当前位置:文档之家› 大跨径预应力混凝土连续刚构桥

大跨径预应力混凝土连续刚构桥

大跨径预应力混凝土连续刚构桥
大跨径预应力混凝土连续刚构桥

大跨径预应力混凝土连续刚构桥

的现状和发展趋势

周军生楼庄鸿

摘要:阐述了连续刚构桥是大跨径梁桥发展的必然趋势,以及要解决的防止过大温度应力及防止船撞的措施;收集和分析了国内外大跨径连续刚构桥的数据和资料,论述了上部构造轻型化和取消落地支架合拢边跨等趋势。

关键词:连续刚构;双壁墩身;上部构造轻型化

分类号:U448.23文献标识码:A

文章编号:1001-7372(2000)01-0031-07

The status quo and developing trends of large-span prestressed concrete bridges with continuous rigid frame structure

ZHOU Jun-sheng LOU Zhuang-hong

(Beijing Jianda Road & Bridge Consulting Company, Beijing 100101,

China)

Abstract:Adopting the structure of continuous rigid frame in construction of large-span beam bridge is an inevitable developing trend. The measures for decreasing temperature stress and protecting piers from vessel impacting are described. The data from some of domestic and overseas large-span beam bridges with continuous rigid frame structure are given and analyzed. The superstruture-lightening and non-drop-construction for closing-up of side span are discussed in the paper.

Key words:continuous rigid fram; pier with double wall;

superstructure-lightening

1 大跨径混凝土梁式桥的发展趋势

随着高速交通的迅速发展,要求行车平顺舒适,多伸缩缝的T型刚构也不能很好满足要求,因此连续梁得到了迅速的发展。悬臂施工时,梁墩临时固结,合拢后梁墩处改设支座,转换体系而成连续梁。连续梁除两端外其他无伸缩缝,有利于行车,但需梁墩临时固结和转换体系;同时需设大吨位盆式支座,费用高,养护工作量大。于是连续刚构应运而生,近年来得到较快的发展。其结构特点是梁体连续、梁墩固结,既保持了连续梁无伸缩缝、行车平顺的优点,又保持了T型刚构不设支座、不需转换体系的优点,方便施工,且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足特大跨径桥梁的受力要求。国内外一些大跨径的连续刚

构桥,详见表1、2。

表1 国外大跨径混凝土连续刚构桥(L≥190 m)

表2 中国大跨径混凝土连续刚构桥(L≥120 m)

2连续刚构桥要解决的两个特殊问题

2.1 减小温度内力

2.1.1 减小墩的抗推刚度

墩的抗推刚度小,温度内力就小。一般连续刚构适用于高墩的场合;如果墩身不够高,也可设计成柔性的桩基,使墩具有较小的抗推刚度。

在墩身的布置上,一般采用双壁墩身,其抗推刚度仅为墩身绕自身形心轴抗推刚度之和,而不是绕桥墩中心线的抗推刚度,因而较小。双壁墩也可减小梁的负弯矩峰值,而且又有较大的抗弯刚度,除墩身绕自身形心轴的抗弯刚度之和外,还有更大的双壁形成的抗弯刚度,可以保持桥面的平整。双壁墩身一般为箱形截面,近来有往单室箱方向发展的趋势(图1)。在跨径小于120 m,双壁墩身可为工字形截面,或矩形截面。国外跨径228.6 m的美国Houston运河桥,则采用了刚性墩,是比较少有的连续刚构墩身形式。

图1 双壁墩身截面/cm

2.1.2 连续刚构总长不宜过大

随着设计水平的提高,连续刚构长度不断增大,目前国内最长的连续刚构是黄石长江大桥,跨径是162.5 m+3×245 m+162.5 m,全长1 060 m。在条件适宜下,总长可以进一步增大到1 200 m或更长。

为了防止温度内力过大,连续刚构总长不宜过大。在某些场合下,可以采用连续刚构与连续梁桥相结合的结构体系。中国东明黄河大桥跨径75 m+7×120 m+75 m,由于墩高仅9.1 m,8个主墩中,中间4个墩梁墩固结,为连续刚构;两侧各2个墩上设滑动支座,为连续梁,成为连续刚构和连续梁相结合的结构体系,可以减小温度内力。

2.2 防止船只碰撞

江河中的连续刚构双壁墩,通常不能承受船撞力的直接撞击,必须采取措施,防止船只碰撞。

中国的连续刚构桥,曾采用以下几种防撞措施:

2.2.1 墩周设人工刚性防撞岛

中国洛溪大桥采用这种防撞措施,用Y形沉井,下沉后封底,内部填土,既作为桩基的施工场地,又作为防撞结构,确保主墩墩身不直接承受船撞。其缺点是沉井下沉要有一定的时间,桩基施工必须在沉井封底填土后进行,工期较长,而且费用较大。

2.2.2 墩周设柔性消能防撞设施

中国黄石长江大桥采用这种防撞措施,在墩周设钢架,放置护舷,依靠护舷和钢架的局部损坏来消能,使消能后作用在主墩上的力能为其承受。

2.2.3 分离式防撞岛

中国虎门大桥辅航道桥采用这种防撞措施。在墩的上下游处设人工防撞岛,为直径25 m的钢围堰,下沉到风化岩面,壁内用填石压浆混凝土。与主墩距离55 m。分离式防撞岛在承受设计船撞力时,允许出现一定程度的破坏,日后再行修复,以减少费用。这种防撞措施最大的优点是桩基施工与防撞岛无关,可以独立施工,加快工期,但费用仍较贵,可以考虑在某些场合下,仅在墩上游设防撞岛,而使墩的设计能承受逆流而上的较小船撞力,以减低防撞结构的造价。

3 几座著名的连续刚构桥简介

国外澳大利亚修建了2座跨径200 m以上的连续刚构桥,其中最著名的是1985年建成的门道(Gateway)桥(图2),跨径145 m+260 m+145 m,保持世界第一达12年之久。该桥墩高47.5 m,双壁墩身为三室箱,宽2.5 m,壁厚纵向0.5 m,横向中壁厚0.5 m,外壁厚1 m;主梁为单室箱,箱高跨中5.2 m,根部15.68 m,箱顶宽21.93 m,底宽12 m;顶板厚0.25 m,底板厚跨中0.3 m,根部1.8,腹板厚0.65~0.75 m,用C-40圆柱体抗压强度混凝土(折合标号50#混凝土)。连续刚构边跨悬臂与引桥悬出部分(16 m)之间,以不约束水平变位的钢箱装置连接。该装置不能传递轴向力,而能承受剪力与弯矩,施工具有相当难度。

图2 澳门道(Gateway)桥/cm

1998年底建成的挪威Raft Sundet桥(图3),结合地形地质布置桥型,4跨,跨径86 m+202 m+298 m+125 m,全长711 m。跨径现居世界首位。位于R=3 000 m的平曲线上。该桥有以下两个特点:

图3 挪威Raft Sundet桥/mm

3.1 采用轻质高强混凝土

主梁采用C60~C65(根部)高强混凝土;主跨298 m的梁,其中部224

m采用轻质混凝土,以减轻自重。

3.2 截面非常轻型

主跨梁为单室箱,箱高跨中为3.5 m,根部14.5 m,零号块14.9 m。

箱顶宽10.3 m,底宽7 m。顶板跨中28 cm,L/4到跨中42 cm,零号块

110 cm。底板跨中26 cm,根部120 cm,零号块160 cm。腹板厚30~40

cm,零号块55 cm。无论箱高、底腹板厚度,均比跨径稍小的门道(Gateway)

