当前位置:文档之家› (完整版)体育单招历年数学试卷分类汇编-二项式定理、排列组合、概率

(完整版)体育单招历年数学试卷分类汇编-二项式定理、排列组合、概率

(完整版)体育单招历年数学试卷分类汇编-二项式定理、排列组合、概率
(完整版)体育单招历年数学试卷分类汇编-二项式定理、排列组合、概率

二项式定理、排列组合

1.(2013年第6题)

已知3230123(1)x a a x a x a x +=+++,则0123a a a a +++=( )

A .7

B .8

C .9

D .10

2. (2013年第8题)

把4个人平均分成2组,不同的分组方法共有( )

A .5种

B .4种

C .3种

D .2种

3. (2013年第14题)

有3男2女,随机挑选2人参加活动,其中恰好为1男1女的概率为 .

4. (2012年第5题)

已知9()x a +的展开中常数项是-8,则展开式中3x 的系数是( )

A .168

B .-168

C .336

D .-336

5. (2012年第8题)

在10名教练员中选出主教练1人,分管教练2人,组成教练组,不同的选法共有( )

A .120种

B .240种

C .360种

D .720种

6. (2012年第14题)

某选拔测试包含三个不同科目,至少两个科目为优秀才能通过测试,设某学员三个科目获优秀的概率分别为56,46,46

,则该学员通过测试的概率是 . 7. (2011年第10题)

将3名教练员与6名运动员分为3组,每组1名教练员与2名运动员,不同的分法有( )

A .90种

B .180种

C .270种

D .360种

8. (2011年第11题)

261(2)x x

+的展开式中常数项是 . 9. (2011年第17题)

甲、乙两名篮球运动员进行罚球比赛,设甲罚球命中率为0.6,乙罚球命中率为0.5,

(Ⅰ) 甲、乙各罚球3次,命中1次得1分,求甲、乙得分相等的概率;

(Ⅱ) 命中1次得1分,若不中则停止罚球,且至多罚球3次,求甲得分比乙多的概率;

10. (2010年第10题)

篮球运动员甲和乙的罚球命中率分别是0.5和0.6,假设两人罚球是否命中相互无影响,每人各次罚球是否命中也相互无影响,若甲、乙两人各连续2次罚球都至少有1次未命中的概率为p ,则( )

A .0.40.55p <≤

B .0.450.50p <≤

C .0.550.60p <≤

D .0.450.50p <≤

11. (2010年第11题)

已知4343243210(2)3(2)2(2)x x x a x a x a x a x a -+---=++++,则0a = .

12. (2010年第15题)

4位运动员和2位教练员排成一排照相,若要求教练员不相邻且都不站在两端,则可能的排法共有 种。(写出数字答案)

13. (2010年第11题)

在8(x -的展开式中,6x 的系数是 。(写出数字答案)

14. (2010年第14题)

将10名获奖运动员(其中男运动员6名,女运动员4员)随机分成甲、乙两组赴各地作交流报告,每组各5人,则甲组至少有1名女运动员的概率是 。(用分数表示)

15. (2008年第10题)

在8名运动员中选2名参赛选手与2名替补,不同的选择共有( )

A .420种

B .86种

C .70种

D .43种

16. (2008年第23题)

某射击运动员进行训练,每组射击3次,全部命中10环为成功,否则为失败。在每单元4组训练中至少3组成功为完成任务。设该运动员射击1次命中10环的概率为0.9,

(Ⅰ) 求该运动员1组成功的概率;

(Ⅱ) 求该运动员完成1单元任务的概率;

17. (2005年第13题)

6(x

+的展开式中3x 的系数是 。(用数字作答) 18. (2005年第14题)

从4名女同学和5名男同学中任意选出2名女同学和3名男同学,组成代表队参加某项比赛,则不同的组队方法共有 种。(用数字作答)

19. (2005年第19题)

甲、乙两支篮球队进行比赛时,甲队获胜的概率是0.6,若甲、乙两队比赛3场且各场比赛互相没有影响,求

(Ⅰ) 甲胜一场的概率;

