当前位置:文档之家› 六价铬总铬含量

六价铬总铬含量

六价铬总铬含量

六价铬总铬含量

一个产品的质量直接影响着产品进入市场的流通速度,一个好的产品能够流通更快,一个产品流通速度快产品带来的收益是比较多的,在皮革产品中六价铬含量直接

影响着产品的质量,六价铬总铬含量多少才是最好的标准呢?

六价铬总铬含量有分产品中六价铬总铬和铬的总铬,具体来说就是分已无害的铬

含量和有害的铬含量。铬在化学上有三价、六价的三价的化合物是无害的,六价的是

有害的,在皮革行业中不管是皮料产品还是半成品、成品商人们都是害怕六价铬总铬

含量超标,如果产品有害的铬含量超标直接导致产品没法进入市场流通,生产商就会

损失效益。六价铬是一种有害的物质,如果在安全的范围内是可以让产品进入市场,

在所有的皮革制造商中欧洲地区的皮革商他们有比较高的生产技术能够使六价铬的含

量不超标,但是我国的生产技术没有办法能够使产品中的六价铬总铬含量不超标。

六价铬总铬含量多少直接影响产品质量:国际市场上大部分的皮革产品进口地(欧盟地区、美国、土耳其等)对于皮革产品的质量要求是直接遵循RHOS法规的,

根据欧盟2005/618/EC决议,其中铅(Pb)、汞(Hg)、六价铬(Cr6+)、多溴联苯(PBB)、多溴二苯醚(PBDE)的最大允许含量为0.1%(1000ppm),镉(cd)为0.01%(100ppm),

该限值是制定产品是否符合RoHS指令的法定依据。出口的皮革产品中六价铬总铬含

量最高不得超过3%,具体的含量是0.003g。如果产品的含量达到几十个点是高度超

标的,这种情况一般是使用AKAO AO-C6R-N2(A/B)或I50等系列的六价铬清除剂将

超标的产品处理一下。

国标法测定水溶液六价铬

六价铬的测定二苯碳酰二肼分光光度法 Water quality-Determination of chromium(VI)-1.5Diphenylcarbohydrazide spectrophotometric method 1 适用范围 1.1本标准适用于地面水和工业废水中六价铬的测定。 1.2测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5氢氧化锌共沉淀剂 3.5.1硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg 六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0

紫外分光光度计测定水中的六价铬

紫外分光光度计测定水中的六价铬 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 铬是生物体必需的微量元素之一。铬的缺乏会导致糖、脂肪等物质的代谢紊乱,但摄入量过高对生物和人类有害。铬的毒性与其存在形态有极大的关系: 三价铬化合物几乎无毒,且是人和动物所必需的; 相反,六价铬化合物具有强氧化性,且有致癌性。一般来说,六价铬的毒性要比三价铬大100倍。我国规定铬在地面水中最高允许浓度: 三价铬为0.5 mg/L,六价铬为0.1 mg/L,生活饮水最高允许浓度( 六价铬) 为0.055 mg/L。因此对六价铬需要一种简单、有效的分析方法。六价铬的测定方法有很多: 如二苯碳酰二肼可见分光光度法、示波极谱滴定法、原子吸收分光光度法、动力学光度法、流动注射光度法等,但大多由于仪器价昂难以普及使用。分光光度法则以仪器价廉,操作简单等优点,目前在我国仍具有广泛的实用价值。本文研究了在碱性条件下对六价铬的测定,碱性条件下六价铬在紫外区有一较强的吸收峰,因此建立了对六价铬的测定方法。 1 主要仪器和试剂配制紫外可见分光光度计,可见分光光度计,酸度计。 六价铬标准溶液: 称取于120℃干燥2 h 的K2Cr2O7( 优级纯) 0.282 9 g,溶于少量水中并稀释定容至1 L,摇匀得浓度为0.100 mg/mL 的储备液。2%(m/V) 氢氧化钾溶液: 称取2 g 氢氧化钾溶于100 mL蒸馏水中。1∶1 硫酸溶液: 将浓硫酸缓慢加入到等体积水中,混合均匀。 所用试剂均为分析纯,实验用水为二次蒸馏水。所用的玻璃器皿均在1 mol /L 的HNO3 溶液中浸泡12 h 以上。 2 方法与结果 2.1 六价铬的吸收光谱准确移取1 mL 铬标准和适量的氢氧化钾溶液置于25 mL 容量瓶中,定容后用1 cm 比色皿在波长200~400 nm 范围内扫描吸收曲线,结果产物的λmax 为372 nm; 故本文选372 nm 作为测试波长。 用移液管分别移取铬标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00 mL 于50 mL 容量瓶中,分别加适量氢氧化钾溶液,然后用蒸馏水稀释至刻度,摇匀; 得到Cr(VI) 的浓度分别是0.00、1.00、2.00、4.00、6.00、8.00、10.00 mg/L,用1 cm 比色皿以蒸馏水为参比,在波长372 nm 处测定其吸光度分别为0.002、0.078、0.158、0.309、0.452、0.587、0.745 mg/L,得到六价铬