桥小,显示了特大跨径连续刚构桥采用轻质混凝土的巨大优越性。

洛溪大桥(图4)是中国第一座大跨径连续刚构桥。跨径65 m+125

m+180 m+110 m。双壁墩身,墩身箱形截面,宽2.2 m。主梁为单室箱,

箱高跨中3 m,根部10 m。箱梁顶宽15.14 m,底宽8 m。顶板厚28 cm,

底板厚跨中32 cm,根部120 cm,腹板厚50~70 cm,在该桥上中国第

一次采用大吨位预应力体系和平弯束,是中国连续刚构桥迅速发展的一

个重要开端。

图4 广东洛溪大桥/cm

虎门大桥辅航道桥(图5)是中国主跨最大的连续刚构桥,位于R=7 000 m的平曲线上,跨径150 m+270 m+150 m,1997年4月建成时为该桥型跨径世界之最。但这个记录保持不到两年,就被上述的挪威Ratf Sundet桥所替代。该桥分上、下行桥,墩高35 m,每幅桥双壁墩身中距9 m,墩身为单室箱,宽3 m,壁厚纵横向均为50 cm。主梁为单室箱,箱高跨中5 m,根部14.8 m。箱顶宽15 m,底宽7 m。顶板厚25 cm,底板厚跨中32 cm,根部130 cm。腹板厚40~60 cm,用C55混凝土。无论箱高、底腹板厚度,均比跨径稍小的门道(Gateway)桥要小,显示了设计水平的提高。在预应力束的布置上,彻底取消了弯起束和连续束,仅在边跨梁端有少量钢束因受力需要而部分弯起。已运营两年,至今完好,没有裂缝。

图5 虎门大桥辅航道桥(单位/cm;净空、标号/m)

虎门大桥辅航道桥是中国连续刚构桥发展中又一座重要的桥梁,无论设计、施工、科研上都取得了重要的成果,为中国修建跨径300 m以上的连续刚构作好较充分的技术准备。

4 连续刚构桥发展中的几个问题

4.1 边、主跨跨径比

从表1、表2可见,边、主跨跨径比值在0.5~0.692之间,但0.5仅在下部为刚性墩的美国Houston桥上应用,超过0.6的也仅是少数几座桥,大部分在0.55~0.58之间。

经研究分析表明,边、主跨跨径比在0.54~0.56之间,或再稍大一些时,有可能在边跨悬臂端以导梁支承于边墩上,合拢边跨,而取消落地支架。今后连续刚构边、主跨跨径比,更可能趋向于这个范围。

4.2 梁的截面形式

从表1、表2可见,箱顶宽在21.9 m(门道桥)以下时,基本都采用单室箱。如果顶宽更大,

则往往分上、下行,修成双幅桥,截面为两个分离单室箱,如虎门大桥辅航道桥。

4.3 梁高

从表1、表2可见,连续刚构桥箱梁根部的高跨比为1/15.7~1/20.6,其中大部分为1/18左右,近年来已有一些桥达到甚至低于1/20。

主跨中部箱梁的高跨比为1/46.2~1/85.1,其中大部分为1/54~1/60,并有下降的趋势。中国最小为南澳跨海大桥的1/73.7。

梁高跨比的下降,是上部构造趋于轻型化的表现。最值得注意的是才建成的Raft Sundet桥,由于跨中采用了轻质混凝土,减轻了自重,并选用了较小的跨中高度,使该桥无论是跨中或根部的高跨比都达到了最低值的1/85.1和1/20.6,值得借鉴。

在设计过程中,体会到梁底按一般常用的2次抛物线时,往往在L/4~L/8截面底板混凝土应力紧张,因此在华南大桥的设计中采用1.5次抛物线,从而缓和了这个区域底板应力紧张情况,根部高跨比也已达到1/20,并还有进一步减小根部高度的潜力。珠海大桥的梁底也已用1.8次方的抛物线。采用幂次为1.5~1.8的抛物线,已开始推广采用。

4.4 板厚

4.4.1 顶板

由表1、表2可见,公路桥顶板的厚度,已由28 cm减小为25 cm。但进一步减小的可能已不大。

4.4.2 底板

由表1、表2可见,底板的最小厚度多数为32 cm,少数桥用得更薄,为28、25 cm。底板的最大厚度,随着设计经验的丰富,以及采用高强混凝土,有减薄的趋势。已有几座桥,根部最大底板厚跨比达到或小于1/200,其中以虎门大桥辅航道桥为最小,为1/207.7。中国的连续刚构桥根部最大底板厚跨比,与跨径相似的澳大利亚两座桥相比较,都有相当的减小。值得强调的是挪威的Raft Sundet桥,由于自重轻及采用高强混凝土,其最大底板厚仅120 cm,为跨径的

1/248.3,远远小于中国,足以说明采用轻质混凝土有良好的经济效益。

4.4.3 腹板

由表1、表2可见,腹板的最小厚度一般为40 cm,个别的更小为35 cm,有的采用50 cm

或更大些,最大厚度为55~80 cm,其中虎门大桥辅航道桥采用40~60 cm,比门道大桥65~75 cm 要小不少。

值得注意的是挪威的Raft Sundet桥,其腹板厚度仅30~40 cm,比中国的桥都小,其经验值得借鉴。箱梁板件尺寸的减小,意味着上部构造的轻型化,这是连续刚构桥发展中的又一趋势。因为腹板较薄,其主拉应力的控制应特别重视。

4.5 经济指标

随着上部构造不断轻型化,经济指标不断降低,现将不同年代设计的几座桥的经济指标列于表3。

表3 几座连续刚构桥的经济指标

由表3可见:

(1)华南大桥跨径比洛溪大桥长10 m,其梁高、底腹板厚均比洛溪大桥小,混凝土指标减少21%,钢筋指标减少29%,钢绞线指标减少8%。必须强调的是,洛溪大桥的设计采用大吨位束,当时在设计上是先进的,指标是优越的。能在此基础上把混凝土指标进一步减小20%以上,是非常不易的,充分说明了设计水平的提高和轻型化的经济效益。

(2)虎门大桥辅航道桥跨径比洛溪大桥增大50%,而混凝土指标仅增大6.5%,说明该桥设计是先进的。

4.6边跨的合拢方式

连续刚构桥的上部构造,极大多数采用挂篮悬浇。合拢的顺序基本都是先边跨,后中跨,仅南昆铁路清水河桥,采用先中跨、后边跨的合拢顺序。

边跨的合拢方式有以下几种(图6):

图6 导梁上合拢边跨

4.6.1 落地支架方式

在落地支架上浇筑合拢段,合拢边跨,这是在大多数连续刚构桥上采用的方法。在高墩的情况下,落地支架费材费力,如果支架搭在水中,难度更大,需探索不用落地支架的途径,这是连续刚构桥发展的必然趋势。

4.6.2 导梁方式

在边跨悬臂端设导梁,支承在边墩上,在导梁上挂模板浇筑合拢段(图6)。

为取消落地支架进行探索,结果发现当边、主跨跨径比在0.54~0.56时,边跨支点在任何荷载工况下,总保留有足够的压力,而不出现拉力,因此有可能利用导梁,合拢边跨,而又不过多增加预应力束。这个设想,已经在跨径106 m的太平大桥(边跨59 m)以及跨径120 m(边跨66 m)的金沙大桥中实现,合拢情况良好,取消了落地支架,深受施工部门欢迎。

4.6.3 与引桥悬臂连接合拢

与引桥悬臂连接合拢是取消落地支架的又一种方式。

中国的沅陵沅水大桥,主跨140 m,边跨85 m。其引桥为跨径42 m 的顶推连续梁桥,按(9×42 m)+(42+13.5 m)设两联,其间设有伸缩缝,由预应力束临时连接,顶推就位后解体,悬臂的13.5 m与连续刚构悬臂空中固结,形成85 m+140 m+85 m+42 m的连续刚构,缩短了工期,节省了投资。

澳大利亚的门道桥,边跨的刚构悬臂与引桥的悬臂在距边墩16 m 处,以弹性支承连接。该连接装置为内设钢箱,有盆式滑动支座与刚构与引桥相连,可以传递剪力及一定的弯矩,但不能传递轴向力和不能约

