当前位置:文档之家› 铸铝箱体和铸铁箱体的优劣点对比分析

铸铝箱体和铸铁箱体的优劣点对比分析

铸铝箱体和铸铁箱体的优劣点对比分析
铸铝箱体和铸铁箱体的优劣点对比分析

铸铝箱体和铸铁箱体的优劣点对比分析

1)重量:

铝的比重比铸铁要轻,铸铁的密度为7.8g/cm3,铸铝的密度为2.7g/cm3,比如同等结构的情况下铝制壳体要比铸铁制壳体轻很多。所以在重量这一点上铝制壳体要比铸铁壳体占很大优势。铸铁的强度高.常用的铝合金强度如下表:

铸铁一般在200~~400MPa的样子,但是铝合金重量轻,很多产业都用铝合金代替铸铁了。但是铸铁还是有它的优势,比如灰铁的消振性,抗性变能力好,球铁的耐磨性、塑性和强韧性综合较好。

例如:我们BQ435联泵壳体为铸铁时联泵总重量大约280kg,如果壳体为铸铝经过估算联泵总重量大约为160kg,质量减轻了120kg。

2)体积:

同样的原因,铝比重轻,单位体积的铝结构强度要小于铸铁,所以同等强度下铝制壳体体积会比铸铁制壳体大一些。所以在体积这一点上铝制壳体要比铸铁制壳体有一些劣势。同等体积的情况下,铸铝的强度要小于铸铁。

3)成本:

现在铝锭的市场价格是17000元/吨;铸铝毛坯(含热处理)价格为:38000元/吨;铝制壳体在成本上大大高于铸铁制成本。所以在成本上铸铝制壳体要比铸铁制壳体有很大的劣势。根据三维软件的估算铸铁壳体的重量大约为200kg,铸铝壳体的重量大约为85kg。

例如:BQ450联泵铸铁壳体铸造成本=6000(根据项目成本资金计划所得)

BQ450联泵铸铁壳体铸造成本=6778(根据采购估算所得)4) 散热性:铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。如果用铝制壳体的话可以充分保证箱体的散热性。

例如:在相同的散热面积下Q=mcΔt,m为质量、c为比热容

5)耐腐蚀性和强度:铝的表面因有致密的氧化物保护膜,不易受到腐蚀,常被用来制造化学反应器、医疗器械、冷冻装置、石油精炼装置、石油和天然气管道等。铸铁在耐腐蚀性方面远不及铸铝。

6)膨胀系数:从设计手册上查铸铝的线形膨胀系数为:(18.44~24.5)*10-6/℃轴承钢(用碳钢替代)为:(10.6~12.2)*10-6/℃

我们联泵从装配时的室温20℃到夏季正常工作温度100℃,轴承外圈与铸铝壳体的配合因温度变化将增加间隙:(轴承外圈直径按100mm计算)

[(18.44~24.5)-(10.6~12.2)]*10-6*100*80

=(7.84~12.3)*10-6 *8000

=(6.3~9.8)*10-2 mm

结论:轴承与壳体的配合间隙因为温升,将带来0.06~0.1 mm 的间隙;此间隙可能会造成轴承、齿轮的损坏。

7)噪音:铝具有吸音性能,音响效果也较好,所以广播室、现代化大型建筑室内的天花板等也采用铝。

8)铸造性能:铝易成型及易加工成复杂形状,可进行各种铸造成形,生产形状复杂的零件毛坯。铸铁铸造性能不如铸铝,但是铸铁由于工艺目前比较成熟当对来说铸铁和铸铝的铸造性能相差不大。

9)美观:铸铝外表均匀平整相对于铸铝来说具有很大优势,但是铸铝表面较软可以采取氮化处理增加其表面硬度。

10)机加工性能:

总结:综上所述铝制壳体的优点主要体现在重量轻、散热性好、铸造性能好、壳体表面美观、有着良好的耐腐蚀性、能够降低噪音。缺点主要体现在成本比较大、线膨胀系数较大、螺纹孔需要加钢丝螺套、机械强度低。

铸铁制壳体主要优点强度高、成本低、铸造工艺成熟、质量容易控制、机械强度高。

铸铝转子铸造缺陷及原因

1.转子断条 产生断条的原因: 1)转子铁芯压装过紧,铸铝转子铁芯涨开,有过大的拉力加在铝条上,将铝条拉断。2)铸铝后脱模过早,铝水未凝固好,铝条由铁芯涨力而断裂。 3)铸铝前,转子铁芯槽内有杂物。 4)铝条中有气孔,或清渣不好,铝水中有杂物。 5)单冲时转子冲片各别槽孔漏冲。 6)浇注时中间停顿。因为铝水极易氧化,先后浇入的铝水因氧化而结合不到一起,出现“冷隔”。 转子断条对电机性能的影响是: 如果转子断条,则转子电阻很大,所以起动转矩很小; 转子电阻增大,转子耗损增大,效率降低,升温高,转差率大。 2.转子细条 产生细条的原因: 1)离心机转速过高,离心力太大,使槽底部导条没有铸满(抛空)。 2)转子槽孔过小,铝水流动困难(遇此情况应适当提高铁芯预热温度)。 3)转子错片,槽斜线不成一直线,阻碍铝水流动。 4)铁芯预热温度低,铝水浇入后流动性变差。 转子细条使转子电阻增大,效率降低,温升高,转差率大。 3.转子气孔 产生气孔的主要原因: 1)铝水清化处理不好,铝水中含气严重,浇注速度太快或排气槽过小时,模型中气体来不及排出(压力铸铝尤为严重)。 2)铁芯预热温度过低,油渍没有烧尽即进行铸铝,油渍挥发在工件中形成气孔。 3)在低压铸铝时,如果升液管漏气严重,则通入坩埚的压缩空气会进入升液管,与铝水一起跑入转子里而形成气孔。 转子气孔使转子电阻增大,效率降低,温升高,转差率大。 4.浇不满