六价铬的检测方法样本

六价铬的检测方法

目次 前言..................................................................... III 引言...................................................................... IV 1 范围 (1) 2 规范性引用文件 (1) 3 X射线荧光光谱法 (1) 3.1 原理 (1) 3.2 试剂和材料 (1) 3.3 仪器和设备 (2) 3.4 样品制备 (2) 3.5 分析步骤 (2) 3.6 结果分析 (3) 4 金属防腐镀层中六价铬定性试验 (3) 4.1 原理 (3) 4.2 试剂和材料 (4) 4.3 仪器和设备 (4) 4.4 样品制备 (4) 4.5 试验 (4) 5 金属防腐镀层中六价铬含量测定 (6) 5.1 原理 (6) 5.2 试剂和材料 (6) 5.3 仪器和设备 (6) 5.4 样品制备 (6) 5.5 分析步骤 (6) 5.6 结果计算 (7)

5.7 精密度 (8) 6 聚合物材料和电子材料中六价铬含量测定 (8) 6.1 原理 (8) 6.2 试剂和材料 (8) 6.3 仪器和设备 (9) 6.4 样品制备 (9) 6.5 分析步骤 (9) 6.6 结果计算 (10) 6.7 精密度 (11) 7 皮革材料中六价铬含量测定 (11) 7.1 原理 (11) 7.2 试剂和材料 (11) 7.3 仪器和设备 (11) 7.4 样品制备 (12) 7.5 分析步骤 (12) 7.6 结果计算 (13) 7.7 回收率和检出限 (14) 8 试验报告 (14) 附录A( 资料性附录) 紧固件镀层表面积计算方法 (15) A.1 紧固件表面积计算公式 (15) A.2 螺栓、螺母表面积计算数据 (15) 附录B( 规范性附录) 聚合物材料和电子材料中六价铬含量测定方法回收率的测定和检出限的确定 (18) B.1 回收率的测定 (18) B.2 检出限的确定 (18)

六价铬的测定方法(二苯碳酰二肼分光光度法)

GB/T 7467 六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml 容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.00μg六价铬。使用当天配制此溶液。

水中六价铬的测定-二苯碳酰二肼分光光度法

一、实验目的 (1)掌握分光光度法测定六价铬的原理和方法。 (2)熟悉分光光度计的使用。 二、实验原理 在酸性介质中,六价铬与二苯碳酰二肼(DPC)反应,生成紫红色络合物,于540nm波长处进行比色测定。

三、使用仪器规格及实际用量 (1) 分光光度计 (2) 具塞比色管、移液管、容量瓶等。 (1) (1+1)硫酸::将浓硫酸缓慢加入到同体积水中,混匀。 (2) (1+1)磷酸:将浓磷酸缓慢加入到同体积水中,混匀。 (3) 铬标准贮备液(0.100 mg-Cr6+/mL):经120℃烘干2小时的重铬酸钾: 0.2829g溶于水中,定容至1000mL。 (4) 铬标准使用液(1.00 μg-Cr6+/mL):取5 mL铬标准贮备液于500mL容量瓶中,定容。 (5) 二苯碳酰二肼(C13H14N4O)溶液:称取二苯碳酰二肼0.2g溶于50mL丙酮中,加水稀释至100mL. 四、实验步骤 (1) 水样预处理:本试验由于时间限制,将水样作为不含悬浮物、低浊度的清洁地表水,进行直接测定。但在实际环境监测中需要根据不同水样性质进 行预处理。 (2) 标准曲线的绘制:取5支50mL比色管,依次加入0,1,3,5,7 mL铬标准使用液,用水稀释至标线,分别加入(1+1)硫酸0.5 mL和(1+1)磷酸0.5 mL,摇匀。加入2 mL 显色剂溶液摇匀。静置5-10分钟后,放入比色皿中于 540nm处测吸光度值。以加入0 mL铬标准使用液的溶液作为参比。注意: 为了测量准确,测定时应用同一个比色皿,浓度由低到高测定,且每次测 完都应用蒸馏水清洗,再用待测液润洗2-3次。以吸光度为纵坐标,相应六 价铬含量为横坐标绘制标准曲线。 (3) 水样的测定:各取50mL水样和50mL自来水于比色管中,分别加入(1+1)硫酸0.5 mL和(1+1)磷酸0.5 mL,摇匀。加入2 mL 显色剂溶液摇匀。静 置5-10分钟后,放入比色皿中于540nm处测吸光度值。根据所测吸光度从标 准曲线上查得六价铬含量。 (4) 分光光度计的使用: (a) 打开点源,预热30min,将光镜选择杆调到正确位置; (b) 仪器归零:调整波长选择钮至540nm,灵敏度置于“1”,选择开关置于“T”,开盖调“0%T”显示“00.0”,闭盖(装有参比) 调“100%T”显示“100.0”。 (c) 吸光度测定:按MODE键使功能显示为ABSORBANCE,显示吸光度的值,拉动样品室拉杆,将待测液拉入光路,此时显示值即为待 测液的吸光度。注意:每次测量时都应对仪器进行调零。 五、主要结果计算及分析(可另附纸) Cr6+(mg/L)=m/V 式中 m—从标准去线上查得的Cr6+含量(μg); V—水样的体积(mL)