(Ⅱ) 甲胜三场的概率;

20. (2004年第14题)

一部电影在5所学校轮映,每所学校放映一场,不同的轮映次序共有(用数字做答) 种。

1. (2015年第8题)

从5名新队员中选出2人,6名老队员中选1人,组成训练小组,则不同的组成方案有()种。

A .165

B .120

C . 75

D .60

2. (2015年第15题)

二项式4(21)x -展开式中3x 的系数是 。

3. (2015年第17题)

某校组织跳远达标测验,已知甲同学每次达标的概率是0.9,他测验时跳了4次,设各次是否达标相互独立.

(1) 求甲恰好有3次达标的概率;

(2) 求甲至少有1次不达标的概率.

(3) 求甲至多有3次达标的概率.

4. (2014年第5题)

从5位男运动员和4位女运动员中任选3人接受记者采访,这3人中男、女运动员都有的概率是( ).

A .512

B .58

C .34

D .56

5. (2014年第6题)

二项式24

展开式,常数项是( ). A .1224C B .1024C C .824C D .624C

6. (2014年第12题)

一个小型运动会有5个不同的项目要依次比赛,其中项目A 不排在第三,则不同的排法共有 种.(请用数字作答)

7. (2017年第4题)

从7位男运动员和3位女运动员中任选2人组队参加乒乓球混合双打比赛,则不同的选法共有( ).

A .12种

B .18种

C .20种

D .21种

8. (2017年第18题)

在15件产品中,有10件是一级品,5件二级品,从中一次任意抽取3件产品,

(1)求抽取的3件产品全部是一级品的概率;

(2)求抽取的3件产品至多有一件是二级品的概率.(用分数作答)

9. (2016年第8题)

从1,2,3,4,5,6中取出两个不同数字组成两位数,其中大于50的两位数的个数是( )

A.6 B.8 C.9 D.10 10. (2016年第15题)

二项式6

(1 展开式,

5

2

x的系数是 .(用数字作答)

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

体育单招数学考试大纲完整版

体育单招数学考试大纲 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

体育单招:数学考试大纲 体育单招数学考试主要内容为代数、几何、解析几何三个分科,起考试内容的知识要求、能力要求和个性品质要求有一下内容: (一).考试知识要求 对知识的要求由低到高分为三各层次:了解、理解和掌握、灵活和综合应用。 1、了解:要求对所学只是内容有初步的了解、感性认识,知道内容是什么,并在相关的问题中识别它。 2、理解和掌握:要求对所学只是有较深刻的掌握、能够推理、变形和推断,并能利用只是解决有关问题。 3、灵活和综合运用:要求系统地掌握只是的内在联系,能运用只是解决和分析教复杂的问题。 (二).考试内容 1、平面向量考试内容:向量、向量的加减法、实数与向量的积、平面向量的坐标表示,线段的定比分点、平面向量的数量积、平面两点的距离、平移 2、集合,简易逻辑考试内容:集合、子集、交集、补集、交集、并集 3、函数,映射、函数的单调性、奇偶性,反函数及图像关系,对数的运算、对数函数 4、不等式的基本性质、证明、解法,含绝对值的不等式 5、三角函数,单位圆中的三角函数、正余弦函数、正切函数及其图像,正弦定理、余弦定理。 6、数列:等差、等比数列及其通向公式,前N项和公式 7、直线和圆的方程,直线的倾斜角和斜率,点斜式和两点式、一般式平行线与垂直的关系,点到线的距离。 8、圆锥曲线方程:椭圆的几何性质和参数方程,双曲线、抛物线的标准方程和基本性质。 9、直线、平面、简单几何体,直线和平面的判定,距离,三垂线定理。 10、排列组合:排列、数列数公式,组合、组合数公式,二项式定理展开式。 11、概率,随机事件的概率、可能性事件的概率。