产生浇不满的主要原因: 1)铝水温度过低,铝水流动性差。 2)铁芯、模具预热温度过低,铝水浇入后迅速降温,流动性变差。 3)离心机转速太低,离心力过小,铝水充填不上去。 4)浇入铝水量不够。 5)铸铝模内浇口截面积过小,铝水过早凝固堵住铝水通道。 浇不满使转子电阻增大,效率降低,温升高,转差率大。 5.缩孔 产生缩孔的主要原因: 1)铝水、模具、铁芯温度搭配不适当,达不到顺序凝固和合理补缩的目的。如果上模预热温度过低,铁芯预热温度上下端不均匀,使浇门处铝水先凝固,上端环铝水凝固时得不到铝水补充,造成上端环缩孔。因为缩孔总是产生在铝水最后凝固的地方。 2)模具结构不合理,如内浇口截面积过小或分流器过高,使铝水在内浇口处通道增长,内浇口处铝水先凝固,造成补缩不良,会使上端环出现缩孔。又如模具密封不好或安装不当造成漏铝,则使得浇门处铝水量过少。无法起到补缩作用也容易造成缩孔。 缩孔使转子电阻增大,效率降低,温升高,转差率大。 6.裂纹 产生裂纹的主要原因: 1)工业纯铝中杂质含量不合理。工业纯铝中常有的杂质是铁和硅,大量实验分析证实,硅铁含量比对裂纹的影响很大,即硅铁比在1.5~10之间时容易出现裂纹。 2)铝水温度过高(超过800℃)时铝的晶粒变粗,伸长率降低,受不住在冷凝过程中产生的收缩力而形成裂纹。 3)转子端环尺寸设计不合理(厚度和宽度之比小于0.4)。 4)风叶、平衡柱和端环连接处圆角过小,因应力集中产生裂纹。

球墨铸铁铸件的铸造过程及要点注意

球墨铸铁铸件的铸造过程及要点注意 1.铸铁—球墨铸铁国家标准(GB1348-2009) 2.生产工艺流程(电炉生产球墨铸铁件) 生铁――入炉熔炼――铁水加入合金球化\孕育处理――浇注型腔――打箱清理――热处理(如果需要的话) 3.定购信息。根据本规范定购材料应该包孕下列信息: (1)产品名称, (2)所需的球墨铸铁牌号; (3)要是需要,其它特殊性能; (4)是否需要不同数目的试样; (5)要是需要,需供给保证书; (6)要是需要,其它的交付物。 4.拉伸性能要求。 5.热处理。牌号60-40-18通常需要完全铁素体化退火。牌号120-90-02和100-70-03一般需要淬火回火或正火回火或等温热处理。其它牌号可以铸态或热处理状态交付。颠末淬火到马氏体再回沸热处理的球墨铸铁比相同硬度的铸态材料有低患上多的委顿强度。 6.实验试样。 (1)用来机加工成拉伸实验试样的单铸实验试块应该铸造成图1和图2指定的尺寸和形状。由图3所示的模具铸造的改良龙骨型铸锭可以替代1英寸的Y 型铸锭或1英寸的龙骨型铸锭。实验试样应该在由合适的型砂制成的敞口铸模中铸造,并且对于 0.5英寸(

12.5mm)和1英寸(25mm)尺寸的试样应该具有最小 1.5英寸(38mm)的铸模壁厚,对于3英寸尺寸的试样应该具有最小3英寸(75mm)的铸模壁厚。试样应该在铸模中冷却至出现黑色(接近482℃或更低)。代表铸件的试样铸锭的尺寸应该由购买方选择。要是购买方没有选择,则由生产商选择。⑵当根据本规范举行熔模铸造时,生产商可以用铸件的熔液在铸模中浇铸实验试样,或在与生产铸件相同的热环境下用同样类型的铸模零丁浇铸。实验试块应该由其代表的铸件同1个铸桶或熔炉中浇铸。 7.特殊要求。特殊要求,如硬度,化学成分,微观结构,压力密封性,X光不变性,磁粉尺寸检验和表面状态。 8.工艺,表面和外观。 (1)铸件应该是光滑的,无有害缺陷,并应该完全符合图纸或购买方供给的范例的尺寸要求。 (2)在后续需要机加工的地区范围,铸件不应该存在冷区。 9.化学要求。本规范划定化学成分服从机械性能。但购买方和生产商可以协商指定化学的要求。 10.实验和复验的数目。浇铸和实验的代表试块数目应该有生产商确定,错非与购买方有其它协议指定。 11.拉伸实验试样 12.检验责任。供应商可以施用本身或选择其它不论什么合适的检验机构举行本规范指定的性能检验,错非购买方不承认。购买方保留举行本标准指定的不论什么检验的权力,当该检验项目被以为保证供应商和服务符合前述的要求。 13.辨认标记。尺寸允许时,每1个铸件都应该用1个浮凸的数字来标记零件号或模型号。标记的位置应该如相关的图纸所示。 14.证明书。当购买方和供应方有文字表达协议时,应该有1个证明书以供给材料接受的基础。这应该包孕生产商实验报告的复印件或供应方的声明以证

铸铝箱体和铸铁箱体的优劣点对比分析

铸铝箱体和铸铁箱体的优劣点对比分析 1)重量: 铝的比重比铸铁要轻,铸铁的密度为7.8g/cm3,铸铝的密度为2.7g/cm3,比如同等结构的情况下铝制壳体要比铸铁制壳体轻很多。所以在重量这一点上铝制壳体要比铸铁壳体占很大优势。铸铁的强度高.常用的铝合金强度如下表: 铸铁一般在200~~400MPa的样子,但是铝合金重量轻,很多产业都用铝合金代替铸铁了。但是铸铁还是有它的优势,比如灰铁的消振性,抗性变能力好,球铁的耐磨性、塑性和强韧性综合较好。 例如:我们BQ435联泵壳体为铸铁时联泵总重量大约280kg,如果壳体为铸铝经过估算联泵总重量大约为160kg,质量减轻了120kg。 2)体积: 同样的原因,铝比重轻,单位体积的铝结构强度要小于铸铁,所以同等强度下铝制壳体体积会比铸铁制壳体大一些。所以在体积这一点上铝制壳体要比铸铁制壳体有一些劣势。同等体积的情况下,铸铝的强度要小于铸铁。

