当前位置:文档之家› 多目标规划在条件微分方程组中的应用

多目标规划在条件微分方程组中的应用

多目标规划在条件微分方程组中的应用
多目标规划在条件微分方程组中的应用

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用 这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为9 1006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 ) 1961(02.09 e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人 口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点). 但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改. 例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地

常微分方程的实际应用

常微分方程的实际应用 于萍 摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。 关键字:常微分方程,几何,机械运动,电磁振荡,应用

Abstract: Nomal differential equation is an important part of math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, solute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process. Key: Normal differetial equation geometry mechanics electrothermal use

运筹学第四章多目标规划

习题四 4.1 分别用图解法和单纯形法求解下述目标规划问题 (1) min z =p 1(+1d ++2d )+p 2-3d st. -x 1+ x 2+ d -1- d + 1=1 -0.5x 1+ x 2+ d - 2-d + 2=2 3x 1+3x 2+ d -3- d +3=50 x 1,x 2≥0;d -i ,d +i ≥0(i =1,2,3) (2) min z =p 1(2+1d +3+2d )+p 2-3d +p 3+4d st. x 1+ x 2+d -1-d + 1 =10 x 1 +d -2-d +2 =4 5x 1+3x 2+d -3-d +3 =56 x 1+ x 2+d -4-d +4 =12 x 1,x 2≥0;d -i ,d +i ≥0(i =1, (4) 4.2 考虑下述目标规划问题 min z =p 1(d +1+d +2)+2p 2d -4+p 2d -3+p 3d -1 st. x 1 +d -1-d +1=20 x 2+d -2-d +2=35 -5x 1+3x 2+d - 3-d + 3=220 x 1-x 2+d -4-d +4=60 x 1,x 2≥0;d -i ,d +i ≥0(i =1, (4) (1)求满意解; (2)当第二个约束右端项由35改为75时,求解的变化; (3)若增加一个新的目标约束:-4x 1+x 2+d -5-d +5=8,该目标要求尽量达 到目标值,并列为第一优先级考虑,求解的变化; (4)若增加一个新的变量x 3,其系数列向量为(0,1,1,-1)T ,则满意解如何变化? 4.3 一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间。依据法律,该台每天允许广播12小时,其中商业节目用以赢利,每小时可收入250美元,新闻节目每小时需支出40美元,音乐节目每播一小时费用为17.50美元。法律规定,正常情况下商业节目只能占广播时间的20%,每小时至少安排5分钟新闻节目。问每天的广播节目该如何安排?优先级如下: P 1:满足法律规定要求; P 2:每天的纯收入最大。 试建立该问题的目标规划模型。

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

偏微分方程的应用

偏微分方程在生物学上的应用 刘富冲pb06007143 1偏微分方程的发展 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,物理学中的许多基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 2偏微分方程的应用 在科技和经济发展中,很多重要的实际课题都需要求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出比较准确的预计。 随着电子计算机的出现及计算技术的发展,电子计算机成为解决这些实际课题的重要工具。但是有效地利用电子计算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。 对相应的偏微分方程模型进行定性的研究。 根据所进行的定性研究,寻求或选择有效的求解方法。 编制高效率的程序或建立相应的应用软件,利用电子计算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了重大的贡献。 下面主要讲一下大家比较熟悉的人口问题及传染病动力学问题,详细阐述偏微分方程在解决实际问题中的应用。

