当前位置:文档之家› TGDSC热分析

TGDSC热分析

TGDSC热分析
TGDSC热分析

TG-DSC热分析

一、实验目的

1.了解热重分析法和差示扫描量热法的基本原理和同步热分析仪分析仪的基本构造;

2.掌握同步热分析仪的使用方法;

3.测定碳酸钙试样的TG-DSC谱图,并根据所得到的谱图,分析样品在加热过程中发生的化学变化。

二、实验原理

1.热重分析

热重法,是在程序控制温度下,测量物质的质量与温度或时间的关系的方法。

进行热重分析的仪器,称为热重仪,主要由三部分组成,温度控制系统,检测系统和记录系统。

通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。

从热重法可以派生出微商热重法,也称导数热重法,它是记录TG曲线对温度或时间的一阶导数的一种技术。实验得到的结果是微商热重曲线,即DTG曲线,以质量变化率为纵坐标,自上而下表示减少;横坐标为温度或时间,从左往右表示增加。

DTG曲线的特点是,它能精确反映出每个失重阶段的起始反应温度,最大反应速率温度和反应终止温度;DTG曲线上各峰的面积与TG曲线上对应的样品失重量成正比;当TG曲线对某些受热过程出现的台阶不明显时,利用DTG曲线能明显的区分开来。

热重法的主要特点,是定量性强,能准确地测量物质的质量变化及变化的速率。根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。图中给出可用热重法来检测的物理变化和化学变化过程。我们可以看出,这些物理变化和化学变化都是存在着质量变化的,如升华、汽化、吸附、解吸、吸收和气固反应等。但象熔融、结晶和玻璃化转变之类的热行为,样品没有质量变化,热重分析方法就帮不上忙了。

2.差示扫描量热分析

差示扫描量热法(DSC)是在等速升温(降温)的条件下,测量输入到试样与参比物的功率差(如以热的形式)随温度变化,简称DSC(differential scanning calorimetry)。DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/

秒)为纵坐标,以温度T或时间t为横坐标。

DSC直接反映试样在转变时的热量变化,便于定量测定。试样在升(降)温过程中,发生吸热或放热,在DSC曲线上就会出现吸热或放热峰。试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在DSC曲线上是基线的突然变动。试样对热敏感的变化能反映在DSC曲线上。发生的热效大致可归纳为:?

(1)发生吸热反应。结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。?

(2)发生放热反应。气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。?

(3)发生放热或吸热反应。结晶形态转变、化学分解、氧化还原反应、固态反应等。

三、实验仪器及试剂

STA449F3型同步热分析仪,待测样品

四、实验步骤

1. 开机

打开恒温水浴、STA449C主机、TASC414/4控制器与计算机电源。

一般在水浴与热天平打开2~3小时后,可以开始测试。

2. 样品测试

(1). 称量样品质量及坩埚质量

(2)将样品放入炉体关闭炉体

(3). 打开基线文件

点击测量软件“文件”菜单下的“baseline”,选择“修正+样品”测量类型,输入样品名称、编号、所使用的气体及其流量等参数。输入完成后点击“继续”,进入下一步

1打开温度校正文件

在此处选择测量所使用的温度校正文件,点击“打开”。

2 打开灵敏度校正文件

选择测量所使用的灵敏度校正文件,点击“打开”,进入下一布:

(4). 编辑设定温度程序

在此处编辑设定温度程序。使用右侧的“温度段类别”列表与“增加”按钮逐个添加

各温度段,并使用左侧的“工作条件”列表为各温度段设定相应的实验条件(如气体开/关,是否使用冷却系统,是否使用STC模式进行温度控制等)。

(6). 设定测量文件名

选择存盘路径,设定文件名,点击“保存”,随后进入“STA调整”界面:

(7). 初始化工作条件与开始测量

点击“初始化工作条件”,软件将根据实验设置自动打开各路气体。

转动流量计上的旋钮,调节各路气体流量。

点击“清零”,对天平进行清零。随后观察仪器状态满足如下条件:

1. 炉体温度与样品温度相近。

2. 炉体温度(不使用STC情况下)或样品温度(使用STC情况下)与设定起始温度相吻合。

3.TG信号稳定,一分钟内基本无漂移。

4.DSC信号稳定

即可点击“开始”开始测量。

五、实验结果及数据处理

数据分析要求:分析待测样品的分解温度和反应热,以及质量分解百分比。

查阅碳酸钙的分解温度与测试样品温度,验证确认待测样品是否为碳酸钙。

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

热分析的基础与应用

热分析的基础与分析 SII·Nano technology株式会社 应用技术部大九保信明 目录 1.引言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 2.热分析概要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 2-1热分析的基本定义 2-2热分析技术的介绍 2-3热分析结果的主要 3.热分析技术的基本原理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 3-1 差热分析DTA原理 3-2 差热量热DSC原理 3-3 热重TG 原理 3-4 热机械分析TMA原理 4.应用篇。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 4-1DSC的应用例 4-1-1聚苯乙烯的玻璃化转变分析 4-1-2聚苯乙烯的融解温度分析 4-1-3比热容量分析 4-2TG/DTA的应用例 4-2-1聚合物的热分析测定 4-2-2橡胶样品的热分析测定 4-2-3反应活化能的解析 4-3TMA的应用例 4-3-1聚氯乙烯样品玻璃化温度的测定 4-3-2采用针入型探针对聚合物薄膜的测定 4-3-3热膨胀,热收缩的异向性解析 结束语。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 参考文献

1.前言 与其它分析方法相比,热分析方法研究的历史较为久远,1887年,勒夏特利埃(Le Chatelier)就着手研究差热分析,1915年,我国的本多光太郎开创了热重分析(热天平)。之后,随着电气、电子技术、机械技术的发展,热分析仪器迅速地得到了普及,加之,由于最近该仪器的自动化、计算机化程度的不断提高,热分析技术已作为通用的分析技术之一已被广泛的应用。 热分析技术涉及众多领域,以化学领域为首,热分析技术已广泛应用于物理学、地球科学、生物化学、药学等领域。起初,在这些领域中,热分析主要用于基础性研究。随着研究成果的不断积累、扩大,现已被用于应用开发、材料设计,以及制造工序中的各种条件的研究等生产技术方面。近年来,在日本工业标准/JIS等的试验标准、日本药典等的法定分析法中有些也采用了热分析技术。同时,在产品的出厂检验、产品的验收检查等质量管理、工艺管理领域,热分析也已成为最重要的分析方法之一。 作为热分析技术的最常用的方法,本章主要介绍差热分析(DTA)、差热量热分析(DSC)、热重分析(TG)及热机械分析(TMA)的基本原理以及各种测量技术的典型应用示例。 2.热分析的概要 2-1 热分析的定义 根据国际热分析协会(International Confederation for Thermal Analysis and Calorimetry:ICTA)的定义,热分析为: 热分析技术是在控制程序温度下,测量物质(或其反应生成物)的物理性质与温度(或时间)的关系的一类技术。 图1为根据该定义制作的热分析仪器的示意图。所谓热分析是指,如图1所示将试样放入加热炉中,检测使温度发生变化时所发生的各种性能变化的方法。根据要检测不同的物质性能的变化,热分析技术可以分类为几种不同的热分析技术。 图1热分析仪器的示意图

DSC 热分析方法简介

Interpretation of DSC curves Practice: The 15 diagrams on the next pages include the following effects:§melting §crystallization, cold crystallization §evaporation, vaporization, drying §solid-solid transition §polymorphic transitions via the liquid phase §glass transition §oxidation §curing, polymerization, polyaddition §decomposition §initial deflection §artifact, mechanical disturbances Write down the effects on the curves and try to find out what each substance is.