束轴向变位(图2)。

5 连续刚构的发展趋势

5.1 跨径可进一步增大

目前,中国修建连续刚构桥的热潮仍在继续中。跨径280 m的奉节长江大桥的设计正由我公司进行中。我公司在伶仃洋通道横门东航道桥工程中,已提出了跨径318 m的连续刚构方案(图7)。可以预计,在不久的将来,跨径300 m以上的连续刚构桥必须将在中国出现。

图7 伶仃洋通道横门东航道连续刚构方案/cm

5.2 上部构造不断轻型化

结构的轻型化,可以减少上下部构造的自重和材料用量,可以减轻对挂篮的要求,可以经济造价。由于采用大吨位锚具、高强混凝土和轻质混凝土,上部构造不断轻型化,这也是连续刚构桥的发展方向。

5.3 简化预应力束类型

中国连续刚构桥设计中,已有相当多桥取消弯起束和连续束,以竖向预应力和纵向预应力来克服主拉应力,极大地方便了施工,受到施工部门的欢迎。

5.4 取消边跨合拢的落地支架

采用合适的边、主跨比,在导梁上合拢边跨,或与引桥的悬臂相连接来实现合拢。在高墩的场合下,取消落地支架有一定的经济效益,方便了施工。

作者简介:周军生(1969-),男,工程师

作者单位:周军生(北京建达道桥咨询公司,北京100101)

楼庄鸿(北京建达道桥咨询公司,北京100101)

参考文献:

[1]楼庄鸿.国内外大跨径桥梁的现状和发展趋势[J].中南公路工程,1994,(1).

[2]杨高中,等.连续刚构桥在我国的应用和发展[J].公路,1998,(6)—(7).

收稿日期:1999-05-17

大跨径预应力混凝土连续刚构桥

大跨径预应力混凝土连续刚构桥 的现状和发展趋势 周军生楼庄鸿 摘要:阐述了连续刚构桥是大跨径梁桥发展的必然趋势,以及要解决的防止过大温度应力及防止船撞的措施;收集和分析了国内外大跨径连续刚构桥的数据和资料,论述了上部构造轻型化和取消落地支架合拢边跨等趋势。 关键词:连续刚构;双壁墩身;上部构造轻型化 分类号:U448.23文献标识码:A 文章编号:1001-7372(2000)01-0031-07 The status quo and developing trends of large-span prestressed concrete bridges with continuous rigid frame structure ZHOU Jun-sheng LOU Zhuang-hong (Beijing Jianda Road & Bridge Consulting Company, Beijing 100101, China) Abstract:Adopting the structure of continuous rigid frame in construction of large-span beam bridge is an inevitable developing trend. The measures for decreasing temperature stress and protecting piers from vessel impacting are described. The data from some of domestic and overseas large-span beam bridges with continuous rigid frame structure are given and analyzed. The superstruture-lightening and non-drop-construction for closing-up of side span are discussed in the paper. Key words:continuous rigid fram; pier with double wall; superstructure-lightening 1 大跨径混凝土梁式桥的发展趋势 随着高速交通的迅速发展,要求行车平顺舒适,多伸缩缝的T型刚构也不能很好满足要求,因此连续梁得到了迅速的发展。悬臂施工时,梁墩临时固结,合拢后梁墩处改设支座,转换体系而成连续梁。连续梁除两端外其他无伸缩缝,有利于行车,但需梁墩临时固结和转换体系;同时需设大吨位盆式支座,费用高,养护工作量大。于是连续刚构应运而生,近年来得到较快的发展。其结构特点是梁体连续、梁墩固结,既保持了连续梁无伸缩缝、行车平顺的优点,又保持了T型刚构不设支座、不需转换体系的优点,方便施工,且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足特大跨径桥梁的受力要求。国内外一些大跨径的连续刚

高墩大跨超长联连续刚构桥设计

第33卷,第4期2008年8月 公路工程 H ighway Engi n eering V o.l 33,N o .4Aug.,2008 [收稿日期]2008)05)10 [作者简介]曾照亮(1971)),男,湖北钟祥人,硕士,高级工程师,主要从事公路与桥梁研究设计工作。 高墩大跨超长联连续刚构桥设计 曾照亮,王 勇,张安国 (中交第二公路勘察设计研究院有限公司,湖北武汉 430056) [摘 要]以贵州镇(宁)胜(境关)高速公路虎跳河特大桥主桥设计为背景,重点介绍高墩大跨超长联连续刚构的设计特点,如设计时考虑主墩截面特殊设计、合拢时顶推方法解决主梁位移较大及其产生的边主墩较大内力等问题。 [关键词]镇胜高速;虎跳河;高墩;大跨;超长联;连续刚构[中图分类号]U 442.5 [文献标识码]B [文章编号]1002)1205(2008)04)0103)02 Design of Conti nuous R igid Fra m e Bri dge wit h H igh pier , Long Span and Overlong Unit ZENG Zhaoliang ,WANG Yong ,ZHANG Anguo (Cccc Second H i g hw ay Consu ltan ts C o .Ltd ,W uhan ,H ube i 430056,China) [K ey words]zhensheng h i g hw ay ;huti a o river ;high pier ;l o ng span;overl o ng continuous un i;t continuous rig i d fra m e bridge 目前连续刚构以其跨越能力大、经济性较好等优势广泛运用于公路、城市桥梁,特别是高速公路进入山区后更是成为了跨越沟谷最常见的大跨度桥梁,以下结合虎跳河特大桥主桥的设计讨论联长较长的刚构桥设计。 1 概述 虎跳河特大桥为适应河流及地形特点,主桥桥 跨布置为120m +4@225m +120m 六跨一联的预应力混凝土连续刚构桥(见图1),长1140m ,为目前国内最长联的连续刚构桥。主墩均为薄壁墩,高度较高的6、7号桥墩(高度分别为106、150m )下部分采用整体(双幅)箱形断面。镇宁、胜境关两岸各设一交界墩,镇宁岸引桥为5@50m 先简支后连续的预应力T 梁,胜境关岸为5@50+6@50m 先简支后连续的预应力T 梁。全桥总长1957.74m 。 图1 虎跳河特大桥主桥布置图(单位:c m ) 连续刚构除两端外无其他伸缩缝,有利于行车。但是对于较长的连续刚构,由于主梁混凝土收缩徐 变及体系温差产生的主梁位移较大,从而引起边主墩位移过大,因此要设计较长的连续刚构必须解决主梁位移较大及其产生的边主墩较大内力问题。 2 设计特点 2.1 适当减小边、中跨比 主桥半幅桥宽采用单箱单室,C 50混凝土,三向预应力,箱底宽 6.7m,翼板悬臂2.65m ,全宽

大跨度连续刚构桥线型控制qc

大跨度连续刚构桥线型控制 重庆鱼洞长江大桥 发表人:侯圣慧 中国铁建二十三局集团第六工程有限公司重庆鱼洞长江大桥二期项目经理部 2010年12月16日

目录 一、工程概况 (1) 二、小组概况 (1) 三、选题理由 (2) 四、现状调查 (2) 五、设定目标 (3) 六、原因分析 (4) 七、要因分析 (4) 八、制定对策 (5) 九、对策实施 (8) 十、效果检验 (11) 十一、巩固措施 (14) 十二、总结和今后打算 (15)

大跨度连续刚构桥线型控制 一、工程概况 重庆渔洞长江大桥正桥工程,起于大渡口区建胜水厂西侧,跨越长江后上穿巴南区滨江路,止于渔洞绢纺厂东侧,起讫里程K23+384.12~K24+925.72,全长1541.6m。桥跨布置为12×40连续箱梁(北岸引桥)+145.32+2×260+145.32(主桥连续刚构)+6×40连续箱梁(南岸引桥)。在0号桥台及6、12、16、22号桥墩和上游幅桥20号墩接南桥立交匝道处设置伸缩缝。全桥共分四联,即0号桥台至6号墩为第一联,6号墩至12号墩为第二联,12号墩至16号墩为第三联,16号墩至22号墩为第四联。全桥共设一个桥台,即0号桥台,采用重力式U型桥台,22号墩为交界墩。桥面总宽41.6m,单幅宽20.3m,箱宽12.9m,最大悬臂4.8m 根部梁高15.1m,跨中梁高4.6m,箱梁高均以外腹板外侧边缘为准,箱梁高度从合拢段中心到悬臂端根部按1.8次抛物线变化。 本桥主跨跨径达260m,合拢(刚成桥)时的线形与服务一定年限(一般为混凝土收缩、徐变终止的年限)后的线形差异明显,实现最终设计目标的难度大,对线形控制的要求高。二、小组概况 本小组成立于2010年10月1日,针对连续刚构桥线型展开活动。