六价铬测定方法

C r6+的测定(二苯碳酰二肼分光光度法) 1.适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定。 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2.原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3.试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。

水中六价铬的测定分光光度法

水中六价铬的测定—分光光度法 废水中铬的测定常用分光光度法,其原理基于:在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价铬,再用本法测定。 一.实验目的 掌握分光光度法测定六价铬的原理和方法; 二.六价铬的测定 1.仪器 ①分光光度计、比色皿(1cm) ②50mL具塞比色管、移液管、容量瓶等。 2.试剂 (1)丙酮。 (2)(1+1)硫酸。 (3)(1+1)磷酸。 (4) 0.2%(m/V)氢氧化钠溶液。 (5)铬标准贮备液:称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL容量瓶中,用水稀释至标线,摇匀。每毫升贮备液含0.100mg六价铬。 (6)铬标准使用液:吸取5.00mL铬标准贮备液于500mL容量瓶中,用水稀释至标线,摇匀。每毫升标准使用液含1.00μg六价铬。使用当天配制。 (7) 二苯碳酰二肼溶液:称取二苯碳酰二肼(简称DPC,C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。 3.测定步骤 (1)水样预处理: 对不含悬浮物、低色度的清洁地面水,可直接进行测定。 (2)标准曲线的绘制:取9支50mL比色管,依次加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.00mL铬标准使用液,用水稀释至标线,加入1+1硫酸0.5mL和1+1磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀。5~10min 后,于540nm波长处,用1cm或3cm比色皿,以水为参比,测定吸光度并做空白校正。以吸光度为纵坐标,相应六价铬含量为横坐标绘出标准曲线。 (3)水样的测量:取适量(含Cr6+少于50μg)无色透明或经预处理的水样于50mL比色管中,用水稀释至标线,以下步骤同标准溶液测定。进行空白校正后根据所测吸光度从标准曲线上查得Cr6+含量。 4.计算 Cr6+(mg·L-1)=m/V 式中:m—从标准曲线上查得的Cr6+量,μg; V—水样的体积,mL; 第 1 页共1 页

六价铬、总铬复习题及参考答案

六价铬、总铬复习题及参考答案(27题) 一、填空题 1、铬在水体中,受、、、以及等条件的影响,三价铬和六价铬化合物在水体中可相互转化。铬是生物体所的微量元素之一。铬的毒性与其存在的状态有极大的关系。价铬具有强烈的毒性,它的毒性比三价铬高100倍。 答:pH值有机物氧化性还原性物质温度硬度必须六 2、在水体中,六价铬一般是以、、三种阴离子形式存在。 答:CrO42-HCrO4-Cr2O72- 3、六价铬与二苯碳酰二肼反应时,显色酸度一般控制在,以时显色最好。显色前,水样应调至中性。和对显色有影响。 答:L 温度放置时间 4、当水样中铬含量>1mg/L(高浓度)时,总铬的测定可采用法。答:硫酸亚铁铵滴定(容量) 5、铬的最高价态是,还有和,以氧化数为的化合物最稳定。答:+6 +3 +2 +3 6、测定铬的玻璃器皿(包括采样的),不能用洗涤,可用 洗涤。 答:重铬酸钾洗液(或铬酸溶液)硝酸与硫酸混合液或洗涤剂 7、水中铬的测定方法主要有、、、等。 答:分光光度法原子吸收法气相色谱法中子活化分析法 8、测定水中总铬,是在条件下,用将,再用 显色测定。 答:酸性高锰酸钾三价铬氧化成六价铬二苯氨基脲 9、测定六价铬的水样,如水样有颜色但不太深,可进行。混浊且色度较深的水样,用预处理后,仍含有有机物干扰测定时,可用破坏有机物后再测定。 答:色度校正锌盐沉淀分离酸性高锰酸钾氧化法 10、用二苯碳酰二肼分光光度法测定水中六价铬,在使用光程为30mm比色皿时,其方法

