当前位置:文档之家› 128499-管理运筹学-第二章线性规划-习题

128499-管理运筹学-第二章线性规划-习题

128499-管理运筹学-第二章线性规划-习题
128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题

2-1 判断下列说法是否正确:

(1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T

(3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,

当对偶问题无可行解时,其原问题具有无界解;F

(4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优

解;

(5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出

现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全

部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加

5个单位时,相应的目标函数值将增大5k ;

(8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第

i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。

2-2将下述线性规划问题化成标准形式。

?????

?

?≥≥-++-≤+-+-=-+-+-+-=无约束

43

214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z

2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基

可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束

321

3213213

21,0,06

24

.322min 2x x x x x x x x x st x x x z 域的哪一顶点。

()???

??≥≤+≤++=0,8259

43.510max 12

1212121x x x x x x st x x z ()???

??≥≤+≤++=0,242615

53.2max 22

121212

1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题:

5

43212520202410max x x x x x z ++++=

??

?

??≥≤++++≤++++057234219

532..5432154321j x x x x x x x x x x x t s ???????

??≥≥+≥+≥+++≥++022633

2..31434321421j x x x x x x x x x x x x t s ???

??≥≤≤-+-=++-无约束321

321321,0,064..x x x kx x x x x x t s (1)

(2)

2-5运用对偶理论求解以下各问题: (1)已知线性规划问题:

其最优解为 (a )求k 的值;

(b )写出并求出其对偶问题的最优解。 (2)已知线性规划问题:

其对偶问题的最优解为,。 试根据对偶理论求出原问题的最优解。

(3)已知线性规划问题:

)5,4,3,2,1(=j 43216368min x x x x z +++=)4,3,2,1(=j 32122min x x x z +-=1,0,5321-===x x x 4

321432max x x x x z +++=?????≥≤+++≤+++0

,,,20

23220322..4

32143214321x x x x x x x x x x x x t s 2.11=y 2.02=y

???

??≥≤-+-≤++-+=0,,12

.max 3

213213212

1x x x x x x x x x st x x z 试根据对偶问题性质证明上述线性规划问题目标函数值无界。

2-6已知某求极大值线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如表2-44所示,求表中各括弧内未知数的值。

表2-44 初始单纯形表及最终单纯形表

z x 4 x 5 x 6 ::

z x 4 x 1 x 2

2-7用对偶单纯形法求解下列线性规划问题。

()???

??≥≥+≥+++=0,,52233.18124min 13

213231321x x x x x x x st x x x z ()???

??≥≥++≥+++

+=0,,10536423.325min 23

213213213

21x x x x x x x x x st x x x z

2-8已知2-45表为求解某线性规划问题的最终单纯形表,表中x 4 , x 5为松弛变量,问题的约束为≤形式。

表2-45 最终单纯形表

z X 3 X 1

(1)写出原线性规划问题; (2)写出原问题的对偶问题;

(3)直接由原问题的最终单纯形表写出对偶问题的最优解。 2-9已知线性规划问题:

???

??≥≤+-≤+++-=0,,426

.2max 3

2121321321x x x x x x x x st x x x z 先用单纯形法求出最优解,再分析在下列条件单独变化的情况下最优解的变化。 (1)目标函数变为32132max x x x z ++=

(2)约束右端项由???? ??46变为???

? ??43; (3)增添一个新的约束条件231≥+-x x 。

2-10某厂生产A ,B ,C 三种产品,其所需劳动力、材料等有关数据见表2-46。要

求:(1)确定最大的产品生产计划;(2)产品A 的利润在什么范围内变动时,上述最优计划不变;(3)如果设计一种新产品D ,单件劳动力消耗为8单位,材料消耗为2单位,每件可获利3元,问该种产品是否值得生产?(4)如果劳动力数量不增,材料不足时可从市场购买,每单位0.4元。问该厂要不要购进原材料扩大生产,以购多少为宜。(5)由于某种原因该厂决定暂停A 产品的生产,试重新确定该厂的最优生产计划。