3)成本: 现在铝锭的市场价格是17000元/吨;铸铝毛坯(含热处理)价格为:38000元/吨;铝制壳体在成本上大大高于铸铁制成本。所以在成本上铸铝制壳体要比铸铁制壳体有很大的劣势。根据三维软件的估算铸铁壳体的重量大约为200kg,铸铝壳体的重量大约为85kg。 例如:BQ450联泵铸铁壳体铸造成本=6000(根据项目成本资金计划所得) BQ450联泵铸铁壳体铸造成本=6778(根据采购估算所得)4) 散热性:铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。如果用铝制壳体的话可以充分保证箱体的散热性。 例如:在相同的散热面积下Q=mcΔt,m为质量、c为比热容 5)耐腐蚀性和强度:铝的表面因有致密的氧化物保护膜,不易受到腐蚀,常被用来制造化学反应器、医疗器械、冷冻装置、石油精炼装置、石油和天然气管道等。铸铁在耐腐蚀性方面远不及铸铝。 6)膨胀系数:从设计手册上查铸铝的线形膨胀系数为:(18.44~24.5)*10-6/℃轴承钢(用碳钢替代)为:(10.6~12.2)*10-6/℃

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例叙述铸造生产中典型铸铁件——气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1 低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2 中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3 空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造2.1.7 气缸套的离心铸造 2.2 冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3 烘缸 2.3.1 结构特点 2.3.2 主要技术要求 2.3.3 铸造工艺过程的主要设计2.4 活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计2.4.4 砂衬金属型铸造 第3章环形铸件 3.1 活塞环3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1 曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2 主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3 铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5 常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6 大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1 柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3 铸造工艺过程的主要设计 5.2 空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3 其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3 铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1 大型链轮箱体 6.2 增压器进气涡壳体 6.3 排气阀壳体 6.4 球墨铸铁机端壳体 6.5 球墨铸铁水泵壳体 6.6 球墨铸铁分配器壳体 第7章阀体及管件 7.1 灰铸铁大型阀体 7.2 灰铸铁大型阀盖 7.3 球墨铸铁阀体 7.4 管件 7.5 球墨铸铁螺纹管件 7.6 球墨铸铁管卡箍 7.6.1 主要技术要求 7.6.2 铸造工艺过程的主要设计 7.6.3 常见主要铸造缺陷及对策 第8章轮形铸件 8.1 飞轮 8.2 调频轮 8.3 中小型轮形铸件 8.4 球墨铸铁轮盘 第9章锅形铸件 9.1 大型碱锅 9.2 中小型锅形铸件 第10章平板类铸件 10.1 大型龙门铣床落地工作台 10.2 大型立式车床工作台 10.3 大型床身中段 10.4 大型底座 中国机械工业出版社精装16开定价:299元

铸铝转子铸造缺陷及原因

铸铝转子铸造缺陷及原 因 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1.转子断条 产生断条的原因: 1)转子铁芯压装过紧,铸铝转子铁芯涨开,有过大的拉力加在铝条上,将铝条拉断。2)铸铝后脱模过早,铝水未凝固好,铝条由铁芯涨力而断裂。 3)铸铝前,转子铁芯槽内有杂物。 4)铝条中有气孔,或清渣不好,铝水中有杂物。 5)单冲时转子冲片各别槽孔漏冲。 6)浇注时中间停顿。因为铝水极易氧化,先后浇入的铝水因氧化而结合不到一起,出现“冷隔”。 转子断条对电机性能的影响是: 如果转子断条,则转子电阻很大,所以起动转矩很小; 转子电阻增大,转子耗损增大,效率降低,升温高,转差率大。 2.转子细条 产生细条的原因: 1)离心机转速过高,离心力太大,使槽底部导条没有铸满(抛空)。 2)转子槽孔过小,铝水流动困难(遇此情况应适当提高铁芯预热温度)。 3)转子错片,槽斜线不成一直线,阻碍铝水流动。 4)铁芯预热温度低,铝水浇入后流动性变差。 转子细条使转子电阻增大,效率降低,温升高,转差率大。 3.转子气孔 产生气孔的主要原因: 1)铝水清化处理不好,铝水中含气严重,浇注速度太快或排气槽过小时,模型中气体来不及排出(压力铸铝尤为严重)。 2)铁芯预热温度过低,油渍没有烧尽即进行铸铝,油渍挥发在工件中形成气孔。 3)在低压铸铝时,如果升液管漏气严重,则通入坩埚的压缩空气会进入升液管,与铝水一起跑入转子里而形成气孔。 转子气孔使转子电阻增大,效率降低,温升高,转差率大。 4.浇不满 产生浇不满的主要原因: 1)铝水温度过低,铝水流动性差。 2)铁芯、模具预热温度过低,铝水浇入后迅速降温,流动性变差。 3)离心机转速太低,离心力过小,铝水充填不上去。 4)浇入铝水量不够。 5)铸铝模内浇口截面积过小,铝水过早凝固堵住铝水通道。 浇不满使转子电阻增大,效率降低,温升高,转差率大。 5.缩孔 产生缩孔的主要原因:

铸铝转子制造工艺

铸铝转子制造工艺 Y2、Y3系列三相异步电动机全部采用铸铝转子。转子铸铝用一级重熔用铝锭,牌号为A1 99.5或99.7(GB1196),其电阻率在20℃时为0.027~0.03Ωmm/m,铝的纯度不小于99.5%,其杂质含量不得大于表3-7的规定。 表3-7 A199.5的杂质含量 注:含量均指质量分数。 转子铸铝时,在已经装入转子铁心的铸铝模中,注入熔化铝液,铸成由导条和端环组成的整体铝笼及端环上的风叶和平衡柱。 铸铝转子的主要质量要求是: (1)铝笼的含铁量应不大于0.8%。 (2)铸铝转子铁心长度公差为+2.0mm(L<160mm);+2.5mm(L≥160mm)。 (3)端环的尺寸公差应符合图样规定。 (4)端环及风叶上的毛刺披锋和铁心外圆上的残铝必须清理干净。(5)转子外圆表面斜槽线平直,无明显曲折形。 (6)转子槽口浇铝不足或低陷不得超过槽口高度规定的尺寸。(7)转子导条应无断条、细条现象。 (8)端环和风叶不得有裂纹、弯曲现象和明显缩孔、缺陷等。