的最低检出浓度为mg/L。 答: 11、测定六价铬的水样,在条件下保存,置于冰箱内可保存天。 答:弱碱性pH8 七 12、如测总铬,水样采集后,加入硝酸调节pH小于;如测六价铬,水样采集后,加入氢氧化钠调节pH约为。 答:2 8 13、采集含铬水样的容器,可用或。器皿在使用前,必须用浓度为6mol/L的洗涤。 答:玻璃瓶聚乙烯瓶盐酸 14、分光光度法测定六价铬的干扰有:、、、、 等。 答:浊度悬浮物重金属离子氯和活性氯有机及无机还原性物质 二、判断题(正确的打√,错误的打×) 15、分光光度法测定水中六价铬,二苯碳酰二肼与铬的络合物在470nm处有最大吸收。() 答:×(540 nm) 16、分光光度法测定六价铬,氧化性及还原性物质,如:ClO-、Fe2+、SO32-、S2O32-等,以及水样有色或混浊时,对测定均有干扰,须进行预处理。() 答:√ 17、六价铬与二苯碳酰二肼反应时,显色酸度一般控制在。显色酸度高时,显色快,但色泽不稳定。() 答:√ 18、六价铬与二苯碳酰二肼生成的有色络合物的稳定时间,与六价铬的浓度无关。()答:×(与六价铬的浓度有关) 三、选择题(选择正确的答案序号) 19、Cr6+与二苯碳酰二肼反应时,硫酸浓度一般控制在( )时显色最好。 ⑴L; ⑵L; ⑶L. 答:⑵L

六价铬的测定方法(二苯碳酰二肼分光光度法)

六价铬的测定方法(二苯碳酰二肼分光光度法)GB/T 7467 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为 0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法 的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度 的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液

将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110?干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829?0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含 1.00μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5.00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。

六价铬实验报告

用二苯碳酰二肼分光光度法GB7466-87分析考核样 中的六价铬 实验名称:水样中六价铬的测定 实验方法及来源:二苯碳酰二肼分光光度法(A)—GB7466-87 实验目的:上岗考核 实验人员:XX 实验日期:XX年X月X日 一、实验原理: 在酸性溶液中,六价铬与二苯碳酰二肼反应紫红色化合物,其最大吸收波长为540nm,摩尔吸光系数为4X 104 L ? mol-1? cm-1 二、实验仪器: 1. 30mm比色皿; 2. 分光光度计; 三、实验试剂: 1. 丙酮。 2. (1+1)硫酸:将硫酸(p =1.84g/ml )缓缓加入到同体积水中,混匀。 3. (1+1)磷酸:将磷酸(p =1.69g/ml )与等体积水混合。 4. 0.2%氢氧化钠溶液:称取氢氧化钠1g,溶于500ml新煮沸放冷的水 中。

5. 氢氧化锌共沉淀剂

①硫酸锌溶液:称取硫酸锌8g,溶于水并稀释至100ml。 ②2%氢氧化钠溶液:称取氢氧化钠2.4g溶于新煮沸放冷的水至120ml, 同时将①、②两溶液混合。 6. 4%高锰酸钾溶液:称取高锰酸钾4g,在加热和搅拌下溶于水,稀释至 100ml。 7. 铬标准贮备液:称取于120。C干燥2h的重铬酸钾(K262O7,优级纯) 0.2829g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线。摇匀。每毫 升溶液含0.100mg六价铬。 8. 铬标准溶液(I):吸取5.00ml铬标准贮备液,置于500ml容量瓶 中,用水稀释至标线,摇匀。每毫升溶液含 1.00ug六价铬,使用 时当天配置。 9. 铬标准溶液(H):吸取25.00ml铬标准贮备液,置于500ml容量 瓶中,用水稀释至标线,摇匀。每毫升溶液含 5.00ug六价铬,使 用时当天配置。 10.20%尿素溶液:降尿素((NH2)2CO)20g溶于水并稀释至100ml。 11.2%亚硝酸钠溶液:将亚硝酸钠2g溶于水并稀释至100ml。 12. 显色剂(I):称取二苯碳酰二肼(C13H14N4O)0.2g,溶于50ml 丙酮中,加 水稀释至100ml,摇匀。贮于棕色瓶置冰箱中保存。色变身后不能使用。 13. 显色剂(H):称取二苯碳酰二肼1g,溶于50ml丙酮中,加水稀释至100ml,摇 匀。贮于棕色瓶置冰箱中保存。色变身后不能使用。 14:六价铬质控样:准确量取10.00ml质控样于250ml容量瓶中,用 水稀释至标线,摇匀。

六价铬的测定 二苯碳酰二肼分光光度法

六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0 0μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5. 00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。 将尿素〔(NH2)2CO〕20g溶于水并稀释至100ml。 3.11 亚硝酸钠:20g/L溶液。