Diagram 1 Clear liquid Diagram 2 White powder Wg^-1-0.030 -0.025°C 299.5 300.0 300.5 mW 5°C 292 294296298300302304306308^exo Interpretation DSC 216.11.2000 17:43:26 MSG MT: G. Widmann System e R TA METTLER TOLEDO S Diagram 3 White powder, heated to 200 °C and shock cooled to ambient mW 10°C 120130140150160170180190 ^exo Interpretation DSC 310.11.2000 17:31:50 MSG MT: G. Widmann System e R TA METTLER TOLEDO S

最新差热分析DTA实验报告

差热分析DTA 一、实验目的 掌握热分析方法─差热分析法基本原理和分析方法。 了解差热分析和热重分析仪器的基本结构和基本操作。 二、差热分析基本原理 差热分析法(Differential Thermal Analysis,DTA)是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系的一种技术。 物质在加热或冷却过程中会发生物理或化学变化,同时产生放热或吸热的热效应,从而导致样品温度发生变化。因此差热分析是一种通过热焓变化测量来了解物质相关性质的技术。样品和热惰性的参比物分别放在加热炉中的两个坩埚中,以某一恒定的速率加热时,样品和参比物的温度线性升高;如样品没有产生焓变,则样品与参比物的温度是一致的(假设没有温度滞后),即样品与参比物的温差DT=0;如样品发生吸热变化,样品将从外部环境吸收热量,该过程不可能瞬间完成,样品温度偏离线性升温线,向低温方向移动,样品与参比物的温差DT<0;反之,如样品发生放热变化,由于热量不可能从样品瞬间逸出,样品温度偏离线性升温线,向高温方向变化,温差DT>0。上述温差DT(称为DTA 信号)经检测和放大

以峰形曲线记录下来。经过一个传热过程,样品才会回复到与参比物相同的温度。 在差热分析时,样品和参比物的温度分别是通过热电偶测量的,将两支相同的热电偶同极串联构成差热电偶测定温度差。当样品和参比物温差DT=0,两支热电偶热电势大小相同,方向相反,差热电偶记录的信号为水平线;当温差DT10,差热电偶的电势信号经放大和A/D换,被记录为峰形曲线,通常峰向上为放热,峰向下为吸热。差热曲线直接提供的信息主要有峰的位置、峰的面积、峰的形状和个数,通过它们可以对物质进行定性和定量分析,并研究变化过程的动力学。峰的位置是由导致热效应变化的温度和热效应种类(吸热或放热)决定的,前者体现在峰的起始温度上,后者体现在峰的方向上。不同物质的热性质是不同的,相应的差热曲线上的峰位置、峰个数和形状也不一样,这是差热分析进行定性分析的依据。分析DTA 曲线时通常需要知道样品发生热效应的起始温度,根据国际热分析协会(ICTA)的规定,该起始温度应为峰前缘斜率最大处的切线与外推基线的交线所对应的温度T(如图2),该温度与其它方法测得的热效应起始温度较一致。DTA峰的峰温Tp虽然比较容易测定,但它既不反映变化速率到达最大值时的温度,也与放热或吸热结束时的温度无关,其物理意义并不明确。此外,峰的面积与

Ansys 第 例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱 本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。 33.1概述 热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。 33.1.1 瞬态热分析的定义 瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。 33.1.2 嚼态热分析的步骤 瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。 1.建模 瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。 注意:瞬态热分析必须定义材料的导热系数、密度和比热。 2.施加载荷和求解 (1)指定分析类型, Main Menu→Solution→Analysis Type→New Analysis,选择 Transient。 (2)获得瞬态热分析的初始条件。 定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu →Solution→Define Loads→Apply→Thermal→Temperature命令施加的温

度在整个瞬态热分析过程中均不变,应注意二者的区别。 定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads→Apply→Initial Condit'n→Define 即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。 注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步, Main Menu→Solution→Load Step Opts→Time/Frequenc→Time →Time Step。 (3)设置载荷步选项。 普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step. 非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay. 输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu →Solution→Load Step Opts→Output Ctrls→DB/Results File.

三种热分析方法综合介绍.