浅析高墩大跨连续刚构桥施工技术

浅析高墩大跨连续刚构桥施工技术 发表时间:2018-08-23T13:41:08.753Z 来源:《建筑学研究前沿》2018年第10期作者:黄镇平 [导读] 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式。 广东省南粤交通投资建设有限公司广东广州 510000 摘要:预应力混凝土连续刚构桥具有经济美观、跨越能力强、施工简便快捷的优势,在大跨度桥梁中具有广泛的应用。本文以广东省龙怀高速大埠河大桥预应力混凝土高墩大跨连续刚构桥为工程实例,浅析了高墩大跨连续刚构桥主墩和主梁的施工技术。 关键词:桥梁工程;高墩大跨;连续刚构桥;施工技术 引言 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式,其具有经济美观、跨越能力强、施工简便快捷等优点[1],使之成为预应力混凝土大跨度梁式桥的主要桥型之一。 我国于上世纪80年代引进预应力混凝土连续刚构桥型,在高墩修建过程中,随着翻模施工、滑模施工等施工技术的发展,使得高墩尤其是超高墩的修建成为可能。随着我国“西部大开发”、“一带一路”以及“亚洲基础设施投资银行”等国家重大战略的相继实施,新一轮的交通基础设施建设热潮已经开始,高墩大跨连续刚构桥也迎来新的建设高峰。 1 工程概况 大埠河大桥位于汕头至昆明高速公路龙川至怀集段上,地处广东省连平县元善镇境内。大桥主桥为跨径82+150+82m的连续刚构桥,桥梁总体布置图如图1所示,主桥采用预应力混凝土箱梁形式,上下行分幅布置,箱梁顶板宽12.5m、底板宽6.2m。 图1大埠河大桥桥型布置图(单位:cm) 该桥设置三向预应力钢束,纵向预应力钢束:顶板束为15-25的高强预应力钢绞线、腹板束为腹板束为15-22、中跨合拢束为15-22高强预应力钢绞线、边跨束为15-17高强预应力钢绞线;横向预应力钢束:箱梁桥面板横向预应力采用15-2高强预应力钢绞线,纵向布置间距1.0m,单端交错整体张拉,管道成孔采用扁形塑料波纹管,固定端采用P 型锚具。竖向预应力钢束:采用15-3高强预应力钢绞线。横断面每道腹板内布2根,锚垫板下设置螺旋筋,管道成孔采用内径50mm的塑料波纹管。 主墩采用箱型墩,平面尺寸为5.0×6.2m(横桥向×顺桥向),壁厚1m,墩底8m、墩顶3m范围内为实心墩,1/2 墩高位置,设置1m高隔板。墩高67.35m至71.98m不等。 2 主梁施工技术 连续刚构桥主梁的施工主要有以下几种方法:悬臂施工法、支架现浇法、顶推法、缆索吊装法、旋转施工法、大型浮吊法及移动模架法等[2]。高墩大跨连续刚构桥由于其主墩较高,地形条件复杂,施工环境较差,采用对场地要求比较小的悬臂施工法进行施工。 悬臂浇筑法又称为无支架平衡伸臂法或挂篮法,它是以已经完成的墩顶节段(0#块)为起点,通过挂篮的前移对称的向两侧跨中逐段浇筑混凝土,并施加预应力的悬出循环作业法,我国已经建成的多数大跨混凝土桥梁大多采用此种方法。主要程序为移动挂篮位置、绑扎钢筋及预应力管道、浇筑混凝土、张拉预应力、移动挂篮,循环依次进行,直到达到最大悬臂块段,悬臂浇筑流程图如下图2所示。 图2悬臂浇筑施工工艺流程 3 主墩施工技术 3.1 主要施工技术概述 高墩大跨连续刚构桥主墩通常采用双薄壁墩、单薄壁空心墩及上部为双薄壁、下部为单薄壁空心墩的组合式桥墩形式[3-4],一般采用滑模、爬模、翻模三种方式进行施工[5]。 3.1.1 翻模施工 翻模施工墩身模板采用组合型大型钢模板,每个墩柱使用3套钢模板,每套模板高度为2.5m,一次翻模浇筑高度为4.5m。当浇注完混凝土达到拆模强度时后,拆除底下两层模板,上层一节模板不动,作为下一节墩柱模板的持力点,拆除的模板用钢丝绳或手拉葫芦直接吊在上层模板上,清除掉板面上的混凝土、涂刷脱模剂。当钢筋绑扎完毕后,用塔吊将模板安放到位,进入下道工序,以上是翻模施工的一