GB 7467-1987 水质 六价铬的测定 二苯碳酰二肼分光光度法方法验证报告

水质六价铬的测定 二苯碳酰二肼分光光度法 GB 7467-1987 方法验证报告 编制: 日期: 校核: 日期: 审核: 日期: 广东XX检测技术有限公司

水质六价铬的测定方法验证报告 1 方法依据 依据《水质六价铬的测定玻璃电极法二苯碳酰二肼分光光度法GB 7467-1987》。 2 方法原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂和材料 3.1 水:纯水 3.2 AR级:丙酮、硫酸、磷酸、氢氧化钠、氢氧化锌、高锰酸钾、尿素、亚硝酸钠 3.3显色剂(Ⅰ) 称取二苯碳酰二肼0.2g溶于50ml丙酮中,加水稀释至100ml,摇匀,贮于棕色瓶,置于冰箱中,色变深后,不能使用。 3.4显色剂(Ⅱ) 称取二苯碳酰二肼2g溶于50ml丙酮中,加水稀释至100ml,摇匀,贮于棕色瓶,置于冰箱中,色变深后,不能使用。 3.5 六价格有证标准溶液、六价格有证标准样品 4仪器 4.1 检测实验室常用仪器设备。 4.2 双光束紫外可见分光光度计:UV2800 5 采样和样品保存 5.1 现场测定与采样 用玻璃瓶现场采集样品500ml,加入氢氧化钠,调节样品pH值约为8,样品运回实验室后在24h内测定。 5.2测试步骤 1)样品预处理 不含悬浮物,清洁水样直接测定 混浊、色度较深的样品:取10ml样品于150ml烧杯中,加水到50ml,滴加氢氧化钠溶液,调节pH值为7.5.在不断搅拌下,滴加氢氧化锌共沉淀剂至溶液pH8.5,将此溶液转移至100ml 常量瓶中,用水稀释至标线,用慢速滤纸干过滤,弃去10ml初滤液,取其中50ml滤液供测定。

水中六价铬检测方法-比色法

水中六價鉻檢測方法-比色法 NIEA W320.52A 一、方法概要 在酸性溶液中,六價鉻與二苯基二氨脲(1,5-Diphenylcarbazide)反應生成紫紅色物質,以分光光度計在波長540 nm處,量測其吸光度並定量之。 二、適用範圍 本方法適用於飲用水水質、飲用水水源水質、地面水體、地下水、放流水及廢(污)水中六價鉻之檢驗。 三、干擾 (一) 當鐵離子之濃度大於1 mg/L時,會形成黃色Fe+3,雖然在某些波長下會有吸光值,惟干擾 程度不大。六價鉬或汞鹽濃度大於200 mg/L、釩鹽濃度大於六價鉻濃度10倍時,會形成干擾;不過六價鉬或汞鹽在本方法指定的pH範圍內干擾程度不高。另若有上述干擾的六價鉬、釩鹽、鐵離子、銅離子等水樣,可藉氯仿萃取出這些金屬生成的銅鐵化合物 (Cupferrates)而去除之,惟殘留在水樣的氯仿和銅鐵混合物(Cupferron)可用酸分解。 (二) 高錳酸鉀可能形成之干擾,可使用疊氮化物(Azide)將其還原後消除之。 四、設備及材料 (一) pH計。 (二) 分光光度計,使用波長540 nm,樣品槽光徑可選用1或5或10公分,以能檢測出正確數 據為原則。 (三) 玻璃器皿:勿使用以鉻酸清洗過的玻璃器皿。 (四) 分析天平:可精秤至0.1 mg。 (五) 移液管或經校正之自動移液管。 五、試劑 (一) 試劑水:比電阻≧16 MΩ-cm。 (二) 0.5 M硫酸溶液:以蒸餾水稀釋83.3 mL之3 M硫酸溶液至500 mL。

(三) 二苯基二氨脲溶液:溶解0.25 g二苯基二氨脲於50 mL丙酮(Acetone),儲存於棕色瓶, 本溶液如褪色應棄置不用。 (四) 濃磷酸。 (五) 濃硫酸:9 M及3 M。 (六) 鉻儲備溶液:在1000 mL量瓶內,溶解0.1414 g重鉻酸鉀(K2Cr2O7)於蒸餾水,稀釋至刻 度:1.0 mL相當於0.05 mg Cr。或購買經濃度確認並附保存期限說明之市售標準儲備溶液。 (七) 鉻標準溶液:在100 mL量瓶內,稀釋10.0 mL鉻儲備溶液至刻度;1.0 mL相當於0.005 mg Cr。 六、採樣及保存 採集至少300 mL之水樣於塑膠瓶內,於4℃暗處冷藏,保存期限為24小時。 七、步驟 (一) 水樣處理及測定 1、取已經適當稀釋或原水樣47 mL置於適當容器中, 加入約0.12 mL的濃磷酸,再以0.5 M 硫酸溶液及pH計,調整水樣之pH至2.0 ±0.5。 2、加入1.0 mL二苯基二氨脲溶液,混合均勻,倒入50 mL量瓶中,以試劑水稀釋至50 mL。 靜置5~10分鐘後,以分光光度計於波長540 nm處讀取吸光度,以試劑水為對照樣品, 吸光度讀數應扣除製備空白吸光值,並由檢量線求得六價鉻濃度(mg/L)。 <注意>若經上述步驟稀釋至50 mL溶液成混濁狀態,則在加入二苯基二氨脲溶液前讀取吸光度,並自最終顏色溶液之吸光度讀取中扣除而予校正。 (二) 檢量線製備 1、精取適當之鉻標準溶液,配製一個空白和至少五種不同濃度的檢量線標準溶液,其濃度範圍如0至1.0 mg/L,或其他適當範圍。 2、依步驟七(一)操作並讀取吸光度,以標準溶液濃度(mg/L)為X軸,吸光度為Y軸,繪製一吸光度與六價鉻濃度(mg/L)之檢量線,。 八、結果處理