三种热分析方法综合介绍 热分析是在程序控制温度的条件下,测量物质的物理性质随温度变化关系的一类技术。该技术包括三个方面的内容:其一,物质要承受程序控温的作用,通常指以一定的速率升(降)温。其二,要选定用来测定的一种物理量,它可以是热学的、力学的、声学的、光学的以及电学的和磁学的等。其三,测量物理量随温度的变化关系。 物质在受热过程中要发生各种物理、化学变化,可用各种热分析方法跟踪这种变化。表1中列出根据所测物理性质对热分析方法的分类。其中以差热分析(DTA)和热重分析(TG)的历史最长,使用也最广泛;微分热重分析(DTG)和差示扫描置热法(DSC)近年来也得到较迅速地发展。下面简单介绍DTA、TG和DSC的基本原理和技术。 表1热分析方法的分类 (一)差热分析(DTA) 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相变或反应的吸热或放热效应引起的。一般说来,相变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 图1为差热分析装置示意图,典型的DTA装置由温度程序控制单元、差热放大单元和记录单元组成。将试样S和参比物R一同放在加热电炉中进行程序升温,试样在受热过程中所发生的物理化学变化往往会伴随着焓的改变,从而使它与热惰性的参比物之间形成一定的温度差。差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号经差热放大后在记录单元绘出差热分析曲线。从曲线的位置、形状、大小可得到有关热力学和热动力学方面的信息。

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程 ANSYS热分析可分为三个步骤: ?前处理:建模、材料和网格 ?分析求解:施加载荷计算 ?后处理:查看结果 1、建模 ①、确定jobname、title、unit; ②、进入PREP7前处理,定义单元类型,设定单元选项; ③、定义单元实常数; ④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可 以是恒定的,也可以随温度变化; ⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。 2、施加载荷计算 ①、定义分析类型 ●如果进行新的热分析: Command: ANTYPE, STATIC, NEW GUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state ●如果继续上一次分析,比如增加边界条件等: Command: ANTYPE, STATIC, REST GUI: Main menu>Solution>Analysis Type->Restart ②、施加载荷 可以直接在实体模型或单元模型上施加五种载荷(边界条件) : a、恒定的温度 通常作为自由度约束施加于温度已知的边界上。 Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature b、热流率 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。 注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介(Differential Thermal Analysis) 1.DTA的基本原理 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 差热分析的原理如图Ⅱ-3-1所示。将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。则它们的升温曲线如图Ⅱ-3-2所示。若以对t作图,所得DTA曲线如图Ⅱ-3-3所示, 在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。 图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原 理图图 II-3-2试样和参 比物的升温曲线 1.参比物; 2.试样; 3.炉体; 4.热电偶(包括吸热转变) 图Ⅱ-3-3 DTA吸热转变曲线 TA曲线所包围的面积S可用下式表示 式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。 2.DTA曲线起止点温度和面积的测量

热重分析实验报告

热重分析实验报告 南昌大学实验报告 学生姓名: _______ 学号: _______专业班级:__________ 实验类型:?演示?验证 ?综合?设计?创新实验日期:2013-04-09 实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度

变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示: 三、实验仪器及试剂 HCT-2 型 TG-DTA 综合热分析仪、镊子、五水硫酸铜晶体等 四、实验步骤 1、打开炉子,将左右两个陶瓷杆放入瓷坩埚容器,关好炉子在操作界面上调零。 2、将坩埚放在天平上称量,记下数值P1,然后将测试样放入已称坩埚中称量,记下试样的初始质量。 3、将称好的样品坩埚放入加热炉中吊盘内。 4、调整炉温,选择好升温速率。 5、开启冷却水,通入惰性气体。 6、启动电炉电源,使电源按给定的速率升温。 7、观察测温表,每隔一定时间开启天平一次,读取并记录质量数值。 8、测试完毕,切断电源,待温度降低至100摄氏度时切断冷却水。 五、实验结果及数据处理

