当前位置:文档之家› 主要半干法脱硫工艺机理分析

主要半干法脱硫工艺机理分析

主要半干法脱硫工艺机理分析
主要半干法脱硫工艺机理分析

几种半干法脱硫工艺机理的探讨

葛介龙张佩芳戴永阳周钓忠李文勇张永

(浙江菲达环保科技股份有限公司诸暨311800)

摘要:本文总结循环半干法、烟道流化床、炉内喷钙炉后增湿活化、喷雾半干法等脱硫工艺的工程应用,就反应时间、操作温度、钙硫比、可靠性、燃料适应性、装置占地、性价比等进行了综合比较分析,并对上述四种主要半干法脱硫工艺进行了脱硫机理的探讨。

关键词:半干法、脱硫、性价比、机理、研究

图1 NID 反应系统示意图 图2 CFB 反应系统示意图

C 1、C 0分别为NI

D 和CFB 工艺反应器中的活性Ca(OH)2的浓度

。因为两种工艺都具有灰高倍比循环的特征,因此原烟气进入反应器后的0.3秒内,烟气温度即降到要求的75℃左右。CFB 工艺的阻力降主要来自喉部及扩大段,系统总阻力较高,通常设计值为1800Pa 左右,而NID 工艺在反应器中的压力降分配则相对均匀,通常设计值为1200Pa 。从图1、2中可以看出,两者的最明显区别在于工艺水加入位置的不同,正是由于这原理的区别,造成两技术以下性能上的明显差异。

CFB 工艺的特点是因喷嘴埋在流态不稳定、湿度不均匀的反应灰堆中,循环灰表面含水不均匀,且有游离的直径较大液滴浆团,易造成喷嘴及吸收塔惭扩段的粘堵,装置不能长周期稳定运行。

而NID 的特点是在一个外置的专有设备中对反应循环灰进行雾化增湿,灰表面水分呈均匀的薄膜状,且大量的循环物料具有巨大的蒸发表面,灰表面的水分蒸发很快,在1m 左右的反应器床层高度内使烟气温度降到75℃左右,达到理想的脱硫工况,达到90%以上的脱硫效率。两种工艺的脱硫效率与反应时间的分布梯度见下图:

烟气停留时间与脱硫效率关系

20

40

60

80

10000.40.8 1.2 1.62 2.4 2.8 3.2 3.64

烟气停留时间t (秒)

脱硫效率(%)

图3反应时间与效率关系示意图 在整个脱硫反应过程中,NID 工艺的脱硫效率与反应时间的变化速率K 理论上说约是CFB 工艺的6倍。因为脱硫反应可以理解为基元反应,根据化学反应碰撞理论,有效碰撞的机率与反应器中的反应物有效浓度成正相关:

r=K ×C Ca(OH)2(l)×C SO2 (l)×e -RT

CFB 工艺反应器喉部流速远高于NID ,但由于喉部无吸收剂,对提高脱硫效率无贡献。NID 垂直反应段中的烟气流通截面积是CFB 的1/5,两种工艺需喷入的冷却水量几乎是相等的,循环灰量也几乎一样,因而NID 工艺反应器中的C Ca(OH)2是CFB 工艺反应器中的5倍。在其它参数都一样时,NID 反应器中的脱硫速率(去除SO 2的摩尔数/单位时间)是CFB 工艺的5倍,即达到同样85~95%的脱硫效率,NID 工艺需的反应时间仅需CFB 工艺的1/5。

NID 工艺利用高度浓相的C Ca(OH)2浓度,可以理解为SO 2通过一个具有优良活性的Ca(OH)2(l)固体床层,在非常短的时间内即可实现快速的离子化脱硫,达到90%以上的脱硫效率。在菲达公司已投运行十多套的采用浓相的循环半干脱硫工艺中,只要保证烟气在反应器中有0.9~1.3秒左右的停留时间,就足以保证90%以上的脱硫效率。

高且大直径的反应塔对于脱硫系统吸收平衡后进一步提高脱硫效率意义不大,设计的目的是为了尽可能干燥因内置式喷嘴造成湿度均匀性不稳定的增湿灰,减少在反应器内壁、除尘器内件及极板上的粘结。

脱硫的主反应式是:SO 2(l)+Ca(OH)2(l) →CaSO 3·1/2H 2O(s)+1/2H 2O (l )+Q ①

反应式①是一个气液“双膜”控制的放热反应,除了Ca(OH)2(s)表面雾化水使之成为Ca(OH)2(l)是发生快速离子化脱硫反应的前提之外,加强气、固两相之间的相对流速,减少气、液两相间的传质阻力;另外,适当低的反应器操作温度也同样重要。脱硫反应的关键是SO 2(g)的扩散并溶解,见下式:

SO 2(g)→SO 2(l) ②

SO 2(l)+H 2O(l) →H ++HSO 3- (l) ③

步骤 ②的扩散阻力主要在气相中,步骤③的扩散阻力主要在液相中。大直径吸收塔的边界滞流区及整个塔中3~3.5m/s 的低流速,烟气没有充分的紊流,气固两相之间没有较高的相对速率,不利于SO 2(g)的扩散并溶解成SO 2(l),也不利于在Ca(OH)2(l)小颗粒内部的扩散溶解,还将制约被生成物CaSO 3·1/2H 2O(s)覆盖的Ca(OH)2表面的更新,因而对提高脱硫效率效果有限。高且大直径的反应塔的唯一作用仅是延长因雾化不均匀或团聚产生的粗大液滴的蒸发干燥时间,因为埋在灰堆中的回流或双流喷嘴,很难产生如喷雾半干法工艺一样相对均匀的中位径约为80μm 的小液滴,不可避免出现浆滴的团聚,出现湿灰团及浆团,国内已建成采用此类烟道流化床脱硫技术(CFB )的工程应用也表明:这种因粗大湿浆团不能及时干燥而出现系统设备的粘堵是不可避免的, 国内采用此技术出现装置不能长期期运行的主要症结都是这种未充分干燥的脱硫终产物不断粘堵造成的。反应器中的浆滴的干燥图见下:

浆液粒径与干燥时间关系

1

2

3

4

5

6

7

8

9

10

102030405060708090100浆液粒径(μm)

干燥时间(S )

图4消石灰浆液滴直径与干燥时间关系图

从图4可知,最大粒径100μm的消石灰浆雾滴,在70~80℃反应条件下,需12秒才能干燥到含水低于3%的水平,对于平均粒径100μm的水雾滴,需5秒充分蒸发,才不至于对后续的除尘器、引风机等设备造成粘堵等问题。所以为使反应塔内喷浆的CFB脱硫系统设备及所配电除尘器不间断运行,设计烟气在反应器内的停留时间最好大于8秒。但实际工程设计时,出于经济性考虑,一般按6秒左右设计。

荷电干法由于脱硫的环境相对较干,脱硫机理属慢速的亚硫化反应,在工业装置应用中,因受场地及经济性的限制,一般设计反应时间2秒,脱硫效率只能达到50~70%,目前几乎已退出市场。

喷雾半干法及炉内喷钙炉后活化两种脱硫工艺,保证装置能稳定运行的前提是保证脱硫终产物平均含水低于3%,所以工业装置设计的总脱硫时间都不低于8秒。

2.2.钙硫比

就化学反应的本真动力学而言,影响反应速率的主要因素有温度、活化能、各反应物的有效浓度等,对于脱硫反应式①,在相同的反应温度状态下,其反应活化能是一样的,对此反应速率影响最大的因素是反应器不同床层高度中的SO2(l)和Ca(OH)2(l)的浓度。