26 六价铬、总铬复习题及参考答案

六价铬、总铬复习题及参考答案(27题) 参考资料 1、《水和废水监测分析方法指南》(上册) 2、《水和废水监测分析方法》第三版 3、《环境监测机构计量认证和创建优质实验室指南》 4、《水环境分析方法标准工作手册》(上册) 一、填空题 1、铬在水体中,受、、、以及等条件的影响,三价铬和六价铬化合物在水体中可相互转化。铬是生物体所 的微量元素之一。铬的毒性与其存在的状态有极大的关系。价铬具有强烈的毒性,它的毒性比三价铬高100倍。 答:pH值有机物氧化性还原性物质温度硬度必须六 《水和废水监测分析方法指南》(上册),P61 2、在水体中,六价铬一般是以、、三种阴离子形式存在。 答:CrO 42- HCrO 4 - Cr 2 O 7 2- 《水和废水监测分析方法指南》(上册),P61 3、六价铬与二苯碳酰二肼反应时,显色酸度一般控制在,以 时显色最好。显色前,水样应调至中性。和对显色有影响。 答:0.05-0.3mol/L(1/2H 2SO 4 ) 0.2mol/L 温度放置时间 《水和废水监测分析方法》第三版,P159(3) 4、当水样中铬含量>1mg/L(高浓度)时,总铬的测定可采用法。答:硫酸亚铁铵滴定(容量) 《水和废水监测分析方法》第三版,P161(硫酸亚铁铵滴定法) 《水和废水监测分析方法指南》(上册),P70 5、铬的最高价态是,还有和,以氧化数为的化合物最稳定。答:+6 +3 +2 +3 《水和废水监测分析方法指南》(上册),P61 6、测定铬的玻璃器皿(包括采样的),不能用洗涤,可用

洗涤。 答:重铬酸钾洗液(或铬酸溶液)硝酸与硫酸混合液或洗涤剂 《水和废水监测分析方法》第三版P159(注意事项1) 7、水中铬的测定方法主要有、、、等。 答:分光光度法原子吸收法气相色谱法中子活化分析法 《水和废水监测分析方法指南》(上册),P61 8、测定水中总铬,是在条件下,用将,再用显色测定。 答:酸性高锰酸钾三价铬氧化成六价铬二苯氨基脲 《水和废水监测分析方法指南》(上册),P61 9、测定六价铬的水样,如水样有颜色但不太深,可进行。混浊且色度较深的水样,用预处理后,仍含有有机物干扰测定时,可用破坏有机物后再测定。 答:色度校正锌盐沉淀分离酸性高锰酸钾氧化法 《水和废水监测分析方法》第三版,P158(步骤)、159(5) 10、用二苯碳酰二肼分光光度法测定水中六价铬,在使用光程为30mm比色皿时,其方法的最低检出浓度为 mg/L。 答:0.004 《水和废水监测分析方法》第三版,P157(3) 11、测定六价铬的水样,在条件下保存,置于冰箱内可保存天。 答:弱碱性pH8 七 《水和废水监测分析方法指南》(上册),P62(二) 12、如测总铬,水样采集后,加入硝酸调节pH小于;如测六价铬,水样采集后,加入氢氧化钠调节pH约为。 答:2 8 《水和废水监测分析方法》(第三版),P156(六、2) 13、采集含铬水样的容器,可用或。器皿在使用前,必须用浓度为6mol/L 的洗涤。

六价铬的测定―二苯碳酰二肼分光光度法.doc

六价铬的测定—二苯碳酰二肼分光光度法 一、实验目的 掌握六价铬的测定方法 熟悉 722 型分光光度计的使用 二、实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为 540nm,吸光度与浓度的关系符合比耳定律。 三、实验仪器 分光光度计比色皿 50ml 具塞比色管,移液管,容量瓶等 四、实验试剂 ( 1)硫酸( 1+1): 将硫酸(密度为 1.84g/ml)缓缓加入到同体积水中,混匀; ( 2)磷酸( 1+1): 将磷酸(密度为 1.69g/ml)与等体积水混合; ( 3)铬标准储备液: 称取于 120℃干燥 2h 的重铬酸钾( K 2Cr 2O 7,优级纯) 0.2829g,用水溶解后,移入 1000ml 容量瓶中,用水稀释至标线,摇匀。此溶液 1ml 含 0.10mg 六价铬;