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

热分析技术简介——DSC

热分析技术简介——DSC 摘要:差示扫描量热分析仪因其使用方便,精确度高等特点,多年来备受青睐。本文介绍了差示扫描量热法(DSC)的发展历史、现状及工作原理,并且简要地介绍了DSC在天然气水合物、食品高聚物测定和水分含量测定、油脂加工过程及产品、沥青性能研究及改性沥青的性能评定中的应用。 关键词:DSC 技术发展现状应用 一、差示扫描量热法( DSC ) 简史 18世纪出现了温度计和温标。 19世纪,热力学原理阐明了温度与热量即热焓之间的区别后,热量可被测量。 1887年,Le Chatelier进行了被认为的首次真正的热分析实验:将一个热电偶放入黏土样品并在炉中升温,用镜式电流计在感光板上记录升温曲线。 1899年,Roberts Austen将两个不同的热电偶相反连接显著提高了这种测量的灵敏度,可测量样品与惰性参比物之间的温差。 1915年,Honda首次提出连续测量试样质量变化的热重分析。 1955年,Boersma设想在坩埚外放置热敏电阻,发明现今的DSC。 1964年,Watson等首次发表了功率补偿DSC的新技术。 差示扫描量热法是六十年代以后研制出的一种热分析方法。它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术,简称DSC(Differential Scanning Calovimetry)。根据测量方法的不同,又分为两种类型:功率补偿型DSC和热流型DSC。其主要特点是使用的温度范围比较宽、分辨能力高和灵敏度高。由于它们能定量地测定各种热力学参数(如热焓、熵和比热等)和动力学参数,所以在应用科学和理论研究中获得广泛的应用。 二、差示扫描量热法的现状 2.1差示扫描量热法(DSC)的原理 差示扫描量热法(DSC)装置是准确测量转变温度,转变焓的一种精密仪器,它的主要原理是:将试样和参比物置于相同热条件下,在程序升降温过程中,始终保持样品和参比物的温度相同。当样品发生热效应时,通过微加热器等热元件给样品补充热量或减少热量以维持样品和参比物的温差为零。加热器所提供的热量通过转换器转换为电信号作为DSC曲线记录下来。它是一种将与物质内部相转变有关的热流作为时间和温度的函数进行测量的热分析技术。 2.2差示扫描量热分析技术发展 差示扫描量热法是在差热分析(DTA)的基础上发展起来的一种热分析技术。

热分析技术及其在高分子材料研究中的应用

第33卷第3期2008年9月 广州化学 Guangzhou Chemistry V ol.33, No.3 Sept., 2008 热分析技术及其在高分子材料研究中的应用 翁秀兰1,2 (1. 福建师范大学化学与材料学院,福建福州350007; 2. 福建省高分子材料重点实验室,福建福州350007) 摘要:简要介绍了热分析技术——热重法、差热分析、差示扫描量热法、热机械分析法和动态 机械热分析法等及其在高分子材料领域的广泛应用。热分析技术的方法具有快速、方便等优点, 在高分子材料的研究中发挥着重要作用。 关键词:热分析;高分子材料;应用 中图分类号:O657.99 文献标识码:A 文章编号:1009-220X(2008)03-0072-05 热分析技术是在程序控制温度下测量样品的性质随温度或时间变化的一组技术,它在定性、定量表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛地应用。热分析技术已渗透到物理、化学、化工、石油、冶金、地质、建材、纤维、塑料、橡胶、有机、无机、低分子、高分子、食品、地球化学、生物化学等各个领域。 在高分子材料研究领域,随着高分子工业的迅速发展,为了研制新型的高分子材料与控制高分子材料的质量和性能,测定高分子材料的熔融温度、玻璃化转变温度、混合物的组成、热稳定性等是必不可少的[1-2]。在这些参数的测定中,热分析是主要的分析工具。 热分析技术主要包括:热重分析法(TG)、差热分析法(DTA)、差示扫描量热法(DSC)、热机械分析法(TMA)、动态热机械分析法(DMA)等。本文简要介绍了热分析技术及其发展前景及其在高分子材料研究领域的应用。 1 TG及其在高分子材料方面的应用 热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。热重分析主要研究在惰性气体中、空气中、氧气中材料的热的稳定性、热分解作用和氧化降解等化学变化;还广泛用于研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣,吸附、吸收和解吸,气化速度和气化热,升华速度和升华热;有填料的聚合物或共混物的组成等[3]。 1.1 高分子材料的组分测定 热重法测定材料组分,方法简便、快速、准确,经常用于进行高分子材料组分分析。通过热重曲线可以把材料尤其是高聚物的含量、含碳量和灰分测定出来,而对于高分子材料的混合物,如果各组分的分解温度范围不同的话,则可以利用TG来确定各个组分的含量[4]。 收稿日期:2007-11-13 作者简介:翁秀兰(1980-),女,福建福清人,研究实习员,负责热分析仪器及从事光催化研究。