山区高墩连续刚构桥梁设计分析

工 程 技 术 在我国公路、铁路交通建设中,山区V 型U型峡谷的跨越是关系到路线设计以及行车安全的关键。针对我国现代公路铁路建设发展的需求,山区大跨度、高墩连续刚构桥梁近年来得到了广泛的应用。利用高墩连续刚构桥梁的技术特点有效解决山区峡谷跨越面临的技术问题,为促进我国公路铁路建设发展奠定了基础。在现代公路铁路建设快速发展的今天,山区桥高墩连续刚构桥梁结构应用能够为山区交通基础建设提供技术支持,促进交通基础建设中科学的应对山区地形条件。 1 高墩连续刚构桥梁技术概述 高墩连续梁刚构桥梁技术是现代桥梁技术综合应用的典型技术。利用高墩技术提高桥梁基础的稳定,利用连续梁技术的变形和内力小特点提高工程结构的受力结构的科学性、提高连续梁的稳定性。在现代桥梁设计与建设中,高墩连续刚构桥梁技术有着广泛的应用。利用高墩连续刚构桥梁技术特点以及其使用寿命长、受力结构稳定等特点促进我国基础交通建设的发展。在现代山区公路、铁路的建设过程中,高墩连续梁刚构桥结构式跨越山涧、峡谷的主要结构,其在我国路桥建设中有着广泛的应用。笔者从自身的实际工作经验出发,结合一部分桥梁的实际案例对山区高墩连续刚构桥梁的设计进行了简要论述。 2 山区高墩连续刚构桥梁设计分析 2.1针对山区高墩连续刚构桥梁设计需求,强化地质勘探与地形勘测的分析 由于山区地形、地质情况复杂,因此在进行山区高墩连续刚构桥梁设计前需要对地质勘探以及地形勘测报告进行细致的分析与探讨。通过详细的分析与探讨使设计人员能够了解山区高墩连续刚构桥梁的实际情况,同时为后期针对地质情况、地形条件进行设计奠定基础。 2.2了解气候条件,针对气候条件进行桥梁设计 了解山区高墩连续刚构桥梁所在地的气候条件能够为设计人员风荷载计算、使用寿命与使用安全性相关计算工作奠定基础。另外,通过山区气候条件的分析还能够了解山区气候条件对高墩连续刚构桥梁的影响,为科学的设计桥梁寿命与荷载奠定基础。2.3以桥梁设计基本原则与规范为基础进 行山区高墩连续刚构桥梁的设计 在山区高墩连续刚构桥梁设计中,要 以桥梁设计的基本原则与规范作为基础, 以此实现桥梁设备使用需求、实现经济安 全和美观的目的。山区高墩连续刚构桥梁 的设计过程中首先要对设计要求以及桥梁 的需求进行论证。以论证结果以及设计要 求作为基础开展荷载等计算工作。在此基 础上依照桥梁设计的基本原则进行山区高 墩连续刚构桥梁的设计,并在此技术上实 现桥梁承载力、使用寿命等要求。针对现代 路桥建设的需求,设计过程中应以设计的 基本原则作为基础,综合考虑桥梁技术性、 经济性以及后期使用维护便捷性以及成本 等问题。针对山区桥梁建设的特点,现代桥 梁设计过程中必须从桥梁设计的基本原则 入手,根据设计规范的要求进行高墩连续 刚构桥梁的设计工作。以基本原则以及规 范的遵守确保山区高墩连续刚构桥梁设计 能够满足设计、施工要求,满足信贷路桥建 设的需求。 2.4山区高墩连续刚构桥梁设计的注意事 项 连续刚构桥梁虽然应用时间较长、已不 是新兴桥梁结构型式,但在温州地区乃至全 国范围内仍属复杂的桥梁结构形式之一,其 设计和施工仍存在许多不确定因素,特别是 桥墩高度在40m以上的高敦连续刚构桥梁, 在设计和施工过程中许多方面仍值得关注 和研究。这在很大程度上影响了山区高墩连 续刚构桥梁结构的应用以及相关质量工作 的开展。针对这样的情况,山区高墩连续刚 构桥梁的设计过程中应从高墩连续刚构桥 梁的结构特点入手,针对实际情况进行设计 与计算。针对山区气候特点,山区高墩连续 刚构桥梁的设计中需要对其结构使用性能、 工程建设情况等进行分析。设计人员应根据 高墩连续刚构桥梁易受环境侵蚀、车辆荷载 以及人为因素等作用造成的性能退化进行 承载力以及荷载计算。按照设计使用寿命进 行相关结构设计以此保障桥梁的使用安全。 2.5实例分析与探讨 外呈山大桥工程设计荷载为公路-Ⅱ 级。主桥上部结构为46+80+46m预应力砼 连续刚构箱梁结构。单箱单室结构。刚构墩 顶处梁高4.8m,跨中梁高2.3m。引桥上部 结构为单孔简支的25m装配式预应力砼组 合小箱梁。下部结构主桥主墩采用空心薄 壁墩,挖孔灌注桩基础,边墩采用桩柱式桥 墩,挖孔灌注桩基础。引桥桥台均为重力式 U台,扩大基础。从该桥基础结构的设计中 可以看出,本桥设计过程中充分考虑了大 桥设计与使用需求、考虑了环境以及地形 的影响。运用将现代桥梁设计技巧以及不 同的结构形式满足桥梁建设与使用的需 求。为了实现桥梁风荷载、使用寿命、结构 强度的需求,该桥桥墩内沿竖向每隔15米 间距设置一道横隔板。通风孔设在每个分 箱室的中间,泄水孔直径8cm,设在墩低最 低处。通过设计的注意事项以及设计方式 的运用有效的保障了桥墩主体结构的稳定 性、同时充分考虑山区降水量大、时间短等 特点。以针对实际情况的设计保障了桥体 的安全、保障了桥体结构的使用寿命。 3 预应力箱梁结构的设计探讨 预应力箱梁结构具有高强度、高刚度 的优势在山区桥梁设计中有着重要的应 用。在山区高墩连续刚构桥梁设计中,应针 对预应力箱梁结构的特点进行设计。针对 预应力箱梁设计与应用的特点,设计过程 中需要注重箱梁结构与高墩结构的适应 性,注重箱梁结构耐久性与安全性。根据山 区气候条件进行箱梁结构受风荷载以及超 载等因素的影响,同时注重使用过程中使 用年限对箱梁结构的影响。针对山区桥梁 建设的实际情况进行预应力箱梁结构设 计,以此保障桥梁使用安全。 4 结论 综上所述,现代公路交通以及铁路发 展过程中山区桥梁建设关系到我国交通运 输行业的发展、关系到经济的发展。在现代 交通基础建设中,应针对山区地形特点选 用合理的结构以满足建设设计需求。以桥 梁设计基本原则以及规范作为指导进行山 区高墩连续刚构桥梁设计,通过科学的设 计保障设计质量、满足桥梁建设与使用需 求,保障桥梁的使用安全。 参考文献 [1]周长军.预应力箱梁结构设计探析.路 桥设计信息,2010(5). [2]刘宏宇.山区桥梁设计注意事项.桥梁 设计资讯,2010(2). [3]王绍江.高墩连续刚构桥梁结构特点与 设计要点.公路设计与施工,2010(12). 山区高墩连续刚构桥梁设计分析 张继明 (温州市交通规划设计研究院浙江温州325000) 摘要:在我国经济快速发展的今天,公路与铁路的建设成为了影响经济发展的关键。山区公路桥梁建设以及铁路桥梁建设是现代公路交通与铁路建设的关键。针对山区地形特点科学运用桥梁设计方法能够有效减少路线距离、提高行车速度。本文就山区高墩连续刚构桥梁的设计进行了简要的论述与分析。 关键词:山区高墩连续刚构桥梁设计 中图分类号:U448文献标识码:A文章编号:1674-098X(2012)01(a)-0098-01 98科技创新导报Science and Technology Innovation Herald

高墩大跨径连续刚构桥

特高墩大跨径连续刚构桥 施工监控软件操作手册 特高墩大跨径连续刚构桥研究课题组 2004年5月

施工监控使用说明 一、监控内容和方法 施工监控包括挠度监控和应力监控两部分。 1、挠度监控利用现场测量数据识别系统状态,提前预报 悬浇过程中的变形,通过调整立模高度,克 服或减少施工中不确定因素影响,使成桥达 到设计形态。 2、应力监控通过大梁根部埋设的应力传感器监测根部应 力,判断根部索力,避免卡索、断索或张拉力 不均,保证每根(对)索预应力都达到设计状 态。 二、程序安装 开始——设置——控制面板——安装/删除程序——安装 具体按照提示逐步完成。 三、数据结构 程序中使用的数据集中存放在Bridge 子目录中。名称编 排如下:

每个梁系(桥墩)有五个文件。记录结构、计划、仪表、测量和预报数据。前四个要预先输入,预报数据自动建立。分述如下。 1、结构(受力)数据(Construct.txt )文件由五个表组成。各 表项的含义见以下图表: a、桥墩数据表 b、桥梁数据表

c、一类顶板索 d、二类顶板索 说明:无某类索时,其Frop=0。Soktpst.txt 表中( x,y) 也取零。 e、腹板索

附图: 2、索孔与传感器位置(soktpst.txt)