常用转子铸铝方法为压力铸造和离心铸造两种。其工作原理和 特点见表3-8. 表3-8 几种转子铸铝方法的工作原理和特点 在转子铸铝前,必须做好铝料的熔化工作。采用铸铁坩埚熔铝时,必须先在坩埚内腔涂刷一层保护涂料。保护涂料一般采用“H.R.R”高温涂料,它由超微粒锆、矾土、矾土水泥和硼酸等组成。在涂刷高温涂料前,坩埚内表面需清砂、防锈、清理干净,并预热到100~200℃。涂料的调配为:每千克涂料配以0.1~0.15kg水玻璃和1.5~2.0kg 的开水,调成糊状,分几次涂刷到规定厚度。涂刷是坩埚应在炉上保持温度,刷好后升温加热,坩埚内壁呈暗红色,干结即可。浇口料加入量不得大于15%,以控制铝液的纯度。在熔炼时,需进行铝水的清化,以达到排气排渣的目的。铝水清化常用的方法是加氯盐(如氯化钠),加入量为铝液的0.1%~0.5%。 转子压力铸铝采用冷室压铸机,按其压射室位置不同分为全立

铸造(铸铁)缺陷种类

铸造(铸铁)缺陷种类 铸铁件生产过程中会产生各种铸造缺陷,其典型种类有:裂纹、缩孔、缩松、气孔及夹渣。 ——裂纹 铸铁件冷裂纹的外形呈连续的直线状或圆滑曲线,而且常常是穿过晶粒而不是沿晶界断裂。冷裂纹断口干净,具有金属光泽或呈轻微的氧化色。冷裂纹是铸铁件已处于较低温度下在弹性状态时,铸造应力超过铸铁的强度极限而产生的。冷裂纹往往出现在铸铁件受拉伸的部位,特别是有应力集中的地方。 ——缩松 球墨铸铁与灰铸铁相比,因它倾向于“糊状凝固方式”,因而在铸件断面上有较宽的凝固区域,形成坚固外壳的时间较长;相当一部分石墨球是在奥氏体外壳包围下成长,石墨成长时的膨胀力很容易通过奥氏体壳的接触而传递到铸件外壳,从而表现出远比灰铸铁要大的共晶石墨化膨胀力;由于球化处理时加入了镁和稀土元素,增加了铸铁的白口化倾向;同时其共晶团的尺寸比灰铸铁细小得多,所以共晶团之间细小的间隙很难得到铁液的充分补缩。上述这些特点,在生产实际中使球墨铸铁件常常表现出有较大的外形尺寸胀大以及产生缩松的倾向。 ——气孔 铸铁件中存在两类气孔:一类是析出性气孔,另一类是反应性气孔。 铸铁件在凝固过程中,由于温度降低,溶解的气体处于饱和状态,气体以气泡形态逐渐向铁液表面扩散,最终脱离吸附状态,但在实际生产条件下,铁液在铸型内降温较快,气泡上浮困难,或铸件表面已凝固,气泡来不及排除而造成气孔。这一类气孔称为析出性气孔。析出性气孔一般在铸件最后凝固处,冒口附近较多。 铁液与铸型之间或铁液内部发生化学反应所产生的气孔称为反应性气孔,它们常分布在铸铁件表面皮下1-3mm处,所以通称皮下气孔。 ——非金属夹杂物 铸铁在熔炼和铸造过程中,各种金属元素与非金属元素发生化学反应而产生各种化合物,以及铁液与外界物质,如金属炉料表面的砂粒、锈蚀、炉衬、浇包衬等接触后发生的相

【精品】灰铸铁焊接性分析

灰铸铁焊接性分析 焊接,铸铁 灰铸铁焊接性分析 灰铸铁在化学成分上的特点是碳高及S、P杂质高,这就增大了焊接接头对冷却速度变化的敏感性及冷热裂纹的敏感性。在力学性能上的特点是强度低,基本无塑性。焊接过程具有冷速快及焊件受热不均匀而形成焊接应力较大的特殊性。这些因素导致焊接性不良。主要问题两方面:一方面是焊接接头易出现白口及淬硬组织。另一方面焊接接头易出现裂纹。(一)焊接接头易出现白口及淬硬组织见P103,以含碳为3%,含硅2。5%的常用灰铸铁为例,分析电弧焊焊后在焊接接头上组织变化的规律。1.焊缝区当焊缝成分与灰铸铁铸件成分相同时,则在一般电弧焊情况下,由于焊缝冷却速度远远大于铸件在砂型中的冷却速度,焊缝主要为共晶渗碳体+二次渗碳铁+珠光体,即焊缝基本为白口铸铁组织。防止措施:焊缝为铸铁①采用适当的工艺措施来减慢焊逢的冷却速度。如:增大线能量。②调整焊缝化学成分来增强焊缝的石墨化能力。异质焊缝:若采用低碳钢焊条进行焊接,常用铸铁含碳为3%左右,就是采用较小焊接电流,母材在第一层焊缝中所占百分比也将为1/3~1/4,其焊缝平均含碳量将为0。7%~1.0%,属于高碳钢(C>0。6%).这种高碳钢焊缝在快冷却后将出现很多脆硬的马氏体。采用异质金属材料焊接时,必须要设法防止或减弱母材过渡到焊缝中的碳产生高硬度组织的有害作用。思路是:改变C的存在状态,使焊缝不出现淬硬组织并具有一定的塑性,例如使焊缝分别成为奥氏体,铁素体及有色金属是一些有效的途径。2.半熔化区