南京大学-差热分析实验报告

差热分析 近代物理实验 一.实验目的 1?掌握差热分析的基本原理及测量方法。 2?学会差热分析仪的操作,并绘制CuSO4 5H2O等样品的差热图。 3?掌握差热曲线的处理方法,对实验结果进行分析。 二.实验原理 1、差热分析基本原理 物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热 的现象,反映了物质系统的焓发生了变化。在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。 在差热分析中,为反映微小的温差变化,用的是温差热电偶。在作差热鉴定时,是将与参比物 等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样 品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。 将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。如以AI2O3为参比物,它在整个试验温度内不发生任何物理化学变化,因而不产生任何热

热分析应用

武汉理工大学 热分析技术应用综述 课程名称:材料热分析技术 学院:材料学院 班级:建材院委培生 学号: 姓名:吴帅 摘要对热分析技术进行了介绍,并综述了近年来热分析技术在工业方面、食品分析、高分子及复合材料检测等领域的应用情况。

关键词热分析技术;工业方面;食品分析;高分子及复合材料检测 1 热分析技术概述 热分析技术作为一种科学的实验方法,在无机、有机、化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域被广泛应用。它的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化。国际热分析协会(ICTA)对热分析技术作了如下定义:热分析是在程序温度控制下,测量物质的物理性质与温度之间关系的一类技术。这里所说的“程序控制温度”一般指线性升温或线性降温,也包括恒温、循环或非线性升温、降温。这里的“物质”指试样本身和(或)试样的反应产物,包括中间产物。上述物理性质主要包括质量、温度、能量、尺寸、力学、声、光、热、电等。根据物理性质的不同,建立了相对应的热分析技术,ICTA 命名委员会对热分析技术进行了分类,具体见表1-1。 表1-1 热分析技术分类 热分析技术的优点主要有下列几方面:(1)可在宽广的温度范围内对样品进行研究:(2)可使用各种温度程序(不同的升降温速率);(3)对样品的物理状态无特

殊要求;(4)所需样品量可以很少(0.1μg~10mg);(5)仪器灵敏度高(质量变化的精确度达10-5);(6)可与其他技术联用;(7)可获取多种信息。 2 热分析技术在工业领域的应用 2.1 热分析在炸药研制过程中的应用 炸药是一种相对稳定的平衡体系,在一定外界条件作用下能够发生高速化学反应,释放出巨大的热能,产生大量的气体,其整个反应是一个复杂的、伴随着吸热和放热过程的物理化学变化。热分析是测量炸药物性参数对温度依赖性的有关技术的总称。在炸药热分析中,除了测定其在热作用下的热行为外,更重要的是利用热分析方法来对其反应动力学进行研究,并根据动力学参数以及炸药在各种温度下的热行为,探讨和确定炸药在研制、生产和使用中的最佳条件(工艺条件和环境条件),以为确保这些过程的安全性、可靠性提供重要的实验和理论依据。因此,炸药的热分析在炸药研制过程中具有重要的意义和关键性的作用。 2.2 热分析在遥感卫星设计上的应用 作为卫星热设计的重要步骤,热分析主要用于检验热设计是否将卫星温度控制在所要求的范围内。卫星热分析主要包括热网络模型建立、外热流计算、温度场分析和热分析模型修正等内容。选取合理的建模方法,通过简化,精确地反映卫星各部件与环境的热交换是热分析建模的基本原则。近年来,我国的卫星热分析技术取得了快速进展,其主要标志是:配备并完善了热分析软件;热分析计算贯穿热设计的全过程[1]。卫星热分析与热试验温度偏差一般可控制在5~10 ℃,已基本满足卫星工程设计的需求。目前,进一步提高热分析模型精度的主要方法是利用热平衡试验数据进行热分析模型修正[2]。实践表明:由于热分析模型针对的飞行状态与热平衡试验状态并不一致,直接利用热试验结果修正热模型往往无法获得预期效果。因此,有必要分析卫星热平衡试验与在热分析结果存在差异的主要原因,并寻求合适的途径以实现热模型的有效修正。 2.3 热分析在铸造领域的应用