3、施工计划表(workproj.txt) 间。即ts

高墩大跨连续刚构桥线形控制实用方法

王艳:高墩大跨连续刚构桥线形控制实用方法 高墩大跨连续刚构桥线形控制实用方法 王艳 (甘肃省交通规划勘察设计院有限责任公司,兰州730030) 【摘要】桥梁施工控制是确保桥梁施工宏观质量的关键。衡量一座桥梁的施工宏观质量标准就是其成桥状态的线形以及受力情况符合设计要求。本文提出了基于桥梁博士作为结构分析软件的实用标高计算公式,总结出影响结构变形的主要因素并作适当误差分析,对高墩大跨连续刚构桥的施工监控具有一定的指导作用。 【关键词】高墩大跨连续刚构桥;控制;标高;误差调整 【中图分类号】TU375【文献标识码】B【文章编号】1001-6864(2012)11-0079-03 随着交通事业发展的需要,大量的公路需要建 设,这其中必然产生大量的大跨度桥梁。大跨度桥梁 作为一个系统工程,不仅设计的难度大,受各种因素 的影响,施工期间的风险也是不可预见的,很难实现 结构的实际状态与结构理想状态一致,甚至会出现难 以接受的事故,给社会造成经济和人员损失。为了确 保桥梁施工期间结构的状态与理想状态的误差在可 控范围内,避免不可预见的悲剧发生,需对桥梁施工 阶段的变形、应力进行监控并适时调整可能出现的误 差,以实现桥梁的顺利竣工。 1线形控制 大跨径连续刚构桥悬臂浇筑施工中挠度控制至 关重要,而施工挠度受梁体自重、预应力、混凝土徐 变、施工荷载、温度等诸多因素影响,精确计算施工挠 度是非常困难的。目前梁桥结构分析计算通常采用 平面杆系程序(如桥梁博士),该类分析软件用于连续 梁、连续刚构桥整体计算无疑是一种简单而有效的方 法。以桥梁博士作为结构分析软件对连续刚构桥的 施工过程进行模拟,各梁段立模高程主要按下式确定: H 1=H +f 1 +f 2 +f 3 +f 4 +f 5 -f 6 +T(q)(1) 式中,H 1为待浇箱梁段前端顶面立模标高;H 为 待浇箱梁段前端顶面设计标高;f 1 为考虑经历10年收 缩徐变,由永久作用,可变作用产生的累计效应值;f 2 为桥墩变形的修正值;f 3 为挂篮弹性变形对该施工段 的影响值;f 4为节段自重产生的挠度影响值;f 5 为附加 预拱度(由经验确定);f 6 为节段预应力影响值;T(q)为前一节段标高误差调整值;T为误差调整函数。 箱梁阶段施工需进行立模、混凝土浇筑前后、钢筋张拉前后的标高测量,测量应选择在一天之中温度比较稳定的时刻进行,以日出前为宜。各阶段的标高计算应根据立模标高进行推算,张拉后的目标标高可以用下式进行计算: H=H 1-f 2 -f 3 -f 4 +f 6 -T(q)(2) 式中,H为节段张拉后前端顶面标高目标值(没考 虑节段混凝土收缩徐变短期效应及温度变化影响)。 在施工过程中,采用高程跟踪测量管理,应用高 程逼近法来控制各段的标高,并结合设计部门提供的 理论数据及以往修建大桥积累的经验,比较恰当地控 制最后合拢时两侧梁体相对高差及成桥后的标高。为 了最大限度的减小合龙高差和使成桥后的标高与理 想线形逼近,就必须对引起标高误差的因素进行分析。 2误差分析 误差被认为是实测变形与理论变形的差值,受理 论计算、施工技术、温度及混凝土物理力学性能参数 等因素的影响,确定误差大小及其产生原因是施工监 控的难点,下面将影响结构变形的一些主要误差、误 差的严重程度以及解决方法分析如下。 (1)理论计算误差。仿真分析是施工监控的必 备手段,通过施工阶段的正装、倒装分析能够获得各 种工况下的理想状态。施工挠度的计算与荷载P、结构 刚度EI直接相关,如何考虑混凝土的物理力学性能参 数、长索预应力效应、及温度场的模拟问题等均会使 计算产生误差,同时还应考虑环境等外部因素的影响。 通过合理选取仿真模型物理、几何、环境参数可 使理论计算误差减小到能接受的范围,并适时根据施 工条件变化进行参数修正,并把参数的影响结果作为 修正值对结构下一阶段的状态进行调整。 (2)施工误差。受施工技术、管理水平的限制, 施工过程中结构变形会产生偏离理论变形的误差,导 致误差的原因包括结构尺寸偏差、临时荷载影响、挂 篮及模板定位及变形误差、预应力钢束张拉等方面。 结构尺寸偏差直接影响结构的刚度和自重,进而 影响结构的变形;临时荷载包括施工垃圾、临时设备、 材料等,因在结构上作用的时间较短,会对结构某一 个或几个阶段的结构变形产生影响,可将其影响的结 果算出,作为修正值在现场对结构的状态进行调整。 对于宽桥时,挂蓝的横向变形可能引起较大的误 97

大跨度连续刚构桥的研究和发展

大跨度连续刚构桥的研究和发展 (所属杂志:此文章来自原稿)发布时间:2008-07-16 已阅读:1290 张伟,胡守增,韩红春,张勇 (西南交通大学土木工程学院桥梁系,四川成都610031) 摘要:介绍大跨度连续刚构桥的桥型特点,分析了连续刚构桥的结构受力特点,以及应用和发展现状,并以武汉军山长江公路大桥为例对其进行探讨;同时介绍了对连续刚构桥设计,施工控制等方面的创新方面的内容。 关键词:大跨径;连续刚构桥;桥型特点;受力特点 中图分类号:U448.23 文献标识码:A 就当代技术水平而言,大跨度、特大跨度桥梁无论是在设计理论、施工方法、建桥材料等方面都存在自身固有的特点和困难,这些问题解决的合理程度,不仅直接影响着大跨度桥梁的发展,制约着大跨度桥梁建设的经济效益,而且影响着交通事业的发展以及人类征服自然的历史进程。 在大跨径桥型方案比选中,连续梁桥型仍具有很强的竞争力。连续梁桥型在结构体系上通常可分为连续梁桥、连续刚构桥和刚构—连续组合梁桥。后者是前两者的结合,通常是在一联连续梁的中部一孔或数孔采用墩梁固结的刚构,边部数孔解除墩梁固结代之以设置支座的连续结构。 连续刚构是将连续梁的桥墩与梁部固结,以减小支座处的负弯矩和增

强结构的整体性。由于墩属小偏压构件,故与连续梁的桥墩相比配筋并不增加很多,而梁体受力则更为合理,因而在同等条件下连续刚构要比连续梁更为经济。此外,墩梁固结也在一定程度上克服了大吨位支座设计与制造的困难,也省去了连续梁施工过程中墩梁临时固结、合拢后再行调整的这一施工环节。 1连续刚构桥的结构受力特点、应用及现状 1.1 结构受力特点 连续刚构桥由于墩身与主梁形成刚架承受上部结构的荷载,一方面主梁受力合理,另一方面墩身在结构上充分发挥了潜能,因此该桥型在我国得到迅速的应用和发展:具有一个主孔的单孔跨径已达 270m,具有多个主孔的单孔跨径也达250m,最大联长达1060m。随着新材料的开发和应用、设计和施工技术的进步,具有一个主孔的单孔跨径有望突破300m的潜力。而对于多跨一联的连续刚构是不是也能在联长上有更大的发展呢?众所周知,墩身内力与其顺桥向抗推刚度和距主梁顺桥向水平位移变形零点的距离密切相关。抗推刚度小的薄壁式墩身能有效地降低其内力,但随着联长的加大,墩身距主梁顺桥向水平位移变形零点的距离亦将加大,在温度、混凝土收缩徐变等荷载的作用下,墩顶与主梁一道产生很大的顺桥向水平和转角位移,墩身剪力和弯矩将迅速增大,同时产生不可忽视的附加弯矩,致使刚构方案无法成立。在结构上将墩身与主梁的团结约束解除而代之以顺桥向水平和转角位移自由的支座,这样就变成刚构—连续组合梁的结构形式。于是边主墩墩身强度问题得以解决,且在一定条件下联长可相对延长。可见,刚构—连续组合梁是连续梁和连续刚构的组合,它兼顾了两者的优点而扬弃各自的缺点,在结构受力、使用功能和适应环境等方面均具