常微分方程在高中物理中的应用

微分方程在高中物理中的应用 高中阶段,我们经常会遇到一些需要定性分析的物理问题,其实如果我们应用高等数学 的知识,可以把其中一些问题进行定量的分析。 例如,质量为m 的物体从高度H 自由下落,所受阻力f 与速度v 成正比,g 为重力加速 度这是我们平时常见的一类问题。但我们只知道速度V 最终会趋近于某一数值v0。下面我 进行一下定量分析。 根据题目所给信息,可列出动力学方程 mg-kv=ma ① a=dv/dt ② 结合①式可得mg-kv=mdv/dt 这里移项可得dt=mdv/(mg-kv)③ 两边同时积分便可的到 V=mg(ce*(-kt/m)+1)/k 又∵自由下落,可得t=0时v=.0 ∴v=mg(1-e*(-kt/m))/k ④ 由④式知,当t 趋近于正无穷时,e*(-kt/m)=0, 此时v=mg/k ⑤ 若按照正常思路,当物体受力平衡时,mg=kv,此时也能得到⑤式的结论。 而在高考中,更为常见的是在电磁场中的同类问题,我们不妨看一下下面这一道例题 (2012·山东理综)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹 角为θ,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B 。将质量为m 的导 体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的 拉力,并保持拉力的功率为P ,导体棒最终以2v 的速度匀速运动。导体棒始终与导轨垂直 且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项正 确的是 A .P =2mg sin θ B .P =3mg sin θ C .当导体棒速度达到v /2时加速度为12 g sin θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力 所做的功 我们根据题目也可以列出动力学方程 Mgsin θ-B*2L*2V/R=ma ① a=dv/dt ② 同样可以解得v=(mgR sin θ/B*2L*2)(1-e*(-B*2L*2t/mR))③ 从③式可以看出当t 趋近于正无穷时,v=mgR sin θ/B*2L*2即B*2L*2v/R=mg sin θ转化而来。 所以题目中所说当速度到达V 时开始匀速运动存在明显错误。应改为近似于做匀速直线运 动。

Excel规划求解工具在多目标规划中的应用

Excel规划求解工具在多目标规划中的应用 摘要:多目标决策方法是从20世纪70年代中期发展起来的一种决策分析方法。该方法已广泛应用于人口、环境、教育、能源、交通、经济管理等多个领域。文章采用多目标决策方法中分层序列法的思想,应用excel的规划求解工具,对多目标规划问题进行应用研究,并以实例加以说明。 abstract: multi-objective decision method is a kind of decision analysis method from the mid 1970s. the method has been widely used in population, environment, education,energy, traffic, economic management, and other fields. this paper uses the lexicographic method of multi-objective decision method and makes some researches on the multi-objective problem using the excel solver tool and an example to illustrate. 关键词: excel规划求解;多目标规划;分层序列法 key words: excel solver;multi-objective programming;the lexicographic method 中图分类号:tp31 文献标识码:a 文章编号:1006-4311(2013)21-0204-02 0 引言 excel中的规划求解工具只能对单目标的问题进行求解。当遇到多目标问题时,可以把多目标问题先转化为单目标问题,然后求解。

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

微分方程在经济学中的应用

第四节 微分方程在经济学中的应用 微分方程在经济学中有着广泛的应用,有关经济量的变化、变化率问题常转化为微分方程的定解问题.一般应先根据某个经济法则或某种经济假说建立一个数学模型,即以所研究的经济量为未知函数,时间t 为自变量的微分方程模型,然后求解微分方程,通过求得的解来解释相应的经济量的意义或规律,最后作出预测或决策,下面介绍微分方程在经济学中的几个简单应用. 一、 供需均衡的价格调整模型 在完全竞争的市场条件下,商品的价格由市场的供求关系决定,或者说,某商品的供给量S 及需求量D 与该商品的价格有关,为简单起见,假设供给函数与需求函数分别为 S =a 1+b 1P , D =a -bP , 其中a 1,b 1,a ,b 均为常数,且b 1>0,b >0;P 为实际价格. 供需均衡的静态模型为 ?? ???=+=-=).()(,,11P S P D P b a S bP a D 显然,静态模型的均衡价格为 P e =1 1b b a a +-. 对产量不能轻易扩大,其生产周期相对较长的情况下的商品,瓦尔拉(Walras )假设:超额需求[D (P )-S (P )]为正时,未被满足的买方愿出高价,供不应求的卖方将提价,因而价格上涨;反之,价格下跌,因此,t 时刻价格的变化率与超额需求D -S 成正比,即 t P d d =k (D -S ),于是瓦尔拉假设下的动态模型为 ??? ????-=+=-=)].()([), (),(11P S P D k t P t P b a S t bP a D d d 整理上述模型得 t P d d =λ(P e -P ), 其中λ=k (b +b 1)>0,这个方程的通解为 P (t )=P e +C e -λt . 假设初始价格为P (0)=P 0,代入上式得,C =P 0-P e ,于是动态价格调整模型的解为 P (t )=P e +(P 0-P e )·e -λt , 由于λ>0,故 lim ()t P t →+∞=P e . 这表明,随着时间的不断延续,实际价格P (t )将逐渐趋于均衡价格P e . 二、 索洛(Solow)新古典经济增长模型