( 4)铬标准溶液使用液: 吸取 5.00ml 铬标准储备液于 500ml 容量瓶中,用水稀释至标线,摇匀。此 溶液 1ml 含有 1.00 μg的六价铬; (5)显色剂: 二苯碳酰二肼溶液(称取二苯碳酰二肼C 13N 14H 4O 0.2g,溶于 50ml 丙酮中,加水稀释至 100ml,摇匀,储于棕色瓶,置冰 箱中。 (6)待测六价铬水样(本实验采用模拟水 样)五、实验步骤 1.标准曲线的绘制: ( 1)向一组 50ml 的比色管中,依次加入 0、0. 50、1. 00、2. 00、4. 00、8.00 和 10.00ml 的铬标准使用液,用水稀释至标线,依次加入硫酸(1+1)0.5ml 和磷酸( 1+1)0.5ml,摇匀。 ( 2)显色:

水中六价铬检测的研究进展

水中六价铬检测的研究进展 摘要::阐述了目前测定水中六价铬的几种方法(分光光度法、荧光猝灭法、示波极谱法、原子光谱法及质谱法、离子色谱法)的特点及适用范围,近年来一些相关发明相继问世,提高了分析速度,为六价铬的现场定量检测提供有效的检测手段。通过仪器联用技术(高效液相色谱与ICP—MS联用,离子色谱与ICP—MS联用)的不断完善,不但可以直接测定出六价铬,还可以对水中成分进行全分析,大大的提高了分析速度和工作效率,降低了分析成本。 关键词:六价铬,检测 铬是一种重要的环境污染物,主要来源于电镀、冶金、制革、印染和化工等行业排放的“三废”中[1]。铬的毒性与其价态有关,在饮用水中以三价铬和六价铬两种形态存在。六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且为人体蓄积,并可以引起口角糜烂、恶心、呕吐、腹泻、腹疼和溃疡等病变。铬在水体中可抑制其自净作用[2]。六价铬同时也是最易导致过敏的金属之一,仅次于镍;在国际上,六价铬被列为对人体危害最大的8种化学物质之一,是公认的致癌物质。早在1935年,德国的工厂医师Pfeil发现铬酸盐工人肺癌高发.随后美国、英国、德国、日本、前苏联和意大利等国的流行病学调查研究都予以证实。我国20世纪80年代对2545名铬酸盐工人进行回顾性和前瞻性流行病学调查研究,发现肺癌高发,发病率高达82.08/10万,而对照组为22.79/10万。1990年。国际癌症研究中心明确六价铬化合物为人类致癌物[3]。超标的六价铬在环境中不会自然分解,它将在人体和环境中积累,对其造成危害。另外,人体如果长期接触六价铬将会引起铬鼻病,主要表现为流涕、鼻塞、鼻衄、鼻干燥、鼻灼痛、嗅觉减退等症状及鼻粘膜充血、肿胀、干燥或萎缩等体征[4]。为了保障人民的身体健康,在我国生活饮用水卫生标准[5]和地表水环境质量标准[6]中明确规定水中六价铬的含量不得超过0.05mg/L。目前,饮水中六价铬的测定方法主要有分光光度法、荧光猝灭法、示波极谱法、石墨炉原子吸收法、电感耦合等离子光谱及质谱法和离子色谱法,下面将针对以上几种方法的特点详细阐述。 1 分光光度法 在化学分析法中,分光光度法是元素分析常用的检测方法,同时也是经典