2-11已知运输问题的供求关系和单位运价表如表2-47所示,试用表上作业法求出问题的最优解。

(1)表2-47(a )

2-12 1,2,3三个城市每年需分别供应电力320,250,和350单位,由Ⅰ,II两个电站提供,它们的最大可供电量分别为400个单位和450个单位,单位费用如表2-23所示。由于需要量大于可供量,决定城市1的供应量可减少0~30单位,城市2的供应量不变,城市3的供应量不能少于270单位,试求总费用最低的分配方案(将可供电量用完)。

2-13已知某运输问题的运输表及给出的一个最优调运方案分别见表2-49,试确定表2-49中k的取值范围。

表2-49 运输表及最优调运方案

1 15

2 25

3 5

5 15 15 10

2-14某糖厂每月最多生产糖270 t,先运至A1A2A3三个仓库,然后再分别供应

五个地区的需要。已知各仓库的容量分别为50,100,150(t),各地区的需要量分别为25,105,60,30,70(t)。已知从糖厂经各仓库然后供应各地区的运费和存储费如表2-50所示。

表2-50运费及存储费

试确定一个使总费用最低的调运方案。

2-15一艘货轮分前、中、后三个舱位,它们的容积与最大允许的载重量如表2-51和2-52所示,现有三种货物待运,已知有关数据列于表2-27(b)

比例关系。具体要求:前、后舱分别与中舱之间载重量比例的偏差不超过15%,前后舱之间不超过10%。问该货轮应装载A、B、C各多少件运费收入才最大?试建立这个问题的线性规划模型。

2-16一贸易公司专门经营某种杂粮的批发业务。公司现有库容5000担的仓库。1月1日,公司拥有库存1000担杂粮,并有资金20000元。估计第一季度杂粮价格如表2-53所示。

如买进的杂粮当月到货,但需到下月才能卖出,且规定“货到付款”。公司希望本季末库存为2000担。问:应采取什么样的买进与卖出的策略使3个月总的获利最大?(列出问题的线性规划模型,不求解)

2-17某农户年初承保了40亩土地,并备有生产专用资金25 000元。该户劳动力情况为:春夏季4 000工时,秋冬季

3 500工时。若有闲余工时则将为别的农户帮工,其收入为:春夏季5元/ 工时,秋冬季4元/ 工时。该户承包的地块只是以种植大豆、玉米、小麦,为此已备齐各种生产资料,因此不必动用现金。另外,该农户还饲养奶牛和鸡。每头奶牛每年需投资

4 000元,每只鸡需投资30元。每头奶牛需用地1.5亩种植饲草,并占用劳动力:春夏季50工时、秋冬季100工时,每年净收入4 000元。每只鸡占用劳动力:春夏季0.3工时、秋冬季0、6工时,每年净收入100元。该农户现有鸡舍最多能容纳300只鸡,牛棚最多能容纳8头奶牛。三种农作物一年需要的劳动力及收入情况见表2-54。问该农户应如何拟定经营方案才能使当年净收入最大?试建立该问题的数学模型。

表2-54 三种农作物需要的劳动力及收入情况

需用工时(工时/ 亩)

种类

春夏季需工时/ 亩秋冬季需工时/ 亩净收入/(元/ 亩)大豆20 50 500

玉米35 75 800

小麦10 40 400

2-18对某厂I,II,III三种产品下一年各季度的合同预订数如表2-55所示。

表2-55 三种产品下一年各季度的合同预订数

该三种产品1季度初无库存,要求在4季度末各库存150件。已知该厂每季度生产工时为15 000 h,生产I,II,III产品每件分别需时2、4、3 h。因更换工艺装备,产品I在2季度无法生产。规定当产品不能按期交货时,产品I、II每件每迟交一个季度赔偿20元,产品III赔偿10元;又生产出的产品不在本季度交货的,每件每季度的库存费用为5元。问该厂应如何安排生产,使总的赔偿加库存费用为最小(要求建立数学模型,不需求解)。