最新常微分方程及其应用

常微分方程及其应用

第5章常微分方程及其应用 习题5.2 1.求下列各微分方程的通解: (1)?Skip Record If...?;(2)?Skip Record If...?; (3)?Skip Record If...?;(4)?Skip Record If...?; (5)?Skip Record If...?;(6)?Skip Record If...?. 2.求下列各微分方程满足所给初始条件的特解: (1)?Skip Record If...?,?Skip Record If...?;(2)?Skip Record If...?,?Skip Record If...?; (3)?Skip Record If...?,?Skip Record If...?;(4)?Skip Record If...?,?Skip Record If...?; (5)?Skip Record If...?,?Skip Record If...?;(6)?Skip Record If...?,?Skip Record If...?. 5.3 可降阶微分方程及二阶常系数线性微分方程 案例引入求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 两边再积分,得?Skip Record If...? 所以,原方程的通解为?Skip Record If...?,其中?Skip Record If...?为任意常数. 5.3.1 可降阶微分方程 仅供学习与交流,如有侵权请联系网站删除谢谢20

1. 形如?Skip Record If...?的微分方程 特点:方程右端为已知函数?Skip Record If...?. 解法:对?Skip Record If...?连续积分?Skip Record If...?次,即可得含有 ?Skip Record If...?个任意常数的通解. 2. 形如?Skip Record If...?的微分方程 特点:方程右端不显含未知函数?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即?Skip Record If...?.两边积分,即可得原方程通解?Skip Record If...?,其中?Skip Record If...?为任意常数. 3. 形如?Skip Record If...?的微分方程 特点:方程右端不显含自变量?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即 ?Skip Record If...?.分离变量,得?Skip Record If...?.然后两边积分,即可得原方程通解 ?Skip Record If...?,其中?Skip Record If...?为任意常数.例5-7求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢20

微分方程在物理中的应用

微分方程在大学物理中的应用 一.质点运动学和牛顿运定律中的运用 1.质点运动:a=dV/dt “dV/dt”是“速度随时间的变化率”-----就是加速度。(微分、又称“速度V的导数”) 写成表达式:a=dV/dt---------(1) X表示位移,“dX/dt”就是“位移随时间的变化率”-----就是速度。 写成表达式:V=dX/dt---------(2) 把(1)代入(2)得:a=(d^2 X)/(dt^2)-------这就是“位移对时间”的“二阶导数”。 实际上,(d^2 v)/(dt^2)就是“dv/dt (加速度)”对时间再次“求导”的结果。 d(dV/dt)/dt 就是把“dV/dt”再次对时间求导。-------也可以说成是“速度V对时间t的二阶导数”。 典型运用:圆周运动向心加速度公式推导(微分思想) 2.牛顿第二定律:F=d p/dt=d(m v)/dt=md v/dt=ma 动量为p的物体,在合外力F的作用下,其动量随时间的变化率应当等于物体的合外力。 典型运用:自由落体运动公式的推导 f=d(mv)/dt,得mg=mdv/dt,得g=dv/dt=ds^2/d^2t,求s t关系用右边的,把下面的分母乘过去,积分两次,就得到0.5gt^2=s; 例题:一物体悬挂在弹簧上做竖直振动,其加速度a=-ky,式中k为常量,y是以平衡位置为原点所测得的坐标。假设振动的物体在坐标y0处的速度为v0,试求速度v与坐标y的函数关系式。 3.简谐运动(单摆复摆问题):弹簧振子的运动为例,

回复力:F= -kx 加速度:a=F/m=-kx/m 对于给定的弹簧振子有w^2=k/m 则有a=dv/dt=d^2 v/dt^2= -w^2x 其解为x=Acos(wt+h) 然后v=dx/dt,a=dv/dt推导出相应公式。(物理书上原文) 下面我们求一下a=dv/dt=d^2 v/dt^2= -w^2x的解。 还有在动量守恒定律、能量守恒定律以及刚体转动中等各个反面的运用。