就NID与CFB两种脱硫工艺而言,系统的温度控制原理及灰的循环比值基本一样,但因NID工艺反应器中的烟气流速明显高于CFB工艺,所以NID对高倍率的循环比具有更好的适应性。NID工艺由于在反应器外设有特有的灰/水混合装置,反应产物中平衡的消石灰几乎100%的表面都被均匀增湿,在较小截面积的反应器中与溶解的HSO3-快速完成离子化脱硫反应。

而CFB工艺则由于喷嘴是埋在灰堆中,喷出的水对灰表面的增湿是不均匀的,尽管其循环灰量与NID差不多,但由于表面未被增湿的Ca(OH)2(s)几乎是没有脱硫活性的,与SO2(g)发生的是慢速的亚硫化反应。据国外的研究:优质Ca(OH)2(s)在荷电弥散的状态下,反应5秒后的脱硫效率约50%。另一方面,CFB工艺为保证粗大浆团在有限的脱硫时间内(5~6s)尽可能干燥,减小对后续收尘器的影响,反应器操作温度只能控制得高一些,一般为75~85℃,但这需要较高的钙硫比作为代价。而NID工艺则不受此约束,根据脱硫效率及经济性的需要,反应器操作温度可任意选取并控制在65~85℃,在同样90%的脱硫效率下,钙硫比可同比下降0.1,因而具有的性价比优势。浙江巨化热电厂的NID工程连续三年的运行表明:反应器出口温度每下降1℃,可节省消石灰约7kg。

NID和CFB在合理低的安全温度下运行,钙硫比都可以控制在1.2±0.1。

炉内喷钙炉后活化工艺,由于石灰石在最佳温度层的停留时间短,分解不彻底;在活化塔中活化不充分;脱硫灰没有再循环等因素,系统的钙硫比一般为2.3~2.5。

喷雾半干法脱硫在操作温度70℃左右运行时,钙硫比一般为1.4~1.6。

2.3.反应器操作温度

反应器运行温度的设定要考虑设计脱硫效率、煤中的氯含量、钙硫比等诸多因素,当然也与选择的脱硫工艺有关。反应温度越接近于烟气的酸露点,吸收剂表面的水分得以保持更长的时间,越有利于快速的离子化脱硫反应,脱硫效率可以更高,吸收剂的消耗量可以明显降低。所以,对于循环灰是在反应器外的特有流态化混合器中预先均匀增湿的脱硫工艺来说,反应器的操作温度可选更宽的操作范围:65~85℃。在燃用中硫煤(1.5~3.5%)时,控制适当低的操作温度,可明显降低吸收剂的消耗量。

浙江巨化热电厂的NID 脱硫工程正常燃煤含硫0.4~0.8%左右,设定反应器出口温度75℃,脱硫效率90~95%下运行,累计平均钙硫比为1.2左右;2001年9~10月期间,电厂试燃用平均含硫1.5%的中硫煤,在设定反应器出口温度70℃,脱硫效率90%下运行,累计平均钙硫比也为1.22左右,说明操作温度对脱硫效率及运行经济性的影响是非常明显的。因为烟气的酸露点决定于三氧化硫浓度,在循环灰环境下,三氧化硫的去除率接近100%,故烟气的酸露点接近于水露点,约48~51℃。所以在燃用高硫煤时,反应器和除尘器即使在65℃左右温度下运行,只要有合适的外保温,仍是安全的,不必担心出现腐蚀。

CFB 脱硫工艺由于受浆滴干燥因素的制约,操作温度只能控制得稍高些,一般为75~90℃,但钙硫比将比NID 时增加约0.1~0.2,经济性将受到较大的影响。

当然操作温度的选择与煤中的氯含量密切相关,因为烟气中的氯化氢先于SO X 与消石灰反应生成吸湿性极强的CaCl.2H 2O ,此时将不得不适当提高运行温度,以保证系统的稳定运行。

喷雾半干法和炉内喷钙炉后活化法工艺在加强吸收塔及出口烟道的防腐措施后,操作温度可降得更低,然后对塔出口烟气进行再加热,以此达到提高脱硫效率并降低物耗的目的。

2.4.燃料含硫的适应性

循环半干法NID 和CFB 脱硫工艺都具有较宽的煤种变化适应性,在燃料中含硫低于2.5%或二氧化硫浓度低于7000 mg/Nm 3时仍有较好的经济性,对于NID 工艺,脱硫效率与入口烟气中的SO 2浓度关系如下:

76

78

80

82

84

86

88

90

92

94

96

30003500400045005000550060006500700075008000进口SO 2浓度(mg/Nm 3)

脱硫效率(%)

上图所示,当反应器入口SO 2浓度为5000mg/Nm 3左右,反应器操作温度为71℃左右时,

脱硫效率仍达90%以上。但燃用高硫份的燃料时,要注意区分达到脱硫效率和排放浓度的差别,达到设计的脱硫效率是相对较容易的,但同时达到较高要求的排放新标准就要难得多。在实际工程中,对于排放标准的提高,通常可采用以下措施:①适当降低反应器操作温度,即增加反应速率系数K,增加放热反应正反应的速率;②增加石灰投入,提高反应器中钙基碱性物的浓度,即提高钙硫比;③增加脱硫灰的循环倍比,增加被终产物覆盖Ca(OH)2的表面更新,减小SO2逃逸的机率;④适当抬高反应器的高度,延长烟气在反应器中的停留时间;

⑤采用布袋除尘器,利用滤袋表面的含钙粉尘具有二次脱硫作用。通过以上措施,能确保燃用较高硫份煤种时仍保证SO2达标排放。

NID和CFB具有更多的手段达到更高要求的排放标准。喷雾半干法及炉内喷钙炉后活化工艺因灰不循环,吸收剂的利用率较低,达到更高要求排放会很不经济,因此选用时即要考虑到这一因素。

巨化热电厂试燃中硫煤(1.5%)及芬兰华沙电厂(含硫3.5%)的测试数据中,脱硫效率都超过了90%,NID应用于含硫2.5%以下的燃煤机组仍是比较经济的。湖北荆门电厂200MW 机组的脱硫采用NID技术设备,锅炉燃煤含硫达2.3%,烟气中SO2的最高浓度达7000mg/Nm3,脱硫工程计划于05年3月投运。

3.应用现状及前景分析

喷雾半干技术及炉内喷钙炉后活化技术的发展已有三十多年的历史,我国对此两技术的引进、消化、研发和试应用也经历了近二十年。1985年四川白马电厂的中试国产化研究后,山东某电厂于九十年代初又引进日本的喷雾技术,但考虑到性价比、运行稳定性、脱硫效率等综合因素,此后再没有工程采用此脱硫技术。

炉内喷钙炉后活化工艺,自南京下关电厂、浙江钱清电厂于97年引进芬兰IVO公司技术后,经过多年探索和优化,目前在改造市场上仍有一定市场。

CFB工艺技术属于先进的半干技术,但无连续运行业绩,担心其运行可靠性,市场前景有待观察。

NID工艺因巨化热电厂70MW、荆门电厂200MW、玖龙纸业(太仓)2×135MW等工程运行的良好记录,此技术已被公认为先进适用的半干法脱硫技术。是目前国内应用最多的半干法技术,特别是菲达公司通过引进技术,经过7年的消化及创新,已实现300MW以下机组的完全国产化,承建项目达50多台套,其中包括包头电厂、荆门电厂、玖龙纸业等200MW 脱硫工程,因而具有很好的市场前景。