《管理运筹学》复习题2014.12

《管理运筹学》复习题2014.12 一、填空题(每题3分,共18分) 1.运筹学中所使用的模型是数学模型。用运筹学解决问题的核心是建立数学模型,并对模型求解。 2.数学模型中,“s ·t ”表示约束。 3.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。 4.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。 5.图解法适用于含有两个变量的线性规划问题。 6.线性规划问题的可行解是指满足所有约束条件的解。 7.在线性规划问题的基本解中,所有的非基变量等于零。 8.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。 9.满足非负条件的基本解称为基本可行解。 10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。 11.线性规划问题可分为目标函数求极大值和极小_值两类。 12.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。 13.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。 14.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。 15.物资调运问题中,有m 个供应地,A l ,A 2…,A m ,A j 的供应量为a i (i=1,2…,m),n 个需求地B 1,B 2,…B n ,B 的需求量为b j (j=1,2,…,n),则供需平衡条件为 ∑=m i i a 1= ∑=n j i b 1 16.物资调运方案的最优性判别准则是:当全部检验数非负时,当前的方案一定是最优方案。 17.可以作为表上作业法的初始调运方案的填有数字的方格数应为m+n -1个(设问题中含有m 个供应地和n 个需求地) 18、供大于求的、供不应求的不平衡运输问题,分别是指∑=m i i a 1_>∑=n j i b 1的运输问题、∑=m i i a 1_<∑=n j i b 1的运输问题。 19.在表上作业法所得到的调运方案中,从某空格出发的闭回路的转角点所对应的变量必为基变量。 20.运输问题的模型中,含有的方程个数为n+m 个 21.用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的下界。 22.在分枝定界法中,若选X r =4/3进行分支,则构造的约束条件应为X 1≤1,X 1≥2。 23.在0 - 1整数规划中变量的取值可能是_0或1。 24.分枝定界法和割平面法的基础都是用_线性规划方法求解整数规划。 11.求解0—1整数规划的方法是隐枚举法。求解分配问题的专门方法是匈牙利法。 25.分枝定界法一般每次分枝数量为2个. 26.图的最基本要素是点、点与点之间构成的边 27.在图论中,通常用点表示,用边或有向边表示研究对象,以及研究对象之间具有特定关系。 28.在图论中,通常用点表示研究对象,用边或有向边表示研究对象之间具有某种特定的关系。 29.在图论中,图是反映研究对象_之间_特定关系的一种工具。 30.任一树中的边数必定是它的点数减1。 二、选择题(每题3分,共18分) 1.我们可以通过( C )来验证模型最优解。 A .观察 B .应用 C .实验 D .调查 2.建立运筹学模型的过程不包括( A )阶段。 A .观察环境 B .数据分析 C .模型设计 D .模型实施 3.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。这个过程是一个(C ) A 解决问题过程 B 分析问题过程 C 科学决策过程 D 前期预策过程 4.从趋势上看,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的是( C ) A 数理统计 B 概率论 C 计算机 D 管理科学

线性规划经典例题及详细解析

一、 已知线性约束条件,探求线性目标关系最值问题 1. 设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、 已知线性约束条件,探求非线性目标关系最值问题 2. 已知1,10,220x x y x y ≥??-+≤??--≤? 则22x y +的最小值就是 。 3. 已知变量x,y 满足约束条件+201-70x y x x y -≤??≥??+≤? ,则 y x 的取值范围就是( )、 A 、 [95,6] B 、(-∞,95 ]∪[6,+∞) C 、(-∞,3]∪[6,+∞) D 、 [3,6] 三、 研究线性规划中的整点最优解问题 4. 某公司招收男职员x 名,女职员y 名,x 与y 须满足约束条件?? ???≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值 就是 。 四、 已知最优解成立条件,探求目标函数参数范围问题 5. 已知变量x ,y 满足约束条件1422x y x y ≤+≤??-≤-≤? 。若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。 6. 已知x 、y 满足以下约束条件5503x y x y x +≥??-+≤??≤? ,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的值为( ) A. -3 B 、 3 C 、 -1 D 、 1 五、 求可行域的面积 7. 不等式组260302x y x y y +-≥??+-≤??≤? 表示的平面区域的面积为 ( ) A. 4 B 、 1 C 、 5 D 、 无穷大