排列组合二项式定理知识点

排列组合项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以.有.重.复.元.素.的排列. 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以 从m个不同元素中,每次取出n个元素可重复排列数m- m?…m = m n..例

3! 1 . 3! 如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: m n 种) 二、排列. 1.(1)对排列定义的理解. 定义:从n 个不同的元素中任取 m (贰n )个元素,按照一定顺序 排成一列, 叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺 序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (mcn)个元素排成一列,称为从n 个不同元素中取 出 m 个元素的一个排列.从n 个不同元素中取出m 个元素的一个排列数,用 符号表 示. ⑷排列数公式: 注意:n n! (n 1)! n!规定 0! = 1 m m m m 1 m m 1 m m 1 On, A n 1 A n A m C n A n mA n A n nA n 1 /规^定 C n C n 1 2.含有可重元素的排列问题. 对含有相同元素求排列个数的方法是:设重集 S 有k 个不同元素a 1, a 2,……a n 其中限重复数为n 1、n ..... n k ,且n = n 计尊+ .. n k ,则S 的排列 例如:已知数字3、2、2,求其排列个数n 喈3又例如:数字5、5、5、 求其排列个数?其排列个数 个数等于n n! n !n 2!...n k

(最新经营)排列组合二项式定理与概率及统计

主讲人:黄冈中学高级教师汤彩仙 一、复习策略 排列与组合是高中数学中从内容到方法均比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题均有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,且且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内于联系和区别,科学周全的思考、分析问题. 二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点. 概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律. 纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点均于两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也于高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年均有一道解答题,占12分左右. 排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)

以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.(4)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;(5)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 于求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 二、典例剖析 题型一:排列组合应用题 解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件. 例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.

(完整版)体育单招历年数学试卷分类汇编-二项式定理、排列组合、概率

二项式定理、排列组合 1.(2013年第6题) 已知3230123(1)x a a x a x a x +=+++,则0123a a a a +++=( ) A .7 B .8 C .9 D .10 2. (2013年第8题) 把4个人平均分成2组,不同的分组方法共有( ) A .5种 B .4种 C .3种 D .2种 3. (2013年第14题) 有3男2女,随机挑选2人参加活动,其中恰好为1男1女的概率为 . 4. (2012年第5题) 已知9()x a +的展开中常数项是-8,则展开式中3x 的系数是( ) A .168 B .-168 C .336 D .-336 5. (2012年第8题) 在10名教练员中选出主教练1人,分管教练2人,组成教练组,不同的选法共有( ) A .120种 B .240种 C .360种 D .720种 6. (2012年第14题) 某选拔测试包含三个不同科目,至少两个科目为优秀才能通过测试,设某学员三个科目获优秀的概率分别为56,46,46 ,则该学员通过测试的概率是 . 7. (2011年第10题) 将3名教练员与6名运动员分为3组,每组1名教练员与2名运动员,不同的分法有( ) A .90种 B .180种 C .270种 D .360种 8. (2011年第11题) 261(2)x x +的展开式中常数项是 . 9. (2011年第17题) 甲、乙两名篮球运动员进行罚球比赛,设甲罚球命中率为0.6,乙罚球命中率为0.5, (Ⅰ) 甲、乙各罚球3次,命中1次得1分,求甲、乙得分相等的概率; (Ⅱ) 命中1次得1分,若不中则停止罚球,且至多罚球3次,求甲得分比乙多的概率; 10. (2010年第10题) 篮球运动员甲和乙的罚球命中率分别是0.5和0.6,假设两人罚球是否命中相互无影响,每人各次罚球是否命中也相互无影响,若甲、乙两人各连续2次罚球都至少有1次未命中的概率为p ,则( ) A .0.40.55p <≤ B .0.450.50p <≤