半干法脱硫工艺特点介绍

半干法脱硫工艺的特点: 、工艺原理描述 锅炉尾气在CFB半干法烟气净化系统中得以净化,该系统主要是根据循环流化床理论和喷雾干燥原理,采用悬浮方式,使吸收剂 Ca(OH》在吸收塔内悬浮、反复循环,与烟气中的SO等酸性气体充分接触、反应来实现脱除酸性气体及其它有害物质的一种方法。烟 气脱硫工艺分7个步骤:⑴吸收剂存储和输送;⑵烟气雾化增湿调温;⑶脱硫剂与含湿烟气雾化颗粒充分接触混合;⑷二氧化硫吸收;⑸增湿活化;⑹灰循环;⑺灰渣排除。⑵、⑶、⑷、⑸四个步骤均在吸收塔中进行,其化学、物理过程如下所述。 A .化学过程: H2O 、SO2、H2SO3 反当雾化水经过双流体雾化喷嘴在吸收塔中雾化,并与烟气充分接触,烟气冷却并增湿,氢氧化钙粉颗粒同应生成干粉产 物,整个反应分为气相、液相和固相三种状态反应,反应步骤及方程式如下: ⑴S02被液滴吸收; S02(气)+H2O_^H 2SO3(液) ⑵吸收的S02同溶液的吸收剂反应生成亚硫酸钙; Ca(OH)2(液)+H2SO3(液)—CaSO(液)+2H2O Ca(OH)2(固)+H2SO3(液)—CaSO(液)+2H2O ⑶液滴中CaSO3达到饱和后,即开始结晶析出 CaSO3(液)—CaSO(固) ⑷部分溶液中的CaSQ与溶于液滴中的氧反应,氧化成硫酸钙

CaS03(液)+1/202(液)T CaSO(液) ⑸CaS04(液)溶解度低,从而结晶析出 CaS04(液)T CaS0(固) ⑹对未来得及反应的Ca(0H)2 (固),以及包含在CaS03(固)、CaSO(固)内的Ca(0H)2 (固)进行增湿雾化。 Ca(0H)2 (固)T Ca(0H2 (液) S02(气)+H2CTH 2SO3(液) Ca(0H)2 (液)+H2SO3(液)TCaSO(液)+2H2O CaS03(液)T CaS0(固) CaS03(液)+1/2O2(液)T CaS0(液) CaS04(液)T CaS0(固) ⑺布袋除尘器脱除的烟灰中的未反应的Ca(0H》(固),以及包含在CaSCS固)、CaS0(固)内的CaQH* (固)循环至吸收塔内继续反应。 Ca(0H)2 (固)T Ca(OH2 (液) S02(气)+H2CTH 2S03(液) Ca(0H)2 (液)+H2SO3(液)TCaS0(液)+2H2O CaS03(液)T CaS0(固) CaSQ(液)+1/2O2(液)T CaS0(液) CaSC4(液)T CaS0(固) B .物理过程: 物理过程系指液滴的蒸发干燥及烟气冷却增湿过程,液滴从蒸发开始到干燥所需的时间,对吸收塔的设计和脱硫率都非常重要。

双碱法烟气脱硫工艺流程设计

第一章绪论 (2) 1.1设计的背景及意义 (2) 1.2国内外研究现状 (3) 1.2.1 烟气脱硫技术现状 (3) 1.2.2 我国烟气脱硫技术研究开发进展 (5) 1.3课程设计任务及采用技术 (8) 1.3.1 设计任务及目的 (8) 1.3.2 脱硫工艺采用的技术 (8) 第二章脱硫工艺 (10) 2.1脱硫过程 (10) 2.2低阻高效喷雾脱硫工艺 (11) 2.3脱硫系统组成 (12) 2.4本技术工艺的主要优点 (15) 2.5物料消耗 (15) 第三章工程计算 (17) 3.1脱硫塔 (17) 3.2物料恒算 (18) 第四章脱硫工程内容 (20) 4.1脱硫剂制备系统 (20) 4.2烟气系统 (20) 4.3SO2吸收系统 (20) 4.4脱硫液循环和脱硫渣处理系统 (22) 4.5消防及给水部分 (23) 第五章流程图 (25) 5.1方框流程图 (25) 5.2管道仪表流程图 (25) 第六章参考文献 (26)

第一章绪论 1.1 设计的背景及意义 中国是燃煤大国,能源结构中约有70%的煤。而又随着近年来中国经济的快速发展,由日益增多的煤炭消耗量所造成的二氧化硫污染和酸雨也日趋严重,给农业生产和人民生活带来极大的危害,因此,采取有效的烟气治理措施,切实削减二氧化硫的排放量,控制大气二氧化硫污染、保护大气环境质量,事关国家可持续发展战略,是目前及未来相当长时间内中国环境保护的重要课题之一。就目前的技术水平和现实能力而言,烟气脱硫((Flue gas desulfurization,缩写FGD)技术是世界上应用最广泛、最经济、最有效的一种控制SO2排放的技术。按照脱硫方式和产物的处理形式划分,烟气脱硫一般可分为湿式脱硫、干式脱硫和半干式脱硫三类。湿法脱硫占世界80%以上的脱硫市场,是目前世界上应用最广的FGD工艺,具有设备简单、投资少、操作技术易掌握、脱硫效率高等特点。而湿式石灰石/石灰法又占湿法的近80%。湿式钙法的优点是效率和脱硫剂的利用率高,缺点是设备易结垢,严重时造成设备、管道堵塞而无法运行,且工程投资大、运行成本高,对于中小型锅炉和窑炉不合适。双碱法正是中小型燃煤锅炉和发电厂应用较广的烟气脱硫技术,为了克服湿法石灰/石灰石-石膏法容易结垢和堵塞的缺点而发展起来的。该法种类较多,有钠钙双碱法、钙钙双碱法、碱性硫酸铝法等,其中最常用的是钠钙双碱法。由于主塔内采用液相吸收,吸收剂在塔外的再生池中进行再生,从而不存在塔内结垢和浆料堵塞问题,从而可以使用高效的板式塔或填料塔代替目前广泛使用的喷淋塔浆液法,减小吸收塔的尺寸及操作液气比,降低成本,再生后的吸收液可循环使用。另外,该工艺有钠碱法中反应速度快的优点,脱硫效率高--可达90%以上,应用较为广泛。因此双碱法脱硫工艺在中小型燃煤锅炉的除尘脱硫上有推广价值,符合国家目前大力提倡的循环经济,具有显著的环境效益和社会效益。 以前我国燃煤电厂烟气脱硫项目的引进大多对硬件比较重视,而对软件的重视程度不够,不少引进项目大多停留在购买设备上,但现在越来越注重烟气脱硫技术的国产化。而国产化的关键在于掌握烟气脱硫的设计技术,只有实现烟气脱硫设计国产化,才能按市场规则选用更多质量优良、价格合理的脱硫设备,才有资格、有能力对脱硫工程实行总承包,承担全部技术责任,推动烟气脱硫设计国