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

运筹学第二章线性规划

第二章线性规划 教学目的和要求: 目的:使学生具备线性规划的基本知识以及应用线性规划的基本能力。 要求:理解线性规划概念,标准型,解的概念,基本定理;掌握单纯形法,人工变量法,了 解图解法。 重点:线性规划标准型,解的概念,单纯形法,人工变量法。 难点:线性规划基本定理,单纯形法。 教学方法:讲授法,习题法。 学时分配:12学时 作业安排:见教材P 38. 线性规划是运筹学的一个重要分支。1939年苏联科学家康托罗维奇提出了生产组织和计划中的线性规划模型。1947年美国学者丹捷格(George B.Dantzig)提出了求解一般线性规划问题的方法。此后,线性规划理论日趋成熟,应用也日益广泛和深入。 第一节线性规划问题 一、问题的提出 在企业的生产经营活动中经常会面临这样两类问题:一是如何合理地利用有限的人力、物力、财力等资源,取得最佳的经济效果;二是在取得一定的经济效果的前提下,如何合理安排使用人力、物力、财力等资源,使花费的成本最低。 例1.生产计划问题 某工厂利用甲、乙、丙、丁四种设备生产A 、B 、C 三种产品,具体数据如下表所示。 A 、B 、C 单位产品的利润分别是4.5、5、7(百元)。问如何安排生产计划,才能使所获总利润最大? 解:设产品A 、B 、C 产量分别为X 1,X 2,X 3件,Z 表示利润,要求总利润最大,即求Z=4.5X 1+5X 2+7X 3 的最大值,故记作极大化Z=4.5X 1+5X 2+7X 3,另外对甲、乙、丙、丁设备需满足2X 1+2X 2+4X 3≦800, X 1+2X 2+3X 3≦650,4X 1+2X 2+3X 3≦850,2X 1+4X 2+2X 3≦700;同时产量应非负,故X j ≧0 (j=1,2,3); 以上问题可用数学模型表示为: 极大化Z=4.5X 1+5X 2+7X 3 满足 2X 1+2X 2+4X 3≦800 X 1+2X 2+3X 3≦650 4X 1+2X 2+3X 3≦850 2X 1+4X 2+2X 3≦700 X j ≧0 (j=1,2,3) 例2.运输问题 设某种物资有m 个产地;A 1,A 2, …,A m ,它们的产量分别为a 1,a 2, …,a m ,有n 个销地B 1,B 2, …,B n 需要这种物资,它们的销量分别为b 1,b 2, …,b n 。已知A i 到B j 的单位运价是C ij (i=1,2, …,m; j=1,2, …,n)。 设供销满足平衡条件,即 。 问怎样组织运输,才能满足要求,且使总运费最少? ---- 7 5 4.5 单位利润 700 2 4 2 丁 850 3 2 4 丙 650 3 2 1 乙 800 4 2 2 甲 设备可供工时(h) C B A 产品 设备 ∑=∑==n 1j j b m 1i i a