§18运用目标达到法求解多目标规划

§18. 运用目标达到法求解多目标规划 用目标达到法求解多目标规划的计算过程,可以通过调用Matlab软件系统优化工具箱中的fgoalattain函数实现。 在Matlab的优化工具箱中,fgoalattain函数用于解决此类问题。其数学模型形式为: minγ F(x)-weight ·γ≤goal c(x) ≤0 ceq(x)=0 A x≤b Aeq x=beq lb≤x≤ub 其中,x,weight,goal,b,beq,lb和ub为向量;A和Aeq为矩阵;c(x),ceq(x)和F(x)为函数。 调用格式: x=fgoalattain(F,x0,goal,weight) x=fgoalattain(F,x0,goal,weight,A,b) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq) 134

x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2) [x,fval]=fgoalattain(…) [x,fval,attainfactor]=fgoalattain(…) [x,fval,attainfactor,exitflag,output]=fgoalattain(…) [x,fval,attainfactor,exitflag,output,lambda]=fgoalattain(…) 说明:F为目标函数;x0为初值;goal为F达到的指定目标;weight为参数指定权重;A、b为线性不等式约束的矩阵与向量;Aeq、beq为等式约束的矩阵与向量;lb、ub为变量x的上、下界向量;nonlcon为定义非线性不等式约束函数c(x)和等式约束函数ceq(x);options中设置优化参数。 x返回最优解;fval返回解x处的目标函数值;attainfactor返回解x处的目标达到因子;exitflag描述计算的退出条件;output返回包含优化信息的输出参数;lambda返回包含拉格朗日乘子的参数。 例1:教材第6章第4节第二小节,即生产计划问题: 某企业拟生产A和B两种产品,其生产投资费用分别为2100元/t和4800元/t。A、B两种产品的利润分别为3600元/t和6500元/t。A、B产品每月的最大生产能力分别为5t和8t;市场对这两种产品总量的需求每月不少于9t。试问该企业应该如何安排生产计划,才能既能满足市场需求,又节约投资,而且使生产利润达到最大最。 135

运筹学--第四章 多目标规划汇总

习题四 4.1 分别用图解法和单纯形法求解下述目标规划问题 (1)min z =p1(+)+p2 st. -x1+ x2+ d-1- d+1=1 -0.5x1+ x2+ d-2-d+2=2 3x1+3x2+ d-3- d+3=50 x1,x2≥0;d-i,d+i≥0(i =1,2,3) (2) min z =p1(2+3)+p2+p3 st. x1+ x2+d-1-d+1 =10 x1 +d-2-d+2 =4 5x1+3x2+d-3-d+3 =56 x1+ x2+d-4-d+4 =12 x1,x2≥0;d-i,d+i ≥0(i =1, (4) 4.2 考虑下述目标规划问题 min z =p1(d+1+d+2)+2p2d-4+p2d-3+p3d-1 st. x1 +d-1-d+1=20 x2+d-2-d+2=35 -5x1+3x2+d-3-d+3=220 x1-x2+d-4-d+4=60 x1,x2≥0;d-i,d+i ≥0(i =1, (4) (1)求满意解; (2)当第二个约束右端项由35改为75时,求解的变化;

(3)若增加一个新的目标约束:-4x1+x2+d-5-d+5=8,该目标要求尽量达到目标值,并列为第一优先级考虑,求解的变化; (4)若增加一个新的变量x3,其系数列向量为(0,1,1,-1)T,则满意解如何变化? 4.3 一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间。依据法律,该台每天允许广播12小时,其中商业节目用以赢利,每小时可收入250美元,新闻节目每小时需支出40美元,音乐节目每播一小时费用为17.50美元。法律规定,正常情况下商业节目只能占广播时间的20%,每小时至少安排5分钟新闻节目。问每天的广播节目该如何安排?优先级如下: P1:满足法律规定要求; P2:每天的纯收入最大。 试建立该问题的目标规划模型。 4.4 某企业生产两种产品,产品Ⅰ售出后每件可获利10元,产品Ⅱ售出后每件可获利8元。生产每件产品Ⅰ需3小时的装配时间,每件产品Ⅱ需2小时装配时间。可用的装配时间共计为每周120小时,但允许加班。在加班时间内生产两种产品时,每件的获利分别降低1元。加班时间限定每周不超过40小时,企业希望总获利最大。试凭自己的经验确定优先结构,并建立该问题的目标规划模型。 4.5 某厂生产A、B两种型号的微型计算机产品。每种型号的微型计算机均需要经过两道工序I、II。已知每台微型计算机所需要的加工时间、销售利润及工厂每周最大加工能力的数据如下: A B每周最大加工能力 I 4 6 150 II 3 2 70 利润(元/台)300 450 工厂经营目标的期望值及优先级如下: P1:每周总利润不得低于10000元;