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计 重点知识回顾 1. 排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关, 分类计数原理与分类有关 ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合, ⑶排列与组合的主要公式 _ r — r+1 项是 T r+1 =C n a n r b r . ⑵二项展开式的通项公式 二项展开式的第r+1项T r+1=c n a n —r b r (r=0,1,…叫)做二项展开式的通项公式。 ⑶二项式系数的性质 ① 在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即 c n = c n r (r=0,1,2,…,n ). 项和第n 3项)的二项式系数相等,并且最大,其值为 2 A n = n! =n(n — 1)(n — 2) ....... 2 ? 1. ②组合数公式: c m n! n(n 1) (n m 1) (m < n) m!( n m)! m (m 1) 2 1 ③组合数性质: ①c m ㈡ m (m < n) ② c 0 c ; c n 2 c ; 2n ③ Cn Cn c 4 C n c 1 c 3 C n C n 2n 1 2.二项式定理 ⑴二项式定理 (a +b)n =C 0a n +c n a n — 1 r b+ …+C n a n r b r +… + c n b n ,其中各项系数就是组合数c n ,展开式共有n+1项,第 问题?区别排列问题与组合问题要看是否与顺序有关, 与顺序有关的属于排列问题, 与顺序无关的属于组合问题 求共有多少种方法的 ①排列数公式: A m n! (n m)! n(n 1) (n m 1) (m

排列组合与二项式定理及概率应用综合

第一讲 排列组合概念及简单应用 排列和排列数公式 A m n =n (n -1)(n -2)…(n -m +1)=n ! (n -m )!(m ,n ∈N *,并且m ≤n ) A n n =n !=n ×(n -1)×(n -2)×…×3×2×1. 规定:0!=1. 组合与组合数公式 1.组合数公式 C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(m ,n ∈N *,并且 m ≤n ) 2.组合数的性质 (1)C m n =C n -m n (2)C m n +1=C m n +C m - 1n 常规题型 一、投信问题 1、个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同. (1)从两个口袋里各取一封信,有多少种不同的取法? (2)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法? 2、五位旅客到一个城市出差,这个城市有6家旅馆,有多少种住宿方法? 3、12名旅客在一辆火车上,共有六个车站,有多少种下车方案? 4、3个同学在一座只有两个楼梯的楼上下楼,有几种下楼方案? 二、染色问题 1、如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数. 2. 如图所示,用五种不同的颜色分别给A ,B ,C ,D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种. 3.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.

(完整版)体育单招历年数学试卷分类汇编-数列,推荐文档

1.(2013年第7题) 若等比数列的前项和为,则 .n 5n a +a =2.(2013年第13题) 等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 . 3.(2012年第9题) 等差数列的前项和为,若,则 . {}n a n n S 11,19,100k k a a S ===k =4.(2012年第15题) 已知是等比数列,,则 . {}n a 1236781,32a a a a a a ++=++=129a a a +++= 5.(2011年第9题) 是等差数列的前项和,已知,则公差 . n S {}n a n 3612,6S S =-=-d =6.(2011年第14题) 已知是等比数列,,则 . {}n a 12123,231a a a a a ≠+==1a =7.(2010年第5题) 等差数列中,,公差,若数列前项的和为,则 .{}n a 12a =12 d =-N 0N S =N =8.(2010年第13题) 是各项均为正数的等比数列,已知,则 . {}n a 334512,84a a a a =++=123a a a ++=9.(2009年第17题) 是等比数列,是公差不为零的等差数列,已知,{}n a {}n a 1122351,,a b a b a b ====(Ⅰ) 求和的通项公式; {}n a {}n b (Ⅱ)设的前项和为,是否存在正整数,使;若存在,求出。若{}n b n S n 7n a S =n 不存在,说明理由。 10.(2008年第9题) 是等比数列的前项和,已知,公比,则 . n S n 21S =2q =4S =11.(2008年第17题) 已知是等差数列,,则的通项公式为 . {}n a 1236a a a +=={}n a n a =12. (2005年第4题) 设等差数列的前项和为,已知,则 . {}n a n n S 3316,105a S ==10S =13. (2005年第22题) 已知数列的前项和为满足。求{}n a n n S 235(1,2,3,)n n S a n n =-+= (Ⅰ) 求; 123,,a a a