管理运筹学模拟试题及答案

四 川 大 学 网 络 教 育 学 院 模 拟 试 题( A ) 《管理运筹学》 一、 单选题(每题2分,共20分。) 1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规 划问题求解,原问题的目标函数值等于( C )。 A. maxZ B. max(-Z) C. –max(-Z) D.-maxZ 2. 下列说法中正确的是( B )。 A.基本解一定是可行解 B.基本可行解的每个分量一定非负 C.若B 是基,则B 一定是可逆D.非基变量的系数列向量一定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为 ( D ) 多余变量 B .松弛变量 C .人工变量 D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( A )。 A.多重解 B.无解 C.正则解 D.退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( D )。 A .等式约束 B .“≤”型约束 C .“≥”约束 D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( B )。 A.多余变量 B.自由变量 C.松弛变量 D.非负变量 7.在运输方案中出现退化现象,是指数字格的数目( C )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 8. 树T的任意两个顶点间恰好有一条( B )。 A.边 B.初等链 C.欧拉圈 D.回路 9.若G 中不存在流f 增流链,则f 为G 的 ( B )。 A .最小流 B .最大流 C .最小费用流 D .无法确定 10.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足( D ) A.等式约束 B.“≤”型约束 C.“≥”型约束 D.非负约束 二、多项选择题(每小题4分,共20分) 1.化一般规划模型为标准型时,可能引入的变量有 ( ) A .松弛变量 B .剩余变量 C .非负变量 D .非正变量 E .自由变量 2.图解法求解线性规划问题的主要过程有 ( ) A .画出可行域 B .求出顶点坐标 C .求最优目标值 D .选基本解 E .选最优解 3.表上作业法中确定换出变量的过程有 ( ) A .判断检验数是否都非负 B .选最大检验数 C .确定换出变量 D .选最小检验数 E .确定换入变量 4.求解约束条件为“≥”型的线性规划、构造基本矩阵时,可用的变量有 ( ) A .人工变量 B .松弛变量 C. 负变量 D .剩余变量 E .稳态 变量 5.线性规划问题的主要特征有 ( ) A .目标是线性的 B .约束是线性的 C .求目标最大值 D .求目标最小值 E .非线性 三、 计算题(共60分) 1. 下列线性规划问题化为标准型。(10分)

六种经典线性规划例题

线性规划常见题型及解法 求线性目标函数的取值范围 2 2 2 x y A D y 2 O x x=2 求可行域的面积 y y M 5 2 x y 2 y x y 2 x y 2 x y x (3,5] y =2 ( 13 例1 x+2y 时 6 的点 C 、 x , 个 y 6 y 3 2 x + y —3 = 0 C 、 5 A 、 4 B 、 1 D 、无穷大 () 0,将 有 最小值 故选A .B A --- 作出可行域如右图 点个数为13个,选D x + y =2 则z=x+2y 的取值范围是 () 旦y =2 0 0表示的平面区域的面积为 三、求可行域中整点个数 解:|x| + |y| <2等价于 解:如图,作出可行域,作直线I : I 向右上方平移,过点A ( 2,0 ) 2,过点B ( 2,2 )时,有最大值 [2,6] B 、[2 ,5] C 、[3,6] 解:如图,作出可行域,△ ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的 面积即可,选B 例 3、满足 |x| + |y| <2 A 、9 个 B 、10 个 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性 目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 (x 0,y 0) (x 0,y p 0) (xp 0,y 0) (xp 0,y p 0) 是正方形内部(包括边界),容易得到整 y)中整点(横纵坐标都是整数)有() D 、 14 个 2x 例2、不等式组x x 若x 、y 满足约束条件 y O C V —? x 2x + y —6= 0

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

八种 经典线性规划例题(超实用)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 220 240 330 x y x y x y +-≥ ? ? -+≥ ? ?--≤ ? ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13,4 5 D 、 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方, 即为4 5 ,选 C 六、求约束条件中参数的取值范围 例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是() A、(-3,6) B、(0,6) C、(0,3) D、(-3,3) 解:|2x-y+m|<3等价于 230 230 x y m x y m -++>? ? -+- ? ? -< ? ,故0<m<3,选 C