高墩大跨连续刚构桥施工技术研究报告之二

超高薄壁空心墩外翻内爬模施工技术 1前言 根据对典型高墩大跨连续刚构桥施工稳定性的研究指出,结构的稳定性计算表明,试验模型实测的失稳临界荷载总是大大低于理论的计算值,这是由于结构不可避免地存在一些几何偏差和缺陷,而几何缺陷对临界荷载的影响很大。本项目具有138m 高墩、主跨为160m为一典型的高墩大跨连续刚构,理论分析表明,“T”构在最大悬臂状态下(73m长)时,9#(138m墩高)和8#(130m墩高)墩的稳定特征值较小,稳定安全储备不大,如果高墩的墩身由于施工的原因而出现了偏斜、弯曲等几何缺陷,将会使结构的稳定性大大下降,甚至产生整体失稳的严重后果。在施工中只有严格控制墩身的垂直度,才能使结构的稳定得到根本的保证。 葫芦河特大桥位于陕西黄土沟壑地区,由于工程的特殊地理位置,日照温差较大,而且主墩均为薄壁空心墩,受日照温差影响后,墩身不可避免将出现位移。根据计算,日照温差致使混凝土箱形空心墩身发生弯曲变形,使墩顶发生较大位移,138m的高墩位移甚至可达到3cm±。温度变化对超高墩混凝土结构的受力与变形影响很大,并随温度的改变而改变。在不同时刻对结构状态进行量测,其结果是不一样的,如果在施工控制中忽略了该项因素,就必然难以得到结构的真实状态数据(与控制理想状态比较),从而也难以保证控制的有效性。因此,在施工控制中必须考虑日照温差对结构的位移影响。 2工程概况 葫芦特大桥是黄陵至延安段高速公路上的一座特大型连续刚构梁桥,位于中国西部黄土高坡陕西黄陵县境内,桥梁全长1468m,主桥为90m+3×160m+90m共660m五跨曲线连续刚构桥,上、下行分离。主梁为三向预应力连续箱梁结构。主桥桥墩采用双薄壁空心墩,单幅由两个4.0m×6.5m薄壁空心墩组成,其中9#墩最高,达138m 高。7#和10#墩壁厚0.5m,8#、9#墩壁厚横桥向0.7m,顺桥向1.2m。主桥桥墩7#、8#、9#、10#高度分别为80m、138m、130m、58m。7#墩单幅从基顶起40m高,8#墩单幅从基顶起44m、86m高,9#墩单幅从基顶起46m、92m高设高度为1m的横撑,将两个薄壁空心墩联接成一体。葫芦河特大桥主桥立面图见图2-1所示,箱梁墩顶和跨中断面图

浅谈高墩大跨连续刚构桥

浅谈高墩大跨连续刚构桥 中铁十四局集团三公司延延高速项目部任飞 摘要:本文结合延延高速黄河特大桥介绍了高墩大跨连续刚够桥的发展历程,结构特性以及施工中的重点难点。 关键词:连续钢构;高墩;大跨;施工 1、发展历程 在国外,伴随着预应力混凝土技术和悬臂施工技术的发展, 20世纪60年代在T型刚构桥的基础上出现了一种新的桥型,连续刚构桥。连续刚构桥主梁为连续刚体,与薄壁墩固结而成,吸收了连续梁桥和T型刚构桥的优点。具有适应性强、施工方便、易于养护、造型优美、经济性好、行车舒适等优点,自问世以来得到了迅速发展。 随着我国经济实力的增强,为了满足交通运输的需要,连续刚构桥因其具有优越的性能得到了广泛的应用。1990年建成了我国第一座跨径为180m的广州洛溪大桥。之后,相继建成了黄石长江大桥(162.5+3×245+162.5)m、虎门大桥辅航道桥(150+270+150)m等一系列具有代表性的桥梁,将连续刚构桥的建设推向新的高度。 近年来,高等级公路的建设逐步向西部延伸。那里地势险峻,地形多为深沟、陡坡,对桥梁建设提出了更高的要求,因此出现了大量高墩大跨连续刚构桥。目前在国内,主跨跨径最大的为重庆石板坡长江大桥复线桥,跨径为330米;墩高最高的为四川腊八斤沟特大桥,最大墩高182.5m。我项目部承建的延延高速黄河特大桥最大跨径160m,最大墩高141m,无论从设计水平上,还是施工难度上都处于同类桥梁的领先水平。 随着西部大开发的进一步推进和东部跨海连江工程的实施,连续刚构桥的建造热潮仍在继续。并且随着设计水平的提升和施工工艺的改善,以及在高原地区受地形环境的限制,为满足建桥的实际需要,连续刚构桥未来将会向着更大跨更高墩的方向发展。 2、结构特点及力学特性 连续刚构桥吸收了连续梁桥和刚架桥两种桥型的特点,是一种组合体系桥梁。一般将桥跨结构即主梁和墩台整体相连的桥称之为刚构桥。由于墩梁之间采用刚性连接,在竖向荷载作用下,将在主梁端部产生负弯矩,跨中的正弯矩也会随之减小,跨中截面尺寸也会相应的减小;支柱在承受竖向荷载的同时也会承受弯矩和水平推力,是一种有推力结构形式。 刚够桥大多数位超静定结构,这就造成了在混凝土收缩,温度变化,墩柱不均匀沉降等过程中产生附加内力;在施工过程中的体系转换过程中也会产生附加内力。在跨径较小的情况下一般选用

高墩连续刚构桥稳定性分析

交通标准化· 2010年6月上半月刊(总第222期) TRANSPORT STANDARDIZATION.1HALF OF Jun.,2010(No.222) 引言 随着我国高速公路建设的蓬勃发展,桥梁建设进入了前所未有的高峰时期。山岭重丘区高等级公路跨越深沟峡谷时往往采用高墩型式,高墩桥梁的建设日益增多,而大跨径连续刚构桥以其跨越能力强、整体性能好、结构合理、施工方便等特点备受设计单位和施工单位的青睐。为了有效减小上部结构的内力,减小温度、混凝土收缩徐变以及地震的影响,要求顺桥向墩身的抗推刚度小,加之高强度材料和先进施工方法的不断出现,大跨径混凝土连续刚构桥开始向薄壁、高墩、大跨度方向发展,这就使其稳定性问题越来越突出,甚至对整个桥梁结构受力起主导作用。为了保证薄壁高墩在施工阶段和使用阶段的安全,必须对施工阶段的最大单悬臂、最大双悬臂状态以及成桥阶段进行稳定性分 析。 1稳定性计算分析 目前,单薄壁墩为连续刚构桥桥墩的主要截面 型式。分析时边界条件考虑为:墩身的下部为固结,即视墩身与承台连接位置及基础型式按固结方法确定。在施工过程中,荷载考虑为恒载与施工荷载的最不利组合;在成桥运营阶段,荷载考虑为恒载与活载的最不利组合。 1.1特征值求解 结构失稳是指在外力作用下结构由平衡状态开 始丧失稳定,稍有扰动则变形迅速增大,最后结构遭到破坏。薄壁高墩连续刚构桥是典型的压弯构件,其稳定性问题属于典型的极值点失稳,属于第一类失稳问题。经特征值法得到的平衡分支荷载通常代表实际体系极限稳定荷载的上限,所以工程实 高墩连续刚构桥稳定性分析 陈怀勇1,汤兆新2,陈胜利3 (1.云南第三公路桥梁工程有限责任公司,云南普洱665000;2.重庆交通大学,重庆400074;3.中交二航局西南公司, 云南昆明650000) 摘要:针对高墩连续刚构桥突出的稳定性问题展开研究,重点介绍第一类稳定问题,提出将稳定性问题转化为求其特征值,并应用于工程实例中,计算结果与实际吻合得比较好,保证了工程的顺利进展。 关键词:薄壁高墩;连续刚构桥;悬臂施工;稳定中图分类号:U448.23 文献标识码:A 文章编号:1002-4786(2010)06-0083-02 DOI :10.3869/j.1002-4786.2010.06.026 Stability Analysis of High Pier Continuous Rigid Frame Bridge CHEN Huai-yong 1,TANG Zhao-xin 2,CHEN Sheng-li 3 (1.Yunnan Third Road and Bridge Co.,Ltd.,Pu ′er 665000,China ;2.Chongqing Jiaotong Univertity ,Chongqing 400074, China ;https://www.doczj.com/doc/0812634248.html,CC Second Harbour Engineering Company ,Ltd.,Southewst Branch Company ,Kunming 650000,China ) Abstract :In allusion to the obvious stability problem of continuous rigid frame bridge with high pier ,the first kind of stability problems is introduced mainly ,and the disposal method of translating the stability problem into seeking characteristic value is put forward.By applying it in engineering practice ,the calculation result fits to practice preferably ,which ensures the engineering goes smoothly. Key words :thin-walled high pier ;continuous rigid frame bridge ;cantilever construction ;stability HIGHWAY CONSTRUCTION &MAINTENANCE 公路建设与养护 83