特点:该区被加热到液相线与共晶转变下限温度之间,温度范围1150~1250℃。该区处于液固状态,一部分铸铁已熔化成为液体,其它未熔部分在高温作用下已转变为奥氏体。1)冷却速度对半熔化区白口铸铁的影响V冷很快,液态铸铁在共晶转变温度区间转变成莱氏体,即共晶渗碳体加奥氏体。继续冷却则为C所饱和的奥氏体析出二次渗碳体。在共析转变温度区间,奥氏体转变为珠光体.由于该区冷速很快,在共析转变温度区间,可出现奥氏体→马氏体的过程,并产生少量残余奥氏体.该区金相组织见P104图4—5其左侧为亚共晶白口铸铁,其中白色条状物为渗碳体,黑色点、条状物及较大的黑色物为奥氏体转变后形成的珠光体。右侧为奥氏体快冷转变成的竹叶状高碳马氏体,白色为残余奥氏体。还可看到一些未熔化的片状石墨。当半熔化区的液态金属以很慢的冷却速度冷却时,其共晶转变按稳定相图转变。最后其室温组织由石墨+铁素体组织组成。当该区液态铸铁的冷却速度介于以上两种冷却速度之间时,随着冷却速度由快到慢,或为麻口铸铁,或为珠光体铸铁,或为珠光体加铁素体铸铁。影响半熔化区冷却速度的因素有:焊接方法、预热温度、焊接热输入、铸件厚度等因素。例:电渣焊时,渣池对灰铸铁焊接热影响区先进行预热,而且电渣焊熔池体积大,焊接速度较慢,使焊接热影响区冷却缓慢,为防止半熔化区出现白口铸铁焊件预热到650~700℃再进行焊接的过程称热焊。这种热焊工艺使焊接熔池与HAZ很缓慢地冷却,从而为防止焊接接头白口铸铁及高碳马氏体的产生提供了很好的条件。研究灰铸铁试板焊件、热输入相同时,随板厚的增加,半熔化区冷却速度加快。白口淬硬倾向增大。2)化学成分对半熔化区白口铸铁的影响

铸铝转子质量的工艺分析及措施

铸铝转子质量的工艺分析及措施 转子质量问题专题调查分析如下: 铸铝转子质量问题,最突出的表现就是转子内部存在的气孔的问题,其次就是转子内部的笼条细条、断条、夹渣以及端环部分的缩孔、冷裂、热裂、缺肉等。这些问题的产生,最终导致整机的电气性能下降、转速不够、效率降低。 1、转子片间存油未去除: 这是转子产生气孔的一个主要原因,由于转子铸铝是在高温、高压、瞬间形成的一个过程,在铝液刚刚充满转子型腔,高温铝还是液态而与转子片间的油类发生反应时,生成气体,这种气体有些被逸出,有些被铝液包围,然而铝液迅速固化,被包围的气体跑不出去,因此这些气体以气泡的形式残留在转子的笼条和端环中,呈不规则分布状态。 解决的办法为:铸铝前的转子铁芯应进行脱油处理,具体做法为:转子铁芯可用工业清洗剂冷态脱油,自来水冲洗,电炉烘干。烘干温度以不破坏冲片表面保护膜为准,烘干时间以目测干透为准。 我们在5月19日已经做过96个转子脱油的实验,用拉上同型号转子和实验品转子各10个,装入同型号定子各10台,由抽查室做负载对比检查,结果装有实验品转子的电机比拉上同型号电机的转速平均提高2.5%以上。 2、铝液的清化问题:

这个问题也是铸铝转子产生气孔的一个主要问题,铝锭及回炉铝在加热熔解过程中,与空气中的水蒸气接触时(尤其是多雨季节),一方面生成氧化铝沉于铝液底部,另一方面分解出氢气,同时氢气也渗入铝水中。含有气体的铝水压铸出来的转子质量很差,因为铝水在压铸成型的瞬间,铝水迅速固化,一部分气体还未来得及逸出而被固化的铝包围,从而留在铸件内造成气孔。另外就是铝液表面上的浮渣、铝液底部的沉渣以及留在铝液中间的其它杂物对转子的质量来说也是一个很大的隐患,一旦将这些渣滓和杂物压入转子内部,它们会使转子造成夹渣、形成冷隔(电阻系数增加)、热裂和冷裂的现象,热裂和冷裂严重时造成转子笼条断路。 为了解决上述问题,加入清化剂(氯盐:一般为NaCl 、ZnCl)可以较好的解决这一问题。清化处理的原理,主要就是将氯化物烘干,利用钟罩将其沉于铝液底部搅动,通过置换反应,生成氯化铝,氯化铝的沸点是183度,在铝水中以升华的形式逸出,同时伴随气泡发生。由于气泡的作用,铝水中的氢会自动扩散到氯化铝中去,并随着气泡的上升而逸出液面,从而达到除气的作用。另一方面氯盐与氧化铝发生作用生成氯化铝,氯化铝的升华使这些氧化物得以借翻腾的气泡而浮于液面,从而易于除渣。 目前,车间铸铝的操作员工在加入清化剂时应该怎么加、何时加、加多少,这是一个关键问题,否则达不到除气的效果。 目前的操作过程是这样的:

我国铸铁铸造业当前发展状况及趋势

我国铸铁铸造业当前发展状况及趋势 20世纪80年代初,铸铁材料发展进入了顶峰期,随后,世界的铸铁产量便出现急剧递减,然而铸铁仍是当今金属材料中应用最为广泛的基础材料,在铸造合金材料中占有重要地位。 由于受能源、劳动力价格和环境因素的影响,西方工业发达国家的铸件产量将会逐渐减少,转而向发展中国家采购一般铸件,但同时又会向发展中国家出口高附加值、高技术含量的优质铸件。当前,世界经济全球化进程的加速为我国铸造业的发展提供了机遇,国际和国内市场对我国铸件的需求呈持续增长的趋势。与此同时,铸铁作为一种传统的金属材料,在其质量、性能和价格等方面正面临着严酷的挑战。抓紧我国铸铁铸造业的结构调整和技术改造;努力提高铸件质量档次,提高和理环境污染的水平,实现铸铁材料的高附加值化是应付未来更加激烈的市场竞争,满足用户多样化需求的主要对策。 一、我国铸铁的生产水平及差距 1.铸造工艺材料及辅料 我国铸造工艺材料如原砂、粘土、煤粉、粘结剂和涂料在品种、性能、质量等方面与工业先进国家之间的差距极大,以致我国的铸件尺寸精度和表面粗糙度比国外差一到两个等级,铸件表面缺陷造成的废品率比国外高几倍。铸造用工艺原料的标准化、系列化和商品化仍是一个亟待解决的问题。 2.铸造工艺过程及铸件质量的检测与控制 我国在铸造工艺过程和铸件质量的检测与控制方面与工业先进国家还存在比较大的差距,主要反映在以下方面:

①铸造工艺过程的检测。 ②铸造工艺过程的优化和控制。 ③铸件质量的检测。而上述检测和控制手段的完善是提升我国铸铁铸造生产水平的一个主要内容。 3.铸造工艺装备 对于铸造生产,国外广泛采用流水线大量生产;高压造型、射压造型、静压造型和气冲造型;造芯全部用壳芯和冷、热芯盒工艺。国内除汽车等行业中少数厂家采用半自动、自动化流水线大量生产外,多数厂家仍采用较落后的铸造工艺装备。 二、铸铁熔炼技术 1.冲天炉技术 冲天炉居铸铁熔炼设备之首,至今仍担负着80%以上铸铁件的熔炼任务。70年代以后,符合我国特点的炉型和熔炼技术已逐渐完善和成熟,形成了独具特色的多排小风口和两排大间距冲天炉系列。在操作技术上,从一度追求低焦耗到重视铁液质量,进而讲求提高技术、经济、劳动卫个和环境保护的综合指标,逐步开发应用了从炉料处理、修炉、烘炉到配加料、鼓风。炉况控制、铁液检验等全过程的操作技术。在较短的历程中,我们在冲天炉理论研究、炉子结构、修炉材料、送风系统、热能利用、强化底作燃烧、炉内气氛调整控制、铁液炉前检验、消烟除尘、非焦炭化铁、配料及熔炼过程计算机优化控制等诸多方自都取得了可喜的成绩。 冲火炉的发展是围绕着提高性能和生产率,降低消耗,改善操作,减少污染进行的。冲天炉性能主要体现在炭的燃烧、炉料的加热和冶金过程三方面。随着铸铁生产批量的扩大和对铸造生

004 铸铝转子

铸铝转子 常州里戈勃劳伊特新亚电机有限公司发布

前言 铸铝转子是交流异步电动机的主要部件之一,其质量对电动机的起动性能和运行性能影响很大。为使电机用铸铝转子的材料、结构合理,工艺稳定,从而提高电机性能,降低生产制造成本,特制定本采购规范。 本采购规范是在总结多年来电机生产过程中铸铝转子的制造、使用的经验基础上制定的,通过本采购规范的制定,规定了本公司电机用铸铝转子的技术要求,作为公司产品设计、外协、外购、检验的基本依据,有利于提高产品质量和促进技术交流。 本采购规范由本公司技术部提出并负责起草。 本采购规范主要起草人:管伟。 本采购规范批准人:王定诚。

铸铝转子 1 范围 本采购规范规定了电机用铸铝转子的材料、技术要求、检验方法、检验规则、标志、包装与贮存的要求。 本采购规范适用于本公司生产的电机使用铸铝转子。 2 引用文件 GB/T1804 一般公差未注公差的线性和角度尺寸的公差 GB/T2828 逐批检查计数抽样程序及抽样表 RS/JSGF 002 定、转子冲片采购规范 RS/JSGF 003 定、转子铁芯采购规范 3 要求 3.1 一般要求 铸铝转子应符合本采购规范的要求,并按经规定程序批准的图样及技术文件制造。 3.2.1 转子铁芯应符合RS/JSGF 003《定、转子铁芯采购规范》的规定,其中转子冲片的材质及性能应符合RS/JSGF 002《定、转子冲片采购规范》的规定。 3.2.2 铸造用铝锭的材质及性能应符合以下规定。铝的级别为特一级,代号为AL99.7,含铝量不小于99.7%,杂质总含量不大于0.30%。其中铁含量不大于0.16%,硅含量不大于0.13%,铁、硅总含量不大于0.26%,其它杂质含量不大于0.10%。 3.2.3 铸铝后铝质的杂质含量允许高于铝锭原材料,但铁含量不得大于0.4%,硅含量不得大于0.35%。 3.2.4 水口料的使用:允许按新料50%加上50%水口料。但水口料必须是第一次的,并且是集中溶化处理后的。 3.3 尺寸要求 3.3.1 铸铝转子的各项尺寸应符合图纸的要求,未注铸造圆角按R1,未注尺寸公差按GB/T1804- m。 3.3.2 端环内、外圆偏摆小,要求其对铁芯轴孔的同轴度为φ0.2mm。 3.3.3 铸铝质量控制:铝环端面跳动不大于0.3 mm。 3.3.4 铸铝后,轴孔尺寸公差按表1要求。若达不到图纸尺寸要求,应采用后加工(推孔、拉孔)等方法来满足要求。 3.4 技术要求 转子铸铝采用压力铸铝。铝锭在熔化前要充分预热,以除去油污和水分;铝液温度应控制在660~720℃,无毒精炼剂的加入量为铝液重量的0.15%~1.0%。 3.5 外观质量 3.5.1 转子斜槽尺寸按图示要求。斜槽要直,不应有弯曲、锯齿状、断续现象。 3.5.2 铁芯片间无明显的渗铝现象。 3.5.3 铸铝后的浇口、飞边、溢流口、隔皮、顶杆痕迹等应清理干净,但允许留有痕迹。 3.5.4 铸铝端环外表允许有擦伤、凹陷、缺肉和网状毛刺等缺陷。但其缺陷的程度不能影响电机性能。具体表现为:端环缺陷每端允许有一处,要求其直径小于3 mm,深度小于铝环厚度的1/5,但最大不超过1 mm。 3.5.5 对于有风叶和平衡柱的铝环,风叶叶形缺陷每边不得大于1 mm。平衡柱残缺不得大于平衡柱高度的1/4,每端残缺的数量不得大于一个。

铸铁焊接结构应用及焊接性分析

第一章概述 铸铁是常用的金属材料,它具有良好的铸造性、耐磨性、切削加工性、吸振性等,所以在机械制造业及其他工业部门中被广泛的应用。但由于铸铁本身性能和显微组织的特点,很少被用作焊接结构件,然而,在铸铁件使用过程中或铸造过程中,由于种种原因,铸件经常会出现各种缺陷,例如断裂、裂纹、缩孔、未浇满以及在切削加工过程中产生的其他缺陷等。因此经常会遇到用焊接方法修复铸件的问题。但铸铁补焊或焊接会形成焊接过程中的激热骤冷,冶金过程的急变,会引起很多焊接问题,对于铸铁的补焊或焊接是一项急待解决的问题。 铸铁的种类很多,用的最广泛的是灰铸铁和球墨铸铁。为了能顺利地进行各类铸铁件的焊补,必须对各类铸铁的性能、特点有充分的了解。(详见表1.1 铸铁的分类) 表 1.1 铸铁的分类 铸铁属于焊接性不良的金属材料,这主要是由于铸铁本身的特殊性决定的。