循环流化床半干法脱硫装置计算书编辑版

一、喷水量的计算(热平衡法) 参数查表: 144℃: ρ(烟气)=0.86112Kg/m 3; C p(烟气)=0.25808Kcal/Kg ·℃ 78℃: ρ(烟气)=1.0259Kg/m 3; C p(烟气)=0.25368Kcal/Kg ·℃ 144℃:C 灰=0.19696Kcal/Kg ·℃ 78℃: C 灰=0.19102Kcal/Kg ·℃;C 灰泥,石膏=0.2Kcal/Kg ·℃ C Ca(OH)2=0.246Kcal/Kg ·℃ 1.带入热量: Q 烟气, Q 灰,Q Ca(OH)2,Q 水 M 烟气 =ρ 烟气 ·V 烟=510453.286112.0??510112.2?=(Kg/hr ) Q 烟气=C P ·M ·t 5510489.7814410112.225808.0?=???=(Kcal/hr) M 灰253105694.4810453.2108.19?=???=-(Kg/hr ) Q 灰=C 灰?M 灰?t =52103775.1144105694.4819696.0?=???(Kcal /hr) Q Ca(OH)2=C Ca(OH)2?M ?20=20246.02)(??OH Ca M 当 Ca/S=1.3, SO 2浓度为3500mg/m 3时 Kg M OH Ca 244.151810743.185 .06410453.21035003532 )(=???????=-- ∴Q Ca(OH)2=76.746920244.1518246.0=??(Kcal/hr) Q 水=cmt=χχ20201=??(Kcal/hr) 其中χ为喷水量 2.带出热量:Q 灰3,Q 烟气,Q 灰2,Q 蒸汽,Q 散热 M 灰3=M Ca(OH)2=1518.244Kg ; Q 灰3=Q Ca(OH)2=7469.76(Kcal/hr) Q 烟气=cmt=551079.417810112.225368.0?=???(Kcal/hr); Q 灰2=264.7576810785694.482.02=???(Kcal/hr) Q 蒸汽=630.5χ(Kcal/Kg ) 热损失以3%计: Q 散=(Q 烟气+Q 灰) 03.0?03.0)103775.110489.78(55??+?= 3.系统热平衡计算: Q in =Q out ,即: 03 .0)103775.110489.78(5.630264.757681079.4176.74692076.7469103775.110489.785 5 5 55??+?+++?+=++?+?χχ ∴χ=5.72(t/hr)

双碱法脱硫技术方案

(一)脱硫系统设计 1、双碱法脱硫技术工艺基本原理 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充; (2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下: 一、脱硫反应: Na2CO3 + SO2→ Na2SO3 + CO2↑ (1) 2NaOH + SO2→ Na2SO3 + H2O (2) Na2SO3 + SO2 + H2O → 2NaHSO3(3) 其中:

式(1)为启动阶段Na2CO3溶液吸收SO2的反应; 式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应; 式(3)为溶液pH值较低(5~9)时的主反应。 二、氧化过程(副反应) Na2SO3 + 1/2O2 → Na2SO4 (4) NaHSO3 + 1/2O2 → NaHSO4 (5) 三、再生过程 Ca(OH)2 + Na2SO3→ 2 NaOH + CaSO3(6) Ca(OH)2 + 2NaHSO3→ Na2SO3 + CaSO3?1/2H2O +3/2H2O (7) 四、氧化过程 CaSO3 + 1/2O2 → CaSO4 (8) 式(6)为第一步反应再生反应,式(7)为再生至pH>9以后继续发生的主反应。脱下的硫以亚硫酸钙、硫酸钙的形式析出,然后将其用泵打入石膏脱水处理系统,再生的NaOH可以循环使用。 本钠钙双碱法脱硫工艺,以石灰浆液作为主脱硫剂,钠碱只需少量补充添加。由于在吸收过程中以钠碱为吸收液,脱硫系统不会出现结垢等问题,运行安全可靠。由于钠碱吸收液和二氧化硫反应的速率比钙碱快很多,能在较小的液气比条件下,达到较高的二氧化硫脱除率。 (三)双碱法湿法脱硫的优缺点 与石灰石或石灰湿法脱硫工艺相比,双碱法原则上有以下优点:

最新半干法烟气脱硫方案1×75t

半干法烟气脱硫方案 1×75t

XXXXXXX热电厂 1×75T/H烟气脱硫方案循环半干法脱硫方案

目录 1 电厂概况 2 电厂的设计条件及性能参数 3 循环半干法脱硫技术说明 4 主要供货设备清单 5 所有物料消耗一览表 6 水质要求表 7 脱硫系统性能、参数表 8 烟气处理装置分项报价表

2 电厂的设计条件及性能参数 2.1煤质资料 2.2主要烟气技术参数 机组额定出力 MW 锅炉出口烟气量(m3/h) 170000 锅炉出口粉尘浓度(g/m3) 21 锅炉出口烟气温度(℃) 124 锅炉出口烟气SO2浓度(mg/m3) 2000 锅炉出口烟气H2O含量(%) 5 2.3 灰成份分析

3 循环半干法脱硫技术说明 3.1技术概况及脱硫原理 纵观当今脱硫技术的现状,世界上大机组脱硫以湿法脱硫占主导地位,但因为湿法一次投资昂贵,运行费用也较高,随着经济的发展,发展中国家的环保形势越来越严峻,为适应这些国家脱硫市场的需要,许多国家都在致力于开发高效干法脱硫技术,开始是喷雾干燥法,这在八十年代比较多,但其尚有缺点,如复杂的制浆系统、能耗偏高、反应器体积庞大、反应器内粘结等,之后许多公司都致力于怎样解决这些问题的研究。循环半干法技术是从八十年代初就致力于开发的新颖脱硫技术,它借鉴了喷雾干燥法脱硫工艺的脱硫原理,又避免了半干法使用制浆系统的种种弊端,开发出的循环半干法技术既具有干法的廉价、简单、可靠等优点,又有湿法的高脱硫效率,且原料消耗和能耗都比喷雾干燥法有大幅度下降。1988年在波兰安装的两台125MW样板机组运行一直很成功,迄今在欧洲的煤粉炉、垃圾焚烧炉及其它工业炉已有十几套装置在运行,2001年美国承接了2套250MW机组脱硫合同。 循环半干法脱硫工艺的原理为利用干CaO粉或熟石灰粉Ca(OH)2吸收烟气中的SO2,反应式为: CaO + H 2O → Ca(OH) 2 Ca(OH) 2 + SO 2 → CaSO 3 ·1/2H 2 O + 1/2H 2 O

烟尘双减法脱硫工艺

双碱法脱硫工艺 钙钠双碱法脱硫工艺,简称双碱法。该法主要是脱除气体中的SO2气体。适用于锅炉烟气、焦炉气、锅炉生产废气等的脱硫。 一、工艺特点 钙钠双碱法是先用钠碱性吸收液进行烟气脱硫,然后再用石灰粉再生脱硫液,由于整个反应过程是液气相之间进行,避免了系统结垢问题,而且吸收速率高,液气比低,吸收剂利用率高,投资费用省,运行成本低。 1、以NaOH(Na2CO3)脱硫,脱硫液中主要为 NaOH(Na2CO3)水溶液,在循环过程中对水泵、管道、设备缓解腐蚀、冲刷及堵塞,便于设备运行和维护。 2、钠基吸收液对SO2反应速度快,故有较小的液气比,达到较高的脱硫效率,一般≥90%。 3、脱硫剂的再生及脱硫沉淀均发生于塔体避免塔内堵塞和磨损,提高了运行的可靠性,降低了运行成本。 4、以空塔喷淋为脱硫塔结构,运行可靠性高,事故发生率小,塔阻力低,△P≤600Pa。 二、工艺原理 1、反应原理 SO2吸收反应:Na2CO3+SO2→Na2SO3+CO2↑吸收剂再生反应:CaO+H2O→Ca(OH) 2 Ca(OH) 2+Na2SO3+H2O→2NaOH+CaSO3+H2O 2、工艺流程采用锻钢炉的烟气经换热降温至≤200℃,经

烟道从塔底进入脱硫塔。在脱硫塔内布置若干层数十支喷嘴,喷出细微液滴雾化均布于脱硫塔溶积内,烟气与喷淋脱硫液进行充分汽液混合接触,使烟气中SO2和灰尘被脱硫液充分吸收、反应,达到脱尘除SO2的目的。经脱硫洗涤后的净烟气经塔顶除雾器脱水,经脱硫塔上部进入烟囱排入大气。脱硫循环液经塔内气液接触除SO2后,经塔底管道流入沉淀池在此将灰尘沉淀下来,清液经上部溢进入反应再生池,在池内与石灰乳液制备槽引来的石灰乳进行再生反应,再生液流入泵前循环槽补入Na2CO3,由泵打入脱硫塔顶脱除SO2循环使用。其中再生产出的CaSO3及烟气中过剩氧生成的CaSO4于沉淀池中沉淀分离。 三、工艺优势 1、烟气系统来自锻钢烟气经烟道引风机直接进