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

管理运筹学课后习题

第一章 思考题、主要概念及内容 1、了解运筹学的分支,运筹学产生的背景、研究的内容和意义。 2、了解运筹学在工商管理中的应用。 3、体会管理运筹学使用相应的计算机软件,注重学以致用的原则。 第二章 思考题、主要概念及内容 图解法、图解法的灵敏度分析 复习题 1. 考虑下面的线性规划问题: max z=2x1+3x2; 约束条件: x1+2x2≤6, 5x1+3x2≤15, x1,x2≥0. (1) 画出其可行域. (2) 当z=6时,画出等值线2x1+3x2=6. (3) 用图解法求出其最优解以及最优目标函数值. 2. 用图解法求解下列线性规划问题,并指出哪个问题具有惟一最优解、无穷多最优解、无界解或无可行解. (1) min f=6x1+4x2; 约束条件: 2x1+x2≥1, 3x1+4x2≥3, x1,x2≥0. (2) max z=4x1+8x2; 约束条件: 2x1+2x2≤10, -x1+x2≥8, x1,x2≥0. (3) max z=3x1-2x2; 约束条件: x1+x2≤1, 2x1+2x2≥4, x1,x2≥0. (4) max z=3x1+9x2; 约束条件:

-x1+x2≤4, x2≤6, 2x1-5x2≤0, x1,x2≥0 3. 将下述线性规划问题化成标准形式: (1) max f=3x1+2x2; 约束条件: 9x1+2x2≤30, 3x1+2x2≤13, 2x1+2x2≤9, x1,x2≥0. (2) min f=4x1+6x2; 约束条件: 3x1-x2≥6, x1+2x2≤10, 7x1-6x2=4, x1,x2≥0. (3) min f=-x1-2x2; 约束条件: 3x1+5x2≤70, -2x1-5x2=50, -3x1+2x2≥30, x1≤0,-∞≤x2≤∞. (提示:可以令x′1=-x1,这样可得x′1≥0.同样可以令x′2-x″2=x2,其中x′2,x″2≥0.可见当x′2≥x″2时,x2≥0;当x′2≤x″2时,x2≤0,即-∞≤x2≤∞.这样原线性规划问题可以化为含有决策变量x′1,x′2,x″2的线性规划问题,这里决策变量x′1,x′2,x″2≥0.) 4. 考虑下面的线性规划问题: min f=11x1+8x2; 约束条件: 10x1+2x2≥20, 3x1+3x2≥18, 4x1+9x2≥36, x1,x2≥0. (1) 用图解法求解. (2) 写出此线性规划问题的标准形式. (3) 求出此线性规划问题的三个剩余变量的值. 5. 考虑下面的线性规划问题: max f=2x1+3x2; 约束条件: x1+x2≤10, 2x1+x2≥4,

线性规划经典例题及详细解析

1 / 6 一、 已知线性约束条件,探求线性目标关系最值问题 1. 设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、 已知线性约束条件,探求非线性目标关系最值问题 2. 已知1,10,220x x y x y ≥??-+≤??--≤? 则22 x y +的最小值是 。 3. 已知变量x ,y 满足约束条件+201-70x y x x y -≤?? ≥??+≤? ,则 错误! 的取值范围是( )。 A 。 [错误!,6] B.(-∞,错误!]∪[6,+∞) C.(-∞,3]∪[6,+∞) D 。 [3,6] 三、 研究线性规划中的整点最优解问题 4. 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件?? ? ??≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大 值是 。 四、 已知最优解成立条件,探求目标函数参数范围问题 5. 已知变量x ,y 满足约束条件14 22x y x y ≤+≤?? -≤-≤? 。若目标函数z ax y =+(其中0a >)仅在点(3,1)处 取得最大值,则a 的取值范围为 。 6. 已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的 值为( ) A. -3 B. 3 C 。 -1 D. 1 五、 求可行域的面积 7. 不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A. 4 B. 1 C. 5 D 。 无穷大

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

运筹学试卷及答案完整版

《运筹学》模拟试题及参考答案 一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。) 1. 图解法提供了求解线性规划问题的通用方法。( ) 2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。( ) 3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。( ) 4. 满足线性规划问题所有约束条件的解称为基本可行解。( ) 5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。( ) 6. 对偶问题的目标函数总是与原问题目标函数相等。( ) 7. 原问题与对偶问题是一一对应的。( ) 8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。( ) 9. 指派问题的解中基变量的个数为m+n。( ) 10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。( ) 11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。( ) 12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。( ) 13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。( ) 14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。( ) 15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。 ( ) 三、填空题 1. 图的组成要素;。 2. 求最小树的方法有、。 3. 线性规划解的情形有、、、。 4. 求解指派问题的方法是。 5. 按决策环境分类,将决策问题分为、、。 6. 树连通,但不存在。 1