最新-2017体育单招数学分类汇编---数列

2004-2017体育单招数学分类汇编---数列 1、(2017年第14题)已知等差数列}{n a 的公差为3,2412=a ,则}{n a 的前12项和为 。 2、(2016年第6题)数列{a n }的通项公式为n n a n ++=11,如果{a n }的前K 项和等于3,那么K=( ) A 、8 B 、9 C 、15 D 、16 3、(2016年第17题)已知{b n }是等比数列,16 1,441==b b ,数列{a n }满足n b n a 2log = (1)证明{a n }是等差数列(2)求{a n }的前n 项和S n 的最大值 4、(2014年第11题)已知-5,-1,3……是等差数列,则其第16项的值是 5、(2013年第7题)若等比数列的前n 项和为5n a +,则a = . 6、(2013年第13题) 等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 . 7、(2012年第9题)等差数列{}n a 的前n 项和为n S ,若11,19,100k k a a S ===,则k = . 8、(2012年第15题) 已知{}n a 是等比数列,1236781,32a a a a a a ++=++=,则129a a a +++= . 9、(2011年第9题)n S 是等差数列{}n a 的前n 项和,已知3612,6S S =-=-,则公差d = . 10、(2011年第14题) 已知{}n a 是等比数列,12123,231a a a a a ≠+==,则1a = . 11、(2010年第5题) 等差数列{}n a 中,12a =,公差12 d =-,若数列前N 项的和为0N S =,则N = . 12、(2010年第13题) {}n a 是各项均为正数的等比数列,已知334512,84a a a a =++=,则123a a a ++= . 13、(2009年第17题) {}n a 是等比数列,{}n a 是公差不为零的等差数列,已知1122351,,a b a b a b ====, (Ⅰ) 求{}n a 和{}n b 的通项公式;(Ⅱ)设{}n b 的前项和为n S ,是否存在正整数n ,使7n a S =;若存

高中数学排列组合与二项式定理知识点总结

排列组合与二项式定理知识点 1.计数原理知识点 ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m! Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: ①分类讨论思想;②转化思想;③对称思想. 4.二项式定理知识点: ①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn ②主要性质和主要结论:对称性Cnm=Cnn-m 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项) 所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 ③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。 6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

排列组合 二项式定理知识点

排列组合二项定理考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有 ..重复 ..的排列. ..元素 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例

如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 例如:已知数字3、2、2,求其排列个数3! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1! 3!3==n .

2004-2017体育单招数学分类汇编---数列

2004-2017体育单招数学分类汇编---数列 1、(2017年第14题)已知等差数列}{n a 的公差为3,2412=a ,则}{n a 的前12项和为 。 2、(2016年第6题)数列{a n }的通项公式为n n a n ++=11,如果{a n }的前K 项和等于3,那么K=( ) A 、8 B 、9 C 、15 D 、16 3、(2016年第17题)已知{b n }是等比数列,16 1,441==b b ,数列{a n }满足n b n a 2log = (1)证明{a n }是等差数列(2)求{a n }的前n 项和S n 的最大值 4、(2014年第11题)已知-5,-1,3……是等差数列,则其第16项的值是 5、(2013年第7题)若等比数列的前n 项和为5n a +,则a = . 6、(2013年第13题) 等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 . 7、(2012年第9题)等差数列{}n a 的前n 项和为n S ,若11,19,100k k a a S ===,则k = . 8、(2012年第15题) 已知{}n a 是等比数列,1236781,32a a a a a a ++=++=,则129a a a +++= . 9、(2011年第9题)n S 是等差数列{}n a 的前n 项和,已知3612,6S S =-=-,则公差d = . 10、(2011年第14题) 已知{}n a 是等比数列,12123,231a a a a a ≠+==,则1a = . 11、(2010年第5题) 等差数列{}n a 中,12a =,公差12 d =-,若数列前N 项的和为0N S =,则N = . 12、(2010年第13题) {}n a 是各项均为正数的等比数列,已知334512,84a a a a =++=,则123a a a ++= . 13、(2009年第17题) {}n a 是等比数列,{}n a 是公差不为零的等差数列,已知1122351,,a b a b a b ====, (Ⅰ) 求{}n a 和{}n b 的通项公式;(Ⅱ)设{}n b 的前项和为n S ,是否存在正整数n ,使7n a S =;若存