六价铬的测定

实验六 六价铬的测定 一、实验目的 (1)学会六价铬的水样采集保存、预处理及测定方法。 (2)学会各种标准溶液的配制方法和标定方法。 二、概述 铬(Cr )的化合物常见的价态有三价和六价。在水体中,六价铬一般以- 24CrO 、HCrO - 4二种阴子形式存在,受水中pH 值、有机物、氧化还原物质、温度及硬度等条件影响,三价铬和六价铬的化合物可以互相转化。 铬是生物体所必需的微量元素之一。铬的毒性与其存在价态有关,通常认为六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且在体内蓄积。但即使是六价铬,不同化合物的毒性也不相同。当水中六价铬浓度为1mg/L 时,水呈淡黄色并有涩味,三价铬浓度为1mg/L 时,水的浊度明显增加,三价铬化合物对鱼的毒性比六价铬大。 铬的工业来源主要是含铬矿石的加工、金属表面处理、皮革鞣制、印染等行业。 三、水样保存 水样应用瓶壁光洁的玻璃瓶采集。如测总铬水样采集后,加入硝酸调节pH<2;如测六价铬,水样采集后,加NaOH 使pH 为8~9;均应尽快测定,如放置不得超过24h 。 四、干扰及清除 含铁量大于1mg/L 水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法的显色酸度下反应不灵敏。钼和汞达200mg/L 不干扰测定。钒有干扰,其含量高于4mg/L 即干扰测定。但钒与显色剂反应后10min ,可自行褪色。 氧化性及还原性物质,如:ClO —、Fe 2+、SO 32-、S 2O 32-等,以及水样有色或混浊时,对 测定均有干扰,须进行预处理。 五、方法的选择 铬的测定可采用二苯碳酰二胼分光光度法、原子吸收分光光度法和滴定法。清洁的水样可直接用二苯碳酰二肼分光光度法测六价铬。如测总铬,用高锰酸钾将三价铬氧化成六价铬,再用二苯碳酰二肼分光光度法测定。 六、测定方法(二苯碳酰二肼分光光度法) 1. 实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色络合物,其最大吸收波长为540nm ,吸光度与浓度的关系符合比尔定律。反应式如下: 如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再用本法测定。 O =C NH —NH —C 6H 5 NH —NH —C 6H 5 二苯碳酰二肼 +Cr 6+→O =C NH —NH —C 6H 5 N = N —C 6H 5 苯肼羟基偶氮苯 +Cr 3+→紫色络合物

紫外分光光度法测定六价铬的研究

紫外分光光度法测定六价铬的研究 铬是生物体必需的微量元素之一。铬的缺乏会导致糖、脂肪等物质的代谢紊乱, 但摄入量过高对生物和人类有害。铬的毒性与其存在形态有极大的关系: 三价铬化合物几乎无毒, 且是人和动物所必需的; 相反, 六价铬化合物具有强氧化性, 且有致癌性。一般来说, 六价铬的毒性要比三价铬大100倍。我国规定铬在地面水中最高允许浓度: 三价铬为0.5 mg/L, 六价铬为0.1 mg/L, 生活饮水最高允许浓度( 六价铬) 为0.055 mg/L。因此对六价铬需要一种简单、有效的分析方法。六价铬的测定方法有很多: 如二苯碳酰二肼可见分光光度法、示波极谱滴定法、原子吸收分光光度法、动力学光度法、流动注射光度法等, 但大多由于仪器价昂难以普及使用。分光光度法则以仪器价廉, 操作简单等优点,目前在我国仍具有广泛的实用价值。本文研究了在碱性条件下对六价铬的测定, 碱性条件下六价铬在紫外区有一较强的吸收峰, 因此建立了对六价铬的测定方法。 1 主要仪器和试剂配制 UV- 2201 紫外可见分光光度计, 722 可见分光光度计, PHS- 25B 型数字酸度计。 六价铬标准溶液: 称取于120℃干燥2 h 的K2Cr2O7( 优级纯) 0.282 9 g, 溶于少量水中并稀释定容至1 L, 摇匀得浓度为0.100 mg/mL 的储备液。2%(m/V) 氢氧化钾溶液: 称取2 g 氢氧化钾溶于100 mL蒸馏水中。1∶1 硫酸溶液: 将浓硫酸缓慢加入到等体积水中, 混合均匀。 所用试剂均为分析纯, 实验用水为二次蒸馏水。所用的玻璃器皿均在1 mol /L 的HNO3 溶液中浸泡12 h 以上。 2 方法与结果 2.1 六价铬的吸收光谱 准确移取1 mL 铬标准和适量的氢氧化钾溶液置于25 mL 容量瓶中, 定容后用1 cm 比色皿在波长200~400 nm 范围内扫描吸收曲线, 结果如图1 所示, 产物的λmax 为372 nm; 故本文选372 nm 作为测试波长。 图1 碱性介质中六价铬的紫外吸收光谱2.2 六价铬标准曲线 用移液管分别移取铬标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00 mL 于50 mL 容量瓶中,分别加适量氢氧化钾溶液, 然后用蒸馏水稀释至刻度, 摇匀; 得到Cr(VI) 的浓 度分别是0.00、1.00、2.00、4.00、6.00、8.00、10.00 mg/L, 用1 cm 比色皿以蒸馏水为 参比, 在波长372 nm 处测定其吸光度分别为0.002、0.078、0.158、0.309、0.452、0.587、 0.745 mg/L,得到六价铬浓度C(mg/L) 与吸光度A 之间的线性关系: A=0.0736C+0.0084, r=0.9995。 2.3 样品测定方法 将澄清的待测样品( 河南省振兴化工有限公司提供铬渣水浸出物) 用蒸馏水稀释到可测范围内,用1 cm 比色皿以蒸馏水为参比, 于波长372 nm 处测定其吸光度通过校准曲线计 算六价铬的含量。

相关主题
文本预览
相关文档 最新文档