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2 .线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7?试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8?试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10. 大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问 题呢? 11 ?什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续 第二阶段? 二、判断下列说法是否正确。 1 .线性规划问题的最优解一定在可行域的顶点达到。 2 .线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的 范围一般将扩大。 5 .线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与j 0对应的变量都可以被 选作换入变量。 8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一 个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k对应的变量x k作为换入变量,可使目 标函数值得到最快的减少。 10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形 表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1 .某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120%,每年又可以重新将所获本利纳入投资计划;项目n需要在第一年初投资,经过两年可收回本利150% , 又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目川需要在第二年年初投资,经过两年可收回本利160%,但用于该项目的最大投资额 不得超过15万元;项目"需要在第三年年初投资,年末可收回本利140%,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有 30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2 .某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

管理运筹学试题

管理运筹学试题(A) 一.单项选择(将唯一正确答案前面的字母填入题后的括号里。正确得1分,选错、多选或不选得0分。共15分) 1.在线性规划模型中,没有非负约束的变量称为() A.多余变量B.松弛变量C.自由变量D.人工变量 正确答案:A: B: C: D: 2.约束条件为AX=b,X≥0的线性规划问题的可行解集是()A.补集B.凸集C.交集D.凹集 正确答案:A: B: C: D: 3.线性规划问题若有最优解,则一定可以在可行域的()上达到。A.内点B.外点C.极点D.几何点 正确答案:A: B: C: D: 4.对偶问题的对偶是() A.基本问题B.解的问题C.其它问题D.原问题 正确答案:A: B: C: D: 5.若原问题是一标准型,则对偶问题的最优解值就等于原问题最优表中松弛变量的() A.值B.个数C.机会费用D.检验数 正确答案:A: B: C: D: 6.若运输问题已求得最优解,此时所求出的检验数一定是全部()A.大于或等于零B.大于零C.小于零D.小于或等于零 正确答案:A: B: C: D: 7.设V是一个有n个顶点的非空集合,V={v1,v2,……,vn},E是一个有m条边的集合,E={e1,e2,……em},E中任意一条边e是V 的一个无序元素对[u,v],(u≠v),则称V和E这两个集合组成了一个() A.有向树B.有向图C.完备图D.无向图 正确答案:A: B: C: D: 8.若开链Q中顶点都不相同,则称Q为()

A.基本链B.初等链C.简单链D.饱和链 正确答案:A: B: C: D: 9.若图G 中没有平行边,则称图G为() A.简单图B.完备图C.基本图D.欧拉图 正确答案:A: B: C: D: 10.在统筹图中,关键工序的总时差一定() A.大于零B.小于零C.等于零D.无法确定 正确答案:A: B: C: D: 11.若Q为f饱和链,则链中至少有一条后向边为f () A.正边B.零边C.邻边D.对边 正确答案:A: B: C: D: 12.若f 是G的一个流,K为G的一个割,且Valf=CapK,则K一定是() A.最小割B.最大割C.最小流D.最大流 正确答案:A: B: C: D: 13.对max型整数规划,若最优非整数解对应的目标函数值为Zc,最优整数解对应的目标值为Zd,那么一定有( ) A.Zc ∈Zd B.Zc =Zd C.Zc ≤Zd D.Zc ≥Zd 正确答案:A: B: C: D: 14.若原问题中xI为自由变量,那么对偶问题中的第i个约束一定为()A.等式约束B.“≤”型约束C.“≥”约束D.无法确定 正确答案:A: B: C: D: 15.若f*为满足下列条件的流:Valf*=max{Valf |f为G的一个流},则称f*为G的() A.最小值B.最大值C.最大流D.最小流 正确答案:A: B: C: D:

管理运筹学模拟试题及答案

管理运筹学模拟试题及 答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

四川大学网络教育学院模拟试题( A ) 《管理运筹学》 一、单选题(每题2分,共20分。) 1.目标函数取极小(minZ)的线性规划问题可以转化为目标函数取极大的线性 规划问题求解,原问题的目标函数值等于(C)。 A. maxZ B. max(-Z) C. –max(-Z) 2.下列说法中正确的是(B)。 A.基本解一定是可行解B.基本可行解的每个分量 一定非负 C.若B是基,则B一定是可逆D.非基变量的系数列向量一定是 线性相关的 3.在线性规划模型中,没有非负约束的变量称为( D ) 多余变量 B.松弛变量 C.人工变量 D.自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时, 可求得(A)。 A.多重解B.无解C.正则解 D.退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满 足最优检验但不完全满足( D )。 A.等式约束 B.“≤”型约束 C.“≥”约束 D.非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y是 (B)。 A.多余变量B.自由变量C.松弛变量D.非 负变量 7.在运输方案中出现退化现象,是指数字格的数目( C )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 8.树T的任意两个顶点间恰好有一条(B)。 A.边B.初等链C.欧拉圈 D.回路 9.若G中不存在流f增流链,则f为G的( B )。 A.最小流 B.最大流 C.最小费用流 D.无法确定 10.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满 足最优检验但不完全满足(D) A.等式约束B.“≤”型约束C.“≥”型约束 D.非负约束 二、多项选择题(每小题4分,共20分) 1.化一般规划模型为标准型时,可能引入的变量有() A.松弛变量 B.剩余变量 C.非负变量 D.非正变量E.自由变量 2.图解法求解线性规划问题的主要过程有()

运筹学试题3

管理运筹学模拟考试题三 姓名 学号 班级 题号 一 二 三 四 五 总分 得分 1、用图解法求解下列线性规划问题 ???? ?? ?≥≤≤≤++=0 x ,x 3 x 12 2x +3x 6 x 2x ..2max 211212121t s x x Z 2、某工厂生产甲、乙、丙三种产品,单位产品所需工时分别为2、 3、1个工时;单位产品所需原材料分别为3、1、5公斤;单位产品利润分别为2元、3元、5元。工厂每天可利用的工时为12个,可供应的原材料为15公斤。 1)试确定使总利润为最大的日生产计划和最大利润。 解:设生产甲乙丙产品的数量分别为x1,x2,x3 maxZ=2x1+3x2+5x3 s.t.2x1+3x2+x3<=12 3x1+x2+5x3<=15 x1,x2,x3>=0 解得X=0,Y=3,Z=2的时候利润最大为19 2)若由于原材料涨价,使得产品丙的单位利润比原来减少了2元,问原来的最优生产计划变否?若不变,说明为什么;若变,请求出新的最优生产计划和最优利润。 解:Max 2X+Y+5Z ST 2X+3Y+Z<=12 3X+Y+5Z<=15 X,Y,Z>=0,整数 END 解得X=0,Y=0,Z=3的时候利润最大为15 当X=0,Y=3,Z=2的松弛变量工时为12-3*3-2=1 材料为15-3-2*5=2 3)在保持现行最优基不变的情况下,若要增加一种资源量,应首先考虑增加哪种资源?为什么?单位资源增量所支付的费用是多少才合算?为什么? 解: 3 3 6

增加3个单位的原材料可以创造5个单位的利润生产丙1件 增加5个单位的工时可以创造6个单位的利润生产乙2件 假设原材料的成本是X1,工时的成本是X2 当5-3X1>=6-5X2的时候增加原材料合算,反之增加工时合算 3、已知某运输问题如下(单位:百元/吨): 单位运价销地 B1B2B3供应量(吨)产地 A1 3 7 2 18 A2 5 8 10 12 A39 4 5 15 需求量(吨)16 12 17 求:使总运费最小的调运方案和最小运费。

相关主题
文本预览
相关文档 最新文档