排列组合与二项式定理知识点

高中数学第十章-排列组合二项定理 考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. §10. 排列组合二项定理 知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有..重复..元素.. 的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ?对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ?相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ?排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的 一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ?排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--= 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11 --=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数

2004至2017年体育单招数学试卷分类汇编-集合123(可编辑修改word版)

2004--2017 年体育单招数学考试分类汇编 ----- 集合 1、(2017 年第 1 题)设集合 M = {1,2,3,4,5} , N = {1,3,6} ,则 M N = ( ) A. {1,3} B. {3,6} C. {1,6} D. {1,2,3,4,5,6} 2、(2016 年第 1 题)已知集合 M={2,4,6,8},N={1≤x≤5},则 M ∩N=( ) A {2,6} B {4,8} C {2,4} D {2,4,6,8} 3、(2015 年第 1 题)若集合 A = {x | 0 < x < 7 , x ∈ N },则 A 的元素共有 ( ) 2 A. 2 个 B. 3 个 C. 4 个 D. 无穷多个 3 、 ( 2014 年 第 16 题 ) 已 知 集 合 A = {x | x = 3n , n ∈ N }, B = {x | x = 3n + 1, n ∈ N }, C = {x | x = 3n + 2, n ∈ N } 有下列 4 个命题:(1) A B = ,(2) A ? (B C ) ,(3) ( A C ) ? B ,(4) C N ( A B ) = C 其中是真命题的有 (填写所有真命题的序号) 4 、 ( 2013 年 第 1 题 ) 已 知 集 合 M = {x -2 < x < 2}, N = {x -3 < x < -1}则 M N = 5、(2012 年第 1 题)已知集合M = {x x > 1}, N = {x x 2 ≤ 2}则M N = 6、(2011 年第 1 题) 已知集合M = {x 0 < x < 1}, N = {x -1 < x < 1}则M N = , M N = 7、(2010 年第 1 题) 已知集合M = ?x - 3 < x < 3 ? , N = {x x = 2n , n ∈ Z } 则M N = ? 2 2 ? 8、( 2009 年第 1 题) 已知集合 I = {0,1, 2, 3, 4, 5} , M = {0, 2, 4} , N = {1, 3, 5} , 则 M C I N = ? ?

(完整版)排列组合二项式定理知识总结,推荐文档

n n +1n n n 排列组合、二项式定理总结复习 1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的 方法 n 个不同元素中取出 m 个元素的一个组合 组合数 从 n 个不同元素中,任取 m (m ≤n )个元素的所有组合个数 m n m = n ! n m !(n - m )! 性质 C m = C n -m C m = C m + C m -1 排列组合题型总结 一. 直接法 1 .特殊元素法 例 1 用 1,2,3,4,5,6 这 6 个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 C C

(1)数字 1 不排在个位和千位 (2)数字 1 不在个位,数字 6 不在千位。 分析:(1)个位和千位有 5 个数字可供选择A2 ,其余 2 位有四个可供选择A2 ,由乘法原理: 5 4 A2 A2 =240 5 4 2.特殊位置法 (2)当 1 在千位时余下三位有A3 =60,1 不在千位时,千位有A1 种选法,个位有A1 种,余下 5 4 4 的有A2 ,共有A1 A1 A2 =192 所以总共有 192+60=252 4 4 4 4 二间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法A4 - 2 A3 +A2 =252 6 5 4 Eg 有五张卡片,它的正反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? 分析::任取三张卡片可以组成不同的三位数C 3 ? 23 ?A3 个,其中 0 在 5 3 百位的有C 2 ? 22 ?A2 个,这是不合题意的。故共可组成不同的三位数 4 2 C 3 ? 23 ?A3 - C 2 ? 22 ?A2 =432 5 3 4 2 Eg 三个女生和五个男生排成一排 (1)女生必须全排在一起有多少种排法(捆绑法) (2)女生必须全分开(插空法须排的元素必须相邻) (3)两端不能排女生 (4)两端不能全排女生 (5)如果三个女生占前排,五个男生站后排,有多少种不同的排法