常微分方程及其应用

第5章 常微分方程及其应用 习题5.2 1.求下列各微分方程的通解: (1)02 =+ydy dx x ; (2)0ln =-'y y y x ; (3)0)()(2 2 =-++dy y x y dx x xy ; (4)03=-'xy y ; (5)x e y y =-'2; (6)x x y y cos tan +='. 2.求下列各微分方程满足所给初始条件的特解: (1)y x e y -='2,0)0(=y ; (2) 011=+-+dy x y dx y x ,1)0(=y ; (3)x y y cos =-',0)0(=y ; (4)x x y y sec tan =-',0)0(=y ; (5)x x x y y sin = + ',1)(=πy ; (6)()0122 =+-+dx x xy dy x ,0)1(=y . 5.3 可降阶微分方程及二阶常系数线性微分方程 案例引入 求微分方程x y 6=''的通解. 解 两边积分,得12 36C x xdx y +=='? 两边再积分,得 () 21312 3C x C x dx C x y ++=+= ? 所以,原方程的通解为213 C x C x y ++=,其中21C C 、为任意常数. 5.3.1 可降阶微分方程 1. 形如)() (x f y n =的微分方程 特点:方程右端为已知函数)(x f . 解法:对)() (x f y n =连续积分n 次,即可得含有n 个任意常数的通解. 2. 形如),(y x f y '=''的微分方程 特点:方程右端不显含未知函数y .

解法: 令)(x p y =',则)(x p y '=''.于是,原方程可化为),(p x f p ='.这是关于 p p ',的一阶微分方程.设其通解为),()(1C x x p ?=,即),(1C x y ?='.两边积分,即可 得原方程通解21),(C dx C x y +=? ?,其中21C C 、为任意常数. 3. 形如),(y y f y '=''的微分方程 特点:方程右端不显含自变量x . 解法:令)(y p y =',则dy dp p dy dp y dx dy dy dp y ='=?= ''.于是,原方程可化为 ),(p y f p p ='.这是关于p p ',的一阶微分方程.设其通解为),()(1C y y p ψ=,即 ),(1C y dx dy ψ=.分离变量,得 dx C y dy =),(1 ψ.然后两边积分,即可得原方程通解 21) ,(C x C y dy +=? ψ,其中21C C 、为任意常数. 例5-7 求微分方程x x y cos sin -='''的通解. 解 两边积分,得12sin cos )cos (sin C x x dx x x y +--=-=''? 两边再积分,得()2 1 1 2cos sin 2sin cos C x C x x dx C x x y +++-=+--=? 第三次积分,得()322 121sin cos 2cos sin C x C x C x x dx C x C x x y ++++=+++-= ? 所以,原方程的通解为322 1sin cos C x C x C x x y ++++=,其中321C C C 、、为常数. 例5-8 求微分方程0='-''y y x 的通解. 解 令)(x p y =',则)(x p y '=''.原方程可化为0=-'p p x ,即01 =-'p x p .这是关于p p ',的一阶线性齐次微分方程.其通解为: x C e C e C x p x dx x 1ln 11 1222)(==?=,即x C y 12='.两边积分,即得原方程通解

浅谈常微分方程的数值解法及其应用[文献综述]