主要半干法脱硫工艺机理分析

几种半干法脱硫工艺机理的探讨 葛介龙张佩芳戴永阳周钓忠李文勇张永 (浙江菲达环保科技股份有限公司诸暨311800) 摘要:本文总结循环半干法、烟道流化床、炉内喷钙炉后增湿活化、喷雾半干法等脱硫工艺的工程应用,就反应时间、操作温度、钙硫比、可靠性、燃料适应性、装置占地、性价比等进行了综合比较分析,并对上述四种主要半干法脱硫工艺进行了脱硫机理的探讨。 关键词:半干法、脱硫、性价比、机理、研究

图1 NID 反应系统示意图 图2 CFB 反应系统示意图 C 1、C 0分别为NI D 和CFB 工艺反应器中的活性Ca(OH)2的浓度 。因为两种工艺都具有灰高倍比循环的特征,因此原烟气进入反应器后的0.3秒内,烟气温度即降到要求的75℃左右。CFB 工艺的阻力降主要来自喉部及扩大段,系统总阻力较高,通常设计值为1800Pa 左右,而NID 工艺在反应器中的压力降分配则相对均匀,通常设计值为1200Pa 。从图1、2中可以看出,两者的最明显区别在于工艺水加入位置的不同,正是由于这原理的区别,造成两技术以下性能上的明显差异。 CFB 工艺的特点是因喷嘴埋在流态不稳定、湿度不均匀的反应灰堆中,循环灰表面含水不均匀,且有游离的直径较大液滴浆团,易造成喷嘴及吸收塔惭扩段的粘堵,装置不能长周期稳定运行。 而NID 的特点是在一个外置的专有设备中对反应循环灰进行雾化增湿,灰表面水分呈均匀的薄膜状,且大量的循环物料具有巨大的蒸发表面,灰表面的水分蒸发很快,在1m 左右的反应器床层高度内使烟气温度降到75℃左右,达到理想的脱硫工况,达到90%以上的脱硫效率。两种工艺的脱硫效率与反应时间的分布梯度见下图: 烟气停留时间与脱硫效率关系 20 40 60 80 10000.40.8 1.2 1.62 2.4 2.8 3.2 3.64 烟气停留时间t (秒) 脱硫效率(%) 图3反应时间与效率关系示意图 在整个脱硫反应过程中,NID 工艺的脱硫效率与反应时间的变化速率K 理论上说约是CFB 工艺的6倍。因为脱硫反应可以理解为基元反应,根据化学反应碰撞理论,有效碰撞的机率与反应器中的反应物有效浓度成正相关: r=K ×C Ca(OH)2(l)×C SO2 (l)×e -RT CFB 工艺反应器喉部流速远高于NID ,但由于喉部无吸收剂,对提高脱硫效率无贡献。NID 垂直反应段中的烟气流通截面积是CFB 的1/5,两种工艺需喷入的冷却水量几乎是相等的,循环灰量也几乎一样,因而NID 工艺反应器中的C Ca(OH)2是CFB 工艺反应器中的5倍。在其它参数都一样时,NID 反应器中的脱硫速率(去除SO 2的摩尔数/单位时间)是CFB 工艺的5倍,即达到同样85~95%的脱硫效率,NID 工艺需的反应时间仅需CFB 工艺的1/5。

半干法脱硫方案(2020年整理).doc

烟气脱硫 技术方 1

第一章工程概述 1.1项目概况 某钢厂将就该厂烧结机后烟气进行烟气脱硫处理。现烧结机烟气流程为烧结机一除尘器一吸风机一烟囱。除尘器采用多管式除尘器,除尘效率大于90%。主要原始资料如下: 1.2主流烟气脱硫方法 烟气脱硫(简称FGD是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。 FGD其基本原理都是以一种碱性物质来吸收SO,就目前国内实际应用工程, 按脱硫剂的种类划分,FGD技术主要可分为以下几种方法: 1、以石灰石、生石灰为基础的钙法; 2、以镁的化合物为基础的镁法; 3、以钠的化合物为基础的钠法或碱法; 4、以化肥生产中的废氨液为基础的氨法; 最为普遍使用的商业化技术是钙法,所占比例在90%以上。而其中应用最 为广泛的是石灰石-石膏湿法和循环流化床半干法烟气脱硫系统。针对本工程,

我公司将就以上两种脱硫方法分别进行设计、描述,并最终给出两方案比较结果。 1.3 主要设计原则 针对本脱硫工程建设规模,同时本着投资少、见效快、系统简单可靠等原则,我方在设计过程中主要遵循以下主要设计原则: 1、脱硫剂采用外购成品石灰石粉(半干法为消石灰粉),厂内不设脱硫剂制备车间。 2、考虑到烧结机吸风机出口烟气含硫浓度为2345 mg/Nd3,浓度并不是很高, 在满足环保排放指标的前提下,脱硫装置的设计脱硫效率取》90%。 3、脱硫装置设单独控制室,采用PLC程序控制方式。同时考虑同主体工程的信号连接。 4、脱硫装置的布置尽可能靠近烟囱以减少烟道的长度,减少管道阻力及工程投资。

第二章 石灰石-石膏湿法脱硫方案 2.1工艺简介 石灰石-石膏湿法脱硫工艺是目前世界上应用最为广泛和可靠的工艺。该工艺 以石灰石浆液作为吸收剂,通过石灰石浆液在吸收塔内对烟气进行洗涤, 发生反应, 以去除烟气中的S02反应产生的亚硫酸钙通过强制氧化生成含两个结晶水的硫酸 钙(石膏)。 图2.1石灰石—石膏湿法脱硫工艺流程图 工艺流程图如图2.1所示,该工艺类型是:圆柱形空塔、吸收剂与烟气在塔内 逆向流动、吸收和氧化在同一个塔内进行、塔内设置喷淋层、氧化方式采用强制氧 化。 与其他脱硫工艺相比,石灰石-石膏湿法脱硫工艺的主要特点为: ?脱硫效率高,可达95%以上; ?吸收剂化学剂量比低,脱硫剂消耗少; ?液/气比(L/G )低,使脱硫系统的能耗降低; ?可得到纯度很高的脱硫副产品一石膏,为脱硫副产品的综合利用创造了有利 条件; ?采用空塔型式使吸收塔内径减小,同时减少了占地面积; ?采用价廉易得的石灰石作为吸收剂; ?系统具有较高的可靠性,系统可用率可达 97%以上; ?对锅炉燃煤煤质变化适应性较好; ?对锅炉负荷变化有良好的适应性。 2.2 反应原理 原咽吒 Eimn 嗫收塔 ?工艺水 猜坏泵 脈冲捲浮 氧化空宅 节石蕎察液加梳姑 '事空皮出脱水机 吸收剂浆罐