关于高墩大跨径连续刚构桥上部结构施工控制的研究分析

关于高墩大跨径连续刚构桥上部结构施工控制的研究分析 摘要:近几年我国交通建设事业伴随着经济的不断推进与科技的进步,也获得 了很多的机遇。随着人们生活快节奏与出行频率的增高,在很多地区都建立了高 墩大跨度连续刚构桥。但是这种类型的高端大跨度连续刚构桥,无论是从整体建 设的复杂程度和建筑面积来说都是非常繁琐的。而且这其中涉及到很多细节的问 题需要把控,只有把控好细节整体的大工程才能够成功。笔者在下文的论述中将 会将理论与自身实践结合在一起,针对高墩大跨径连续钢构桥上部结构施工过程 中的细节问题展开研究,希望能够起到一定的参考性作用。 关键词:连续刚构桥;上部结构;施工控制 1.前言 显而易见的是,条件比较宽泛的对称分节段悬臂浇筑法施工是大跨度预应力凝土连续刚 构桥的上部结构建设中十分常见的方式。除此之外,如果不是山区的话,也可以利用悬臂拼 装施工,这种方式涉及到的缺陷性问题就是地形、运输方式和吊装的影响,同时带来的复杂 性变化也体现在桥梁结构的位移和内力上。如果想要使桥梁的施工质量在最终得到保证,那 么就需要对于每个细节的把控。 2.高墩大跨度连续刚构桥的结构特点 比较高的柔度和高度都是刚构桥桥墩的特性,一般情况下六十到八十米是大跨度连续刚 构桥主墩的常见高度,有的甚至达到了一百米以上的高度。预应力、制动能力、温差和混凝 土收缩产生的差异性会导致一定的位移,高墩的柔和程度就是为了起到适应作用的,结构能 够更加合理的受力。 双肢薄壁墩和单支薄壁墩是刚构桥桥墩比较常见的两种形态,从墩身内力的角度来看, 两者几乎一样,但是横向变形的差别巨大。目前双肢薄壁墩和后者相比更加普遍,是大跨度 连续刚构桥的首选,主要有以几个方面的特性:首先,从纵桥向抗压的角度来说,双肢薄壁 墩绝对可以胜任,能够有效减轻主墩负弯距。第二,如果采用双壁薄壁墩的形式更能够抵抗 风荷载,在这过程中横桥向抗扭刚度大。第三,桥梁由于墩梁固结而产生温度的影响可以通 过桥墩高度而舒缓,这样的高度有着抗推刚度小的特性。最后,结合悬臂浇筑施工模式的特性,双支墩壁墩结构模式在施工的过程中更加适合。但是其与单质墩施工方式相比,其在桥 墩较高的时候缺乏便捷性。除此之外,如果有比较高的最好烦要求或在曲线之上,也是用单 支薄壁墩更为合适,因为这种形式的横向刚度更大。 实心和空心都是双肢薄壁墩的两种重要形式,在施工的过程中,前者更为方便,同时也 具备比较强的抗击打能力。为了能够让整个桥墩的整体性更强,可以结合桥墩墩身的整体结 构和高度,通过联系梁将桥墩的两肢联系在一起,这样也能够使桥墩的受力程度增加。 跨度大是主梁比较明显的特性,基本上都超过了100m甚至达到了300m左右。大跨径 连续刚构桥在一定的长度之内,只需要利用墩梁凝固,和前者相比省去了添加庞大的支撑或 者别的固结措施来提升其强固程度,更为简便的是,在施工的时候也省去了体系模式的变换。变截面箱型梁是目前主梁最为常见的一种形式,在墩顶部设置梁高。其体积非常大,并且从 桥纵面呈抛物线式递减,并且直到合拢段梁高,并且其采用的主要工艺为分节段挂篮悬浇的 施工方法。

(完整版)高墩大跨连续刚构桥施工技术研究报告之三

超高墩大跨预应力混凝土 连续刚构悬灌线型控制技术 1 前言 A A 1. 1 背景 系统地实施桥梁施工控制的历史并不长。最早较系统地把工程控制理论应用到桥梁施工管理中的是日本。我国在现代桥梁施工控制技术方面的研究相对较晚,然而其发展较迅速。80 年代后期,对斜拉桥施工监控技术进行了全面研究,已初步形成系统。 但对于高墩大跨连续刚构桥的线型控制而言,由于其墩高、跨大的特点,高墩的日照温差空间扭曲、日照温差对大悬臂箱梁空间扭曲等方面对主结构线型控制影响的复杂问题没有现成的技术资料可以遵循,有待探索、研究。此外,在线型控制实施后改变合拢顺序 及在边跨“ T”构上进行不平衡悬浇施工对于线型控制的影响也缺乏现成的技术资料可以 采用,必须进行探索、研究 1. 2 工程概况 葫芦河特大桥是西部大通道包(头)北(海)线陕西境黄陵至延安段高速公路上的一座特大型桥梁,桥梁全长1468m。主桥为90m+3X160m+90m预应力混凝土连续刚构箱梁桥。 主桥下部结构为双薄壁空心墩,钻孔灌注桩基础。上部由上下行的两个单箱单室箱形断面组成,箱梁根部高9.0m,跨中梁高3.5m,梁高按二次抛物线变化,采用纵、横、竖向三向预应力体系。箱梁顶板厚度为0. 28m,底板厚度由跨中0.30m按二次抛物线变 化至根部1.1m,箱梁顶板宽12.0m,底板宽6.5m,腹板厚度分别为0.4m、0. 6m,桥墩范围内箱梁顶板厚0.5m,底板厚1.3m,腹板厚0. 8m,除桥墩顶部箱梁内设4道横隔板外,其余均不设横隔板。主桥两幅连续刚构箱梁均采用挂篮悬臂浇筑法施工,各单“T”箱梁除0#块外,分20对梁段,即6X 3. 0+6X 3.5+4X 4. 0+4X 4.5m进行对称悬臂浇筑,0#块长12.0m,合拢段长2.0m。原设计合拢顺序为边跨一次边跨一中跨,由于边墩6#及11#墩均较高,施工难度很大,在主桥悬灌施工至10-13#节段时,确定在边孔采用对称配 重方式利用既有挂篮悬臂浇筑不平衡段21#段,长度为4.5m,将边孔现浇段8.9m缩短为5. 2m,边孔合拢段长改为1.2m,主桥合拢顺序改为为中跨—次边跨—边跨。 箱梁平面位于R=2500m 的曲线及直线上,竖向位于R=20000m 的竖曲线上,桥梁横

高墩连续刚构桥的应用与关键设计

高墩连续刚构桥的应用与关键设计技术 摘要:目前我国公路建设正处在高速发展时期。连续刚构桥作为山区首选桥型,桥墩高度不断增加。通过连续刚构桥实例,总结介绍其关键设计技术,可为山区高墩桥梁的设计提供一定的借鉴。 关键词:薄壁高墩;刚构桥;薄壁高墩;高墩设计;稳定abstract: the highway construction in our country is in a period of rapid development now. as the preferred type of continuous rigid frame bridge in mountainous area, height of piers is increasing. through the application of the continuous rigid frame bridge, introduced its key design technology, the conclusion is significant for high-pier bridge design. key words: thin-wall and high pier; rigid frame bridge; tall pier with thin wall; high pier design; stability 引言 随着经济的发展,我国公路建设正处在高速发展时期。1990年广东络溪大桥(l=180 m)是我国建成的第一座大跨径连续刚构桥,此后经过十几年的推广应用,连续刚构桥己成为我国设计大跨径60 m~300 m桥梁的主选桥型。高墩连续刚构桥梁在山区高速公路建设中其墩高在不断的刷新着记录,桥墩高度已经从原来的五六十米、七八十米到现在的百米以上。2008年建成的沪蓉国道主干线上的龙潭河特大桥为106+3×200+106 m的预应力混凝土连续刚构,最大

相关主题
文本预览
相关文档 最新文档