毕业论文文献综述 信息与计算科学 浅谈常微分方程的数值解法及其应用 一、前言部分 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解. 后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论. 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型等.因而微分方程的研究是与人类社会密切相关的. [1] “常微分方程”是理学院数学系所有专业学生的重要专业基础课之一,也是工科、经济等专业必学内容之一.其重要性在于它是各种精确自然科学、社会科学中表述基本定律和各种问题的根本工具之一,换句话说,只要根据实际背景,列出了相应的微分方程,并且能(数值地或定性地)求出这种方程的解,人们就可以预见到,在已知条件下这种或那种“运动”过程将怎样进行,或者为了实现人们所希望的某种“运动”应该怎样设计必要的装置和条件等等.例如,我们要设计人造卫星轨道,首先,根据力学原理,建立卫星运动的微分方程,列出初始条件,然后求出解,即卫星运行轨道.随着物理科学所研究的现象在广度和深度两方面的扩展,微分方程的应用范围更广泛. [2]从数学自身的角度看,微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展.从这个角度说,微分方程变成了数学的中心. [3]总之,微分方程从它诞生起即日益成为人类认识并进而改造自然、社会的有力工具,成为数学科学联系实际的主要途径之一.文章就常微分的数值解法以及应用展开简单的论述。 二、主体部分 2.1微分方程概念介绍

常微分方程在实际生活中的应用

目录 序言 (2) 一、鉴别名画的真伪 (2) 二、测定考古发掘物的年龄 (6) 三、在军事上的应用 (8) 四、在社会经济中的应用 (13) 五、应用于刑事侦察中死亡时间的鉴定 (16) 六、在人口增减规律中的应用 (17) 结束语 (18) 参考文献 (19)

常微分方程在实际生活中的应用 曹天岩 (渤海大学数学系辽宁锦州 121000 中国) 摘要:现代的科学、技术、工程中的大量数学模型都可以用常微分方程来描述,很多近代自然科学的基本方程本身就是微分方程,从微积分理论形成以来,人们一直用微分方程来描述、解释或预见各种自然现象,不断地取得了显著的成效。 常微分方程来自人类的社会实践,又是解决实际问题的一个最强有力的数学方法,在现实生活中,能用常微分方程研究的实际问题非常多,几乎在人类社会的每一个角落它都展示了无穷的威力,尤其是在工程技术、军事、经济、医学、生物、生态等领域它都发挥着极其重要的作用。所以研究常微分方程对人类社会生活有非常重要的意义和很实用的价值。本文介绍了利用常微分方程的知识和放射性物质可以衰变的特性来鉴别名画的真伪。利用放射现象测定考古发掘物的年龄,利用常微分方程了解深水炸弹在水下的运动,也就是其在军事上的应用,利用常微分方程对社会经济进行分析研究,利用牛顿冷却定律和常微分方程的知识对刑事侦察中死亡时间的鉴定,以及常微分方程在人口增减规律中的应用等几部分内容。 关键词:常微分方程应用解. Application of ordinary differential equation in actual life Cao Tianyan (Department of Mathsmatic Bohai University Liaoning Jinzhou 121000 China) Abstract:A great deal of mathematics models in science,technique,engineering of the summary modern all can use a differential calculus a square distance to often describe, the basic and square distance of a lot of modern natural sciences is a differential calculus square distance, from the calculus theories formation, people had been use a square distance of differential calculus to describe,explain or foresee various natural phenomena, obtaining to show the result of the constantly. Often differential calculus the square distance come from the mankind's social fulfillment, is the most powerful mathematics method that resolves an actual problem again, can use a differential calculus a square distance to often study in the realistic life of the actual problem is quite a few, almost at mankind each corner of the society display endless of power is in the realms, such as engineering technique,military,economy,medical science,living creature and ecosystem...etc. particularly it develops a very and important function.So research often differential calculus the square distance have count for much meaning to mankind's social activities with the very practical value.This text introduced to make use of differential calculus often the knowledge and the radio material of the square distance can be change with of characteristic to discriminate a painting of true false.Make use of emanation the phenomenon measurement to study of ancient relics age of discover the thing, make use of a differential calculus a square distance understanding often deeply the water bomb at underwater of sport be also it to apply militarily, make use of often differential calculus the square distance is to the social economy carry on analysis research, make use of Newton to cool off laws and often differential calculus the pertaining to crime for the knowledge of the square distance is on the scout to die time of authenticate, and often differential calculus the square distance is in the population increase or decrease the application in the regulation to wait several parts of contentses. Key Words: Ordinary differential equation application solution

相关主题
相关文档 最新文档