五年体育单招文化课数学真题分类复习

五年体育单招文化课数学真题分类复习 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

五年体育单招文化课数学真题分类复习 一:集合与不等式 1.(2011真题)设集合M={x|0{}22,N x x =≤则M N =() { 1,x x <≤{}1,x x ≤{,x x ≤{.x x ≥(2013真题)已知},13|{},22|{-<<-=<<-=x x N x x M 则=N M A .}23|{<<-x x B .}13|{-<<-x x C .}12|{-<<-x x D .}21|{<<-x x 4.(2011真题)不等式10x x -<的解集是() (A ){x|0有最小值8,则a =。 2.(2012真题)函数y x =的反函数是() 21,(0)2x y x x -=<21,(0)2x y x x -=>21,(0)2x y x x +=<21,(0)2x y x x +=>(2012真题)已知函数()ln 1 x a f x x -=+在区间()0,1上单调增加,则a 的取值范围是. 4(2013真题)若函数y=x 2-ax+3(x>3)是增函数,则a 的取值范围是() A (-∞,6]B[-6,+∞)C[3,+∞)D(-∞,-3] 5.(2013真题)不等式log 2(4+3x-x 2)≤log 2(4x-2) 6(2014真题)、函数32)(-=x x f 是A.增函数B.减函数C.奇函数D.偶函数 7(2014真题)函数))0,4((162-∈-=x x y 的反函数为A ))0,4((162-∈--=x x y

高中数学-排列组合二项式定理知识点

排列组合二项式定理知识点 2、排列、组合

3、二项式定理 内容典型题 定义①二项式定理: (a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n =∑ = n r r n C a n-r b r(n∈N+) ②二项式展开式第r+1项通项公式: T r-1 =C r n a n-r b r 其中C r n(r=0,1,2,…,n)叫做二项式系数. 8.二项式8)1 (- x的展开式中的第5项是( ) A. 70x4 B. 70x2 C. 56x3 D. -562 3 x 9.二项式(x-2)12展开式中第3项的系数是( ) A.264 B.-264 C.66 D.-1760 10.(x-2)8 的展开式中, x6的系数是( ) A. 56 B. -56 C. 28 D. 224 11.(x2+)5展开式中的10x是( ) A.第2项 B.第3项 C.第4项 D.第5项 12.二项式x-1 x 6 的展开式中常数项是( ) A. 1 B. 6 C. 15 D. 20 13.设(3-x)n=n n x a x a x a a+???+ + +2 2 1 ,已知 n a a a a+???+ + + 2 1 =64,则n=. 14.设二项式(3x+5)10= 1 8 8 9 9 10 10 a x a x a x a x a+ +???+ + +,则 1 8 9 10 a a a a a+ -???- + -=. 15.二项式2x-1 x 6 的展开式中二项式系数最大的项是. 性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等. ②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大. ③二项式系数的和为n2,即 n C+1 n C+…+r n C+…+n n C=n2 ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即 n C+2 n C+…=1 n C+3 n C+…=1 2-n