电厂各种半干法脱硫技术介绍

电厂各法脱硫技术介绍 电厂湿法脱硫工艺主要的优点是反应速率快、脱硫率咼,缺点会产生大量废水废液、易造成二次污染;干法脱硫工艺主要的优点是副产品为固态,利于综合应用,但是反应速率慢,脱硫率较低的缺点十分明显。半干法是把脱硫过程和脱硫产物处理分别采用不同的状态反应,特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,既有湿法脱硫工艺反应速度快、脱硫效率咼的优点,又有干法脱硫工艺无废水废液排放、在干状态下处理脱硫产物的优势,是除硫工艺重要发展方向。 喷雾半干法 工艺介绍 II 喷雾半干法是利用喷雾干燥原理,将吸收剂浆液雾化喷入吸收塔。 在吸收塔内,吸收剂在与烟气中的二氧化硫发上化学反应的同时,吸收烟气中的热量使吸收剂中的水分蒸发干燥,脱硫反应后的废渣以干

态排 出。 优缺点:工艺流程比石灰石-石膏法简单,投资也较小。缺点是脱硫率较低,一般为70-80%、操作弹性较小、钙硫比高,运行成本高、副产物无法利用。国内使用较少,青岛黄岛电厂使用此工艺,运行存在塔壁积灰、雾化器堵塞磨损严重等问题。 炉内喷钙尾部增湿活化法 工艺介绍 ___ ____ h: _ ITT ______________ * I I 应胡1 Jf 将磨细石灰石粉用气流输送方法喷射到炉膛上部温度为 900~1250 C的区域,CaC03立即分解并与烟气中的S02 和少量的S03反应生成CaS04。在活化器内炉膛中未反应的CaO与喷入的水反应生成Ca(OH)2,SO2与生成Ca(OH)2快速反应生成CaSO3, 有部分被氧化成CaSO4 。 优缺点:优点是设备投资较小,但是在优化炉内喷钙条件下, CaCO3热解生成高活性CaO ,虽然难以直接在炉内得到很高的脱硫 率,但炉内未与SO2反应的CaO在锅炉后部喷水增湿、水合为 Ca(OH)2,低温下可再次与SO2反应,能显著提高系统脱硫率和钙

半干法脱硫技术

一、工艺概述循环悬浮式半干法烟气脱硫技术兼有干法与湿法的一些特点,其既具有湿法脱硫反应速度快、脱硫效率高的优点,又具有干法无污水排放、脱硫后产物易于处理的好处而受到人们广泛的关注。 循环悬浮式半干法烟气脱硫技术是近几年国际上新兴起的比较先进的烟气脱硫技术,它具有投资相对较低,脱硫效率相对较高,设备可靠性高,运行费用较低的优点,因此它的适用性很广,在许多国家普遍使用。 循环悬浮式半干法烟气脱硫技术主要是根据循环流化床理论,采用悬浮方式,使吸收剂在吸收塔内悬浮、反复循环,与烟气中的S02充分接触反应来实现脱硫的一种方法。 利用循环悬浮式半干法最大特点和优势是:可以通过喷水(而非喷浆)将吸收塔内温度控制在最佳反应温度下,达到最好的气固紊流混合并不断暴露出未反应的消熟石灰的新表面;同时通过固体物料的多次循环使脱硫剂具有很长的停留时 间,从而大大提高了脱硫剂的利用率和脱硫效率。与湿法烟气脱硫相比,具有系统简单、造价较低,而且运行可靠,所产生的最终固态产物易于处理等特点。 二、技术特点循环悬浮式半干法烟气脱硫技术是在集成浙大和国外环保公司半干法烟气脱硫技术基础上,结合中国的煤质和石灰品质及国家最新环保要求,经优化、完善后开发的第三代半干法技术。它是在锅炉尾部利用循环流化床技术进行烟气净化,脱除烟气中的大部分酸性气体,使烟气中的有害成分达到排放要求。 与第一、第二代半干法相比,第三代循环悬浮式半干法烟气脱硫技术具有以下特占: 八、、? 1、在吸收塔喉口增设了独特的文丘里管,使塔内的流场更均匀。 2、在吸收塔内设置上下两级双流喷嘴,雾化颗粒可达到50µm以下,精确 的灰水比保证了良好的增湿活化效果,受控的塔内温度使脱硫反应在最佳温度下进行,从而取得较高的脱硫效率,较长的滤料使用寿命。 3、采用比第二代更完善的控制系统,操作更简捷。 4、采用成熟的国产原材料和设备,降低成本,节约投资. 5、占地少,投资省,运行费用低,无二次污染。 6非常适合中小型锅炉的脱硫改造。 7、输灰采用上引式仓泵,耗气量小,输灰管路不易堵塞,使用寿命长。同时,在仓泵和布袋之间增设中间灰仓,使仓泵运行更稳定、可靠。 8、固体物料经袋式除尘器收集,再用空气斜槽回送至反应器,使未反应的脱除剂反复循环,在反应器内的停留时间延长,从而提高脱除剂的利用率,降低运行成本。 9、根据烟气净化需要,添加适量的活性炭等添加剂可改变循环物料组成,有效的吸附脱除二噁英和重金属等毒性大、难去除的污染物,达到特殊净化效果。 由于采用了大量的技术改良和优化,目前掌握的第三代半干法烟气脱硫技术克服 了第一代半干法脱硫装置易塌床、易磨损、系统阻力大、运行不可靠及第二代半干法

半干法脱硫技术介绍

半干法脱硫技术介绍 一、概述 循环流化床烟气脱硫工艺是八十年代末德国鲁奇(LURGI)公司开发的一种新的半干法脱硫工艺,这种工艺以循环流化床原理为基础以干态消石灰粉Ca(OH)2作为吸收剂,通过吸收剂的多次再循环,在脱硫塔内延长吸收剂与烟气的接触时间,以达到高效脱硫的目的,同时大大提高了吸收剂的利用率。通过化学反应,可有效除去烟气中的SO2、SO3、HF与HCL等酸性气体,脱硫终产物脱硫渣是一种自由流动的干粉混合物,无二次污染,同时还可以进一步综合利用。该工艺主要应用于电站锅炉烟气脱硫,单塔处理烟气量可适用于蒸发量75t/h~1025t/h之间的锅炉,SO2脱除率可达到90%~98%,是目前干法、半干法等类脱硫技术中单塔处理能力最大、脱硫综合效益最优越的一种方法。 二、CFB半干法脱硫系统工艺原理 Ca(OH)2+ SO2= CaSO3 + H2O Ca(OH)2+ 2HF= CaF2 +2H2O Ca(OH)2+ SO3= CaSO4 + H2O Ca(OH)2+ 2HCl= CaCl2 + 2H2O CaSO3+ 1/2O2= CaSO4 三、流程图 四、CFB半干法脱硫工艺系统组成 1. 脱硫剂制备系统 2. 脱硫塔系统 3. 除尘器系统 4. 工艺水系统 5. 烟气系统

6. 脱硫灰再循环系统 7. 脱硫灰外排系统 8. 电控系统 五、CFB半干法脱硫工艺技术特点 1. 脱硫塔内烟气和脱硫剂反应充分,停留时间长,脱硫剂循环利用率高; 2. 脱硫塔内无转动部件和易损件,整个装置免维护; 3. 脱硫剂和脱硫渣均为干态,系统设备不会产生粘结、堵塞和腐蚀等现象; 4. 燃烧煤种变化时,无需增加任何设备,仅增加脱硫剂就可满足脱硫效率; 5. 在保证SO2脱除率高的同时,脱硫后烟气露点低,设备和烟道无需做任何防腐措施; 6. 脱硫系统适应锅炉负荷变化范围广,可达锅炉负荷的30%~110%; 7. 脱硫系统简单,装置占地面积小; 8. 脱硫系统能耗低、无废水排放; 9. 投资、运行及维护成本低。