此外,铸件原来的工作条件、结构的复杂程度及对焊缝及近缝区性能的不同要求,更使铸铁补焊问题复杂化。例如有的要求焊后能进行切削加工,有的没有此要求;有的要求补焊处颜色和母材相同;有的要求有足够的强度,有的对强度要求不高。由此可见,铸铁的焊接,不可能以一种方法或一种措施来解决问题。应对具体情况作具体分析,综合考虑采用焊接方法和相应的措施。 铸铁的特殊性能决定铸铁的焊接方法是多种多样的,在实际的工业生产中应用的铸铁焊接方法有焊条电弧焊、CO2气体保护焊、药芯焊丝电弧焊、气焊、手工电渣焊、火焰钎焊及火焰粉末喷熔(焊)等。应用最广泛的焊接方法是焊条电弧焊,CO2气体保护焊和药芯焊丝电弧焊应用范围正在逐步扩大。本书着重介绍焊条电弧焊和CO2气体保护焊。 铸铁焊接在工程中的应用越来越广,本书选取了铸铁焊接在工程应用中的实例来做详细的说明。 第二章常用铸铁的种类、性能和用途从化学成分角度看,铸铁实际上是含碳(质量分数)为1.7%~4.0%的铁-碳-硅三元合金。此外,还含有少量锰、硫、磷等杂质元素。某些有特殊性能要求的铸铁,还加入镍、铬、铝、铜等合金元素。 铸铁的力学性能虽然与其化学成分有关,更大程度上与其显微组织有关。然而,铸铁的显微组织又受其化学成分及熔铸条件、高温时冷却速度等因素的影响而变化。 碳是铸铁中的主要元素,除少量溶解于金属基体中而形成铁素体或珠光体

铸铁铸件技术标准及接收准则

铸铁铸件技术标准及接收准则 ***/***—20** 1.目的 为确保公司铸铁铸件生产、检验、接收时有所依循并适合公司质量方针。 2.适用范围 本标准适用于本公司生产的顾客没有提供或没有提供全部(有明确要求的及时纳入《顾客要求—材 质》记录表中)技术标准和接受准则的灰铸铁铸件的检验和接收。 3.技术要求 3.1材料力学性能 采用国家标准:灰铁GB/T9439—88、球铁GB1348--88。 3.1.1按单铸试棒性能分类:(中间牌号按客户要求执行) 注: 1.验收时,n 牌号铸铁,其抗拉强度应在n 至 (n+100)MPa 的范围内。 2.要求本体性能请客户明确取样部位和性能要求。 3.1.2金相组织 采用国家标准:灰铁GB/T7216-87(石墨形态、长度;金属基体;碳化物等)。 球铁GB9441-88 (球化分级、球化率;石墨大小;金属基体;渗碳体等)。 对于金像组织,用户有要求时,由供需双方商定,用户无要求时不作为验收依据。 3.1.3化学成分(%) 铸铁的化学成分一般不作为铸件验收依据。用户有要求时,由供需双方商定。 砂型铸造灰铸铁化学成分的参考数据%

砂型铸造球墨铸铁化学成分的参考数据% 在保证抗拉强度、硬度及金相组织的前提下,上列各元素允许在如下范围内波动: C±0.050% Si±0.050% Mn±0.030% 。 3.1.4根据铸件性能要求,针对铸件重量、壁厚、冷却条件等不同对我公司生产的材质做如下 分类:

3.2铸件外观质量要求 3.2.1铸字(包括铸造日期代码、生产厂家标志、模具编号、铸件号等)要清晰可辩并符合图纸要求或用户要求。 3.2.2铸件必须质地均匀、无裂纹以及影响产品性能的缺陷。 3.2.3铸件加工表面上,允许存在加工余量范围内的砂眼、气孔、渣眼等孔洞类铸造缺陷。

低碳钢和铸铁力学性能分析

低碳钢和铸铁力学性能分析 题目:低碳钢和铸铁的力学性能分析 学院:机械工程学院学号:xxxxxxxxxxx 姓名:专业班级:xxx 指导老师:xxx 日期:2019年4月 低碳钢和铸铁的力学性能分析 作者:xxx 作者单位:255000 山东理工大学 摘要:材料的力学性能是指在外力作用下所表现出的抵抗能力。由于载荷形式的不同,材料可表现出不同的力学性能,如强度、硬度、塑形、韧度、疲劳强度等。材料的力学性 能是零件设计、材料选择及工艺评定的主要依据。本文主要讨论低碳钢和铸铁的力学性能 在拉伸和压缩情况下的影响。 关键词:低碳钢、铸铁、拉伸、压缩 (一)材料微观组成分析 材料的微观结构几乎决定了外在性能,所以要了解研究材料的性能必须深入研究材料 的组成成分。而研究材料的组成成分需要从下面这张铁碳合金相图说起。 这张图记录了奥氏体在在不同温度下的恒温转变时组成成份和物质状态的变化。低碳 钢是指碳含量 低于0.3%的碳素钢;铸铁是指碳含量在2.11%-6.69%的金属,其中用于拉伸和压缩试 验的铸铁为灰口铸铁,成分一般范围为Wc=2.5%-4.0% Wsi=1.0%-2.2% Wmn=0.5%-1.3% Ws≤0.15% Wp≤0.3%。低碳钢经过奥氏体转变的基体是铁素体和珠光体,灰口铸铁的基体 是珠光体二次渗碳体和莱氏体。铁素体和工业纯铁相似,塑形韧性较好,强度硬度较低。 渗碳体是一种复 杂的间隙化合物,硬度很高,但塑性和韧性几乎为零,是钢中的主要强化相。珠光体 是铁素体和渗碳体的机械混合物,常见的形态是两者呈片层相间分布,片层越细强度越高。铸铁中的莱氏体是由珠光体和渗碳体组成的机械混合物,其中渗碳体较多,脆性大,硬度高,塑形很差。 1 2 (二)拉伸试验

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。 2、三相异步电动机的转子:

转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特殊环境代号等。产品代号表示电动机的类型,用汉语拼音大写字母表示;设