--2017年体育单招历年数学试卷分类汇编-向量123

2005--2017年体育单招数学分类汇编 --- 向量 1、(2017年第2题)已知平面向量)2,1(),1,1(-=-=→→b a ,则=+→ →b a 2 。 2、(2016年第11题)已知平面向量)1,2(),,3(),4,5(=-=-=x ,若b a 32+与c 垂直,则x=________. 3、(2015年第 14题)若向量→a ,→b 满足,1||=→a ,2||=→b ,32-=?→→b a ,则>=<→→b a ,cos 。 4、(2013年第2题) 若平面上单位向量,a b 的夹角为90?,则34a b -= . 5、(2012年第2题) 若平面上向量(1,2),(2,1)a b ==,若()a kb b +⊥,则k = . 6、(2011年第3题) 已知平面向量(1,2),(1,3)a b ==-,则a 与b 的夹角为 . 7、(2010年第12题) ,a b 为平面向量,已知1,2,,a b a b ==夹角为120?,则2a b += . 8、(2009年第5题) 已知非零向量,a b 满足4b a =,且2a b +与a 垂直,则a 与b 的夹角为 . 9、(2008年第4题) 已知平面向量(1,1),(1,2)a b ==-,则()()a b a b +-= . 10、 (2007年第11题)已知向量)2,3(),4,5(-=-=b a 则与b a 32+垂直的单位向量是_________。(只 需写出一个符合题意的答案) 11、(2006年第7题) 设a 与b 是平面向量,已知a =(6,-8),b =5且b a ?=50,则向量b a -=( ) (A )(-3,4) (B )(-4,3) (C )(3,-4) (D )(4,-3)

高中数学排列组合及二项式定理知识点

高中数学之排列组合二项式定理 一、分类计数原理和分步计数原理: 分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种 方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。 分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤 中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各 步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。 区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类 与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。 二、排列与组合: (1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。 (2)排列数、组合数: 排列数的公式:)()! (!)1()2)(1(n m m n n m n n n n A m n ≤-= +---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 排列数的性质: ①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成: 第一步从n 个元素中选出1个排在指定的一个位置上; 第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置 上) ②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成: 第一类:m 个元素中含有a ,分两步完成: 第一步将a 排在某一位置上,有m 不同的方法。 第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置 上) 即有11--m n mA 种不同的方法。 第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个 位置上,有m n A 1-种方法。 组合数的公式:)()!(!!!)1()2)(1(n m m n m n m m n n n n A A C m m n m n ≤-=+---== 组合数的性质: ①m n n m n C C -=(从n 个不同的元素中取出m 个元素后,剩下m n -个元素,也就是说,

体育单招历年数学试卷分类汇编-数列

1.(2013年第7题) 若等比数列的前n 项和为5n a +,则a = . 2.(2013年第13题) 等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 . 3.(2012年第9题) 等差数列{}n a 的前n 项和为n S ,若11,19,100k k a a S ===,则k = . 4.(2012年第15题) 已知{}n a 是等比数列,1236781,32a a a a a a ++=++=,则129a a a +++= . 5.(2011年第9题) n S 是等差数列{}n a 的前n 项和,已知3612,6S S =-=-,则公差d = . 6.(2011年第14题) 已知{}n a 是等比数列,12123,231a a a a a ≠+==,则1a = . 7.(2010年第5题) 等差数列{}n a 中,12a =,公差12 d =-,若数列前N 项的和为0N S =,则N = . 8.(2010年第13题) {}n a 是各项均为正数的等比数列,已知334512,84a a a a =++=,则123a a a ++= . 9.(2009年第17题) {}n a 是等比数列,{}n a 是公差不为零的等差数列,已知1122351,,a b a b a b ====, (Ⅰ) 求{}n a 和{}n b 的通项公式; (Ⅱ)设{}n b 的前项和为n S ,是否存在正整数n ,使7n a S =;若存在,求出n 。若不存在,说明理由。 10.(2008年第9题) n S 是等比数列的前n 项和,已知21S =,公比2q =,则4S = . 11.(2008年第17题) 已知{}n a 是等差数列,1236a a a +==,则{}n a 的通项公式为n a = . 12. (2005年第4题) 设等差数列{}n a 的前n 项和为n S ,已知3316,105a S ==,则10S = . 13. (2005年第22题) 已知数列{}n a 的前n 项和为n S 满足235(1,2,3,)n n S a n n =-+=。求

相关主题
文本预览
相关文档 最新文档