问玻璃的折射率等于多少这种玻璃的临界角又是多少 13. 计算1 1.48n =及2 1.46n =的阶跃折射率光纤的数值孔径。如果光纤端面外介质 折射率 1.00n =,则允许的最大入射角max θ为多少

相关主题
文本预览
相关文档 最新文档