电动机转子铸铝工艺原理

电动机转子铸铝工艺原理 ——铸铝转子工艺 简单的说,三相异步电动机主要由定子和转子两大部分组成,定子部分主要包括定子铁心、定子绕组和机座等,转子部分主要有转子铁心、转子绕组和转轴,而我们转子铸铝工序主要完成的就是它的转子绕组部分。为什么说转子铸铝工序是特殊工序呢?ISO9000:2000标准中告诉我们,“凡是对形成的产品是否合格不易或不能经济地进行验收的过程”即为特殊过程或特殊工序,我们公司确定转子铸铝、浸漆和电磁线漆包烘干为特殊工序,所以必须对特殊工序按人、机、料、法、环这五个方面进行确认,只有这五个方面都合格了,才能确保这些过程实现所策划结果的能力。而且标准中还强调对特殊工序人员要定期进行设备和工艺方面的培训,要求每年最少两次,所以这也是本次培训开设的主要目的,去年大家也都参加过有关铸铝专业知识方面的学习,这里我们再就一些重点内容强调一下。 一、电机工作原理及转子绕组的种类 首先我们来了解一下交流三相异步电动机的工作原理,可以帮助我们来理解为什么转子断条、细条等会使电阻增大,要尽量避免,以及为什么转子两端要用短路环短接等。 工作原理:当电动机的定子绕组通以三相对称交流电时,在定子和转子间便产生以转速n s旋转的旋转磁场(电能生磁),由于转子开始时是静止的,所以转子导体将被旋转磁场切割,根据相对运动的原理,我们也可以把磁场看成不动,而转子导体相对磁场旋转切割磁力线从而产生感生电动势(即1831年法拉第发现的电磁感现象也称“动磁生电”),由于转子导体两端已被短路环短接,导体已构成闭合回路,所以转子导体内也相应产生感生电流。有感生电流的转子导体即为通电导体,通电导体在磁场中就会受到电磁力的作用(电磁生力),产生电磁力矩最终带动转子旋转,而且我们还可以根据左手定则判断出转子导体的旋转方向,与旋转磁场的方向是相同的,只不过是以略小于旋转磁场转速n s的速度运转的,这

铸铁的基础知识

1、铸铁及其熔炼 编辑词条 铸铁是指碳的质量分数大于2.14%或者组织中具有共晶组织的铁碳合金。工业上所用的铸铁,实际上都不是简单的铁-碳二元合金,而是以铁、碳、硅为主要元素的多元合金。铸铁的成分范围大致为ω(C)=2.4%~4.0%,ω(Si)=0.6%~3.0%,ω(Mn)=0. 2%~1.2%,ω(P)=0.04%~1.2%,ω(S)=0.04%~0.20%。有时还可加入各种合金元素,以便获得能满足各种性能要求的合金铸铁。铸铁是近代工业生产中应用最为广泛的一种铸造金属材料。在机械制造、冶金矿山、石油化工、交通运输和国防工业等各部门中,铸铁件约占整个机器重量的45%~90%。因此,掌握铸铁的基本理论和生产技术,对于发展铸造生产,充分发挥铸铁件在国民经济各部门中的作用,是很有意义的。 相图是分析合金金相组织的有力工具。铸铁是以铁元素为基的含有碳、硅、锰、磷、硫等元素的多元铁合金,但其中对铸铁的金相组织起决定作用的主要是铁、碳和硅,因此铁-碳相图和铁-碳-硅三元合金相图是分析铸铁的成分与组织的关系以及组织形成过程的基础。 2、铸铁的基础知识——铁-碳相图——铁—碳相图分析 由于铸铁中的碳可能以渗碳体(Fe3C)或石墨两种独立的形式存在,因而铁、碳相图存在着Fe-G(石墨)和Fe-Fe3C两套体系,即铁-石墨系和铁-渗碳体系。从热力学观点看,石墨比渗碳体更稳定,因此,铁-石墨系也称为稳定系,而铁-渗碳体系称为亚稳定系。图2. 1-1所示为铁碳合金双重相图,即Fe-G(石墨)稳定系相图和Fe-Fe3C亚稳定系相图,分别以虚线和实线表示。表2.1-1为相图中临界点的温度及含碳量。

球墨铸铁铸件

ICS 备案号:QB420321/0694-2006 Q/SYKQ 球墨铸铁铸件 十堰凯琦铸造有限公司 发布

Q/SYKQ01 —2006 前言 本标准根据GB/T1.1-2000《标准化工作导则第1部分:标准的结构和编写规则》和GB/T1.2-2002《标准化工作导则第2部分:标准中规范性技术要素内容的确定方法》的规定起草。 本标准由十堰凯琦铸造有限公司提出。 本标准由十堰凯琦铸造有限公司技术部负责起草。 本标准代替Q/SYKQ 01-2002,与Q/SYKQ 01-2002相比有如下变化: 查新了规范性引用文件,将引用的GB/T228-1987、GB/T231-1984分别改为GB/T228-2002、GB/T231-2002; 将原标准表1中QT500-7的Mn量由≤0.40%改为0.3%-0.5%;将表2中牌号QT420-10球墨铸铁改为QT450-10,并将抗拉强度δb由≥420MPa改为≥450MPa,将硬度由≤197HB改为160-210HB。 本标准主要起草人:赵久明陈立宏 本标准由十堰凯琦铸造有限公司负责解释

球墨铸铁铸件 1 范围 本标准规定球墨铸铁件的技术要求、试验方法、检验规则及标识、储存和运输。 本标准适用于本公司湿型砂铸造的球墨铸铁铸件。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T228-2002 《金属材料室温拉伸试验方法》 GB/T229-1994 《金属夏比缺口冲击试验方法》 GB/T231.1-2002 《金属布氏硬度试验第一部分:试验方法》 GB/T1348-1988 《球墨铸铁铸件》 GB/T6414-1999 《铸件尺寸公差与机械加工余量》 GB/T9441-1988 《球墨铸铁金相检验》 GB/T11351-1989 《铸件重量公差》 3 技术要求 3.1 化学成分 化学成分应符合表1的规定 3.2 力学性能力学性能应符合表2的规定。 表2 力学性能(单铸试块)

相关主题
文本预览
相关文档 最新文档