双碱法脱硫的操作

双碱法脱硫的操作 主要工艺过程是:清水池一次性加入氢氧化钠溶剂制成氢氧化钠脱硫液(循环水),用泵打入脱硫除尘器进行脱硫。3种生成物均溶于水。在脱硫过程中,烟气夹杂的烟道灰同时被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水(稀灰浆)。一起流入沉淀池,烟道灰经沉淀定期清除,回收利用,如制内燃砖等。上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;可以回收,是制水泥的良好原料。 因此可做到废物综合利用,降低运行费用。 用NaOH脱硫,循环水基本上是NaOH的水溶液。在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养。 为保证脱硫除尘器正常运行,烟气排放稳定达标,确保脱硫剂有足够使用量是一个关键问题。脱硫剂用量计算如下: 脱硫反应中,NaOH的消耗量是SO2和CO2与其反应的消耗量。用量需要过量5%以上(按5%计算)。 前面计算的10 t/h锅炉烟气中SO2排放量为42 kg/h,CO2排放是为2 161 kg/h。 SO2和CO2中和反应用氢氧化钠量为: (80×42÷64+80×2 161÷44)×105% =4 180 kg 脱硫过程由于NaOH的转换实际消耗是石灰。折算成生石灰消耗量56×4 180÷80=2 926 kg 生石灰日消耗量为70 224 kg 综上所述,脱硫过程的碱消耗量是很大的。但要保证脱硫效率,就必须要保证碱的用量,通过比较双碱法脱硫可以实现脱硫效率高,运行费用相对比较低,操作方便,无二次污染,废渣可综合利用。所以改进后的双碱法脱硫工艺是值得推荐和推广应用的。 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3—; SO2(g)= = = SO2

双碱法脱硫工艺简介

双碱法脱硫装置技术工艺简介 一、常用脱硫法简介 目前主要用于烟气脱硫工艺按形式可分为干法、半干法和湿法三大类。 1.干法 干法常用的有炉内喷钙(石灰/石灰石),金属吸收等,干法脱硫属传统工艺,脱硫率普遍不高(<50%),工业应用较少。 2.半干法 半干法使用较多的为塔内喷浆法,即将石灰制成石灰浆液,在塔内进行SO2吸收,但由于石灰奖溶解SO2的速度较慢,喷钙反应效率较低,Ca/S比较大,一般在1.5以上(一般温法脱硫Ca/S比较为0.9~1.2)。应用也不是很多。 3.湿法 湿法脱硫为目前使用范围最广的脱硫方法,占脱硫总量的80%。漫法脱硫根据脱硫的原料不同又可分为石灰石/石灰法、氨法、钠碱法、钠钙双碱法、金属氧化物法、碱性硫酸铝法等,其中石灰石/石灰法、氨法、钠碱法、钠钙双碱法以及金属氧化物中的氧化镁法使用较为普遍。 3.1石灰石/石灰法 石灰石法采用将石灰石粉碎成200~300目大小的石灰粉,将其制成石灰浆液,在吸收塔内通过喷淋雾化使其与烟气接触,从而达到脱硫的目的。该工艺需配备石灰石粉碎系统与石灰石粉化浆系统,由于石灰石活性较低,需通过增大吸收液的喷淋量,提高液气比,来保证足够的脱硫效率,因此运行费用较高。石灰法是用石灰粉代替石灰石,石灰活性大大高于石灰石,可提高脱硫效率,石灰法主要存在的问题是塔内容易结垢,引起气液接触器(喷头或塔板)的堵塞。 3.2氨法 氨法采用氨水作为SO2的吸收剂,SO2与NH3反应可产生亚硫酸氨、亚硫酸氢氨与部分因氧化而产生的硫酸氨。根据吸收液再生方法的不同,氨法可分为氨—酸法、氨—亚硫酸氨法和氨——硫酸氨法。 氨法主要优点是脱硫效率高(与钠碱法相同),副产物可作为农业肥料。 由于氨易挥发,使吸收剂消耗量增加,脱硫剂利用率不高;脱硫对氨水的浓度有一定的要求,若氨水浓度太低,不仅影响脱硫效率,而且水循环系统庞大,使运

半干法脱硫方案..

烟气脱硫 技术方案

第一章工程概述 1.1项目概况 某钢厂将就该厂烧结机后烟气进行烟气脱硫处理。现烧结机烟气流程为烧结机—除尘器—吸风机—烟囱。除尘器采用多管式除尘器,除尘效率大于90%。主要原始资料如下: 1.2主流烟气脱硫方法 烟气脱硫(简称FGD)是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。 ,就目前国内实际应用工程,FGD其基本原理都是以一种碱性物质来吸收SO 2 按脱硫剂的种类划分,FGD技术主要可分为以下几种方法: 1、以石灰石、生石灰为基础的钙法; 2、以镁的化合物为基础的镁法; 3、以钠的化合物为基础的钠法或碱法; 4、以化肥生产中的废氨液为基础的氨法; 最为普遍使用的商业化技术是钙法,所占比例在90%以上。而其中应用最为广泛的是石灰石-石膏湿法和循环流化床半干法烟气脱硫系统。针对本工程,

我公司将就以上两种脱硫方法分别进行设计、描述,并最终给出两方案比较结果。 1.3主要设计原则 针对本脱硫工程建设规模,同时本着投资少、见效快、系统简单可靠等原则,我方在设计过程中主要遵循以下主要设计原则: 1、脱硫剂采用外购成品石灰石粉(半干法为消石灰粉),厂内不设脱硫剂制备车间。 2、考虑到烧结机吸风机出口烟气含硫浓度为2345 mg/Nm3,浓度并不是很高,在满足环保排放指标的前提下,脱硫装置的设计脱硫效率取≥90%。 3、脱硫装置设单独控制室,采用PLC程序控制方式。同时考虑同主体工程的信号连接。 4、脱硫装置的布置尽可能靠近烟囱以减少烟道的长度,减少管道阻力及工程投资。

第二章石灰石-石膏湿法脱硫方案 2.1工艺简介 石灰石-石膏湿法脱硫工艺是目前世界上应用最为广泛和可靠的工艺。该工艺以石灰石浆液作为吸收剂,通过石灰石浆液在吸收塔内对烟气进行洗涤,发生反应,以去除烟气中的SO2,反应产生的亚硫酸钙通过强制氧化生成含两个结晶水的硫酸钙(石膏)。 图2.1 石灰石-石膏湿法脱硫工艺流程图 工艺流程图如图2.1所示,该工艺类型是:圆柱形空塔、吸收剂与烟气在塔内逆向流动、吸收和氧化在同一个塔内进行、塔内设置喷淋层、氧化方式采用强制氧化。 与其他脱硫工艺相比,石灰石-石膏湿法脱硫工艺的主要特点为: ·脱硫效率高,可达95%以上; ·吸收剂化学剂量比低,脱硫剂消耗少; ·液/气比(L/G)低,使脱硫系统的能耗降低; ·可得到纯度很高的脱硫副产品-石膏,为脱硫副产品的综合利用创造了有利条件; ·采用空塔型式使吸收塔内径减小,同时减少了占地面积; ·采用价廉易得的石灰石作为吸收剂; ·系统具有较高的可靠性,系统可用率可达97%以上;

各种湿法脱硫工艺比较

电厂各种湿法脱硫技术对比优劣一目了然 北极星电力网新闻中心来源:化工707微信作者:小工匠2016/1/18 8:48:31 我要投稿 北极星火力发电网讯:随着我国环境压力逐年增大,国家排放要求进一步收紧,电厂烟气脱硫技术也得到了快速发展。目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。目前,湿法烟气脱硫技术最为成熟,已得到大规模工业化应用,但由于投资成本高还需对工艺和设备进行优化;干法烟气脱硫技术不存在腐蚀和结露等问题,但脱硫率远低于湿法脱硫技术,一般单想电厂都不会选用,须进一步开发基于新脱硫原理的干法脱硫工艺;半干法烟气脱硫技术脱硫率高,但不适合大容量燃烧设备。不同的工况选择最符合的脱硫方法才会得到最大的经济效益,接来下小七根据电厂脱硫技术的选择原则来分析各种工艺的优缺点、适用条件。 电厂脱硫技术的选择原则: 1、脱硫技术相对成熟,脱硫效率高,能达到环保控制要求,已经得到推广与应用。 2、脱硫成本比较经济合理,包括前期投资和后期运营。 3、脱硫所产生的副产品是否好处理,最好不造成二次污染,或者具有可回收利用价值。 4、对发电燃煤煤质不受影响,及对硫含量适用范围广。 5、脱硫剂的能够长期的供应,且价格要低廉 湿法烟气脱硫技术 湿法烟气脱硫技术是指吸收剂为液体或浆液的脱硫技术,最大的优点是反应速度快、脱硫效率高,最大的缺点就是前期投资、后期运行成本高和副产品处理困难。湿法烟气脱硫技术是目前技术最为成熟,也是我国使用最广泛的,据不完全统计, 已建和在建火电厂的烟气脱硫项目中, 90 % 以上采用湿法烟气脱硫技术。 1 石灰石—石膏湿法脱硫工艺 工艺流程

4吨锅炉脱硫除尘设计方案-(布袋+双碱法)要点

4t/h锅炉脱硫除尘 技 术 方 案 环保有限公司

1.概述 1.1项目概况 工厂现有锅炉房现有4燃煤锅炉一台,原有水浴除尘器1台;根据现有环保要求现需要新建配套脱硫设备以使锅炉排放烟气的二氧化硫含量符合GB13271-2014《锅炉大气污染物排放标准》中相关排放标准。 1.2标准要求 执行GB13271-2014《锅炉大气污染物最新排放标准,并考虑未来环保指标在提高上留有余量发展。 2 设计参数及依据 2.1适用情况 本方案设计适用的锅炉为:燃煤、燃烧木梢和二者混合使用的,并使用强制通风的锅炉。产生的烟尘由标准高度和口径的烟囱排放。 2.2抽风量设计 根据锅炉的配套风机的参数选定处理风量: 1吨锅炉: 5000m3/h; 2吨锅炉: 8600m3/h;

4吨锅炉: 12000m 3/h ; 6吨锅炉: 21000m 3/h ; 10吨锅炉: 33000m 3/h 。 3 设计排放标准 3.1本方案设计锅炉的废气排放执行《锅炉大气污染物排放标准》(GWPB3-1999)的二类区II 时段标准。具体指标见表3-2。 表3-2 (GWPB3-1999)《锅炉大气污染物排放标准》相关标准 4 处理工艺 4.1要求达到的废气净化效率 除尘效率达到99%以上,脱硫效率达到90%以上。 区域类别 烟(粉)尘浓度 mg/Nm 3 SO 2 mg/Nm 3 烟气黑度(林格曼级) 烟囱最低允许高度(米) 二 200 900 1 1吨 25 2吨 30 4吨 35 6吨 35 10吨 40

4.2处理工艺 根据大多数锅炉使用企业的现场情况,产用一级气箱脉冲袋式除尘器除尘和一级旋流板吸收塔双碱法脱硫的二级除尘脱硫工艺,治理工艺简图如下: 水泵 4.3 工艺特点 产用一级袋式除尘器除尘,去除烟尘,保证烟尘排放浓度在20mg/m 3以下,使烟气中仅含有二氧化硫和及少量可忽略不计的烟尘,再经过高效的旋流板吸收塔脱硫去除氧化硫,众所周知,旋流板吸收塔的脱硫效率可达到90%以上,并随板塔级数的增加而增加。 4.4 双碱脱硫法技术特点 双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。传统的石灰石/ 石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。结垢堵塞问题严重影响脱硫系统的正常运行, 更甚者严重影响锅炉系统的正常运行。为了尽量避免用钙基脱硫剂 烟囱 排放 旋流板吸收 塔 气箱脉冲袋 式除尘器 锅炉炉 废气 双碱法 循环水池 风机

有图有真相-干法、半干法、湿法脱硫-太详细

脱硫工艺是用湿法、半湿法还是干法,看完这篇就知道了 导读 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。 湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术

优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 技术路线 A、石灰石/石灰-石膏法

原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 B 、间接石灰石-石膏法:

常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。 原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收 SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C、柠檬吸收法: 原理:柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。

双碱法脱硫工艺

双碱法脱硫工艺 双碱法脱硫工艺技术是目前应用成熟的一种烟气脱硫技术,尤其是在小热电燃煤锅炉烟气污染治理方面应用较为广泛。 脱硫剂初步采用氢氧化钠溶液(含30%NaOH)和生石灰(含90%CaO)。 其工艺原理是:以NaOH溶液为第一碱吸收烟气中的二氧化硫,然后再用生石灰加水熟化成氢氧化钙溶液作为第二碱,再生吸收液中NaOH,副产物为石膏。再生后的吸收液送回脱硫塔循环使用。 各步骤反应如下: 吸收反应: SO2+2NaOH=Na2SO3+H2O Na2SO3+SO2+H2O=2NaHSO3 副反应如下: Na2SO3+1/2O2=Na2SO4 由于硫酸钠是很难再生还原的,一旦生成就需要补充NaOH。 再生反应 用氢氧化钙溶液对吸收液进行再生 2NaHSO3+Ca(OH)2=Na2SO3+CaSO3·1/2H2O+3/2H2O Na2SO3+Ca(OH)2+1/2H2O=2NaOH+CaSO3·1/2H2O 氧化反应 CaSO3·1/2H2O+1/2O2=CaSO4·1/2H2O 本双碱法脱硫系统主要由脱硫塔系统(含烟气除雾)、烟气系统、吸收剂供应及制备系统、脱硫液循环及再生系统、脱硫渣处理系统、工艺水系统和电气及仪表控制系统等组成。 技术特点

(1)从技术、经济及装置运行稳定性、可靠性上考虑采用生石灰和氢氧化钠作为脱硫剂,保证系统脱硫效率最低可达90%。 (2)采用双碱法脱硫工艺,可以基本上避免产生结垢堵塞现象,减少昂贵的NaOH耗量和降低运行费用。 (3)采用喷雾洗涤方式可在较小的液气比下获得较大的液气接触面积,进而获得较高的脱硫除尘效率;并且,较小的液气比可以减少循环液量,从而减少循环泵的流量,降低了运行成本也减少了造价。 (4)为确保整个系统连续可靠运行,采用优良可靠的设备,以确保脱硫系统的可靠运行. (5)按现有场地条件布置脱硫系统设备,力求紧凑合理,节约用地。 (6)最大限度的把脱硫水循环利用,但是由于烟气中含有一定浓度的盐份和Cl离子,反应塔内部分水分蒸发,因此形成循环水中盐和Cl离子的积累,由于过高的盐和Cl离子浓度会降低脱硫效率和腐蚀反应装置,所以必须调整脱硫循环水水质并补充少量工业用水。 双碱法脱硫优点 (1)用NaOH脱硫,循环浆液基本上是NaOH的水溶液,在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养; (2)吸收剂的再生和脱硫渣的沉淀发生在塔外,这样避免了塔内堵塞和磨损,提高了运行的可靠性,降低了操作费用;同时可以用高效的板式塔或填料塔代替空塔,使系统更紧凑,且可提高脱硫效率; (3)钠基吸收液吸收SO2速度快,故可用较小的液气比,达到较高的脱硫效率,一般在90%以上; (4)对脱硫除尘一体化技术而言,可提高石灰的利用率。

相关主题
文本预览
相关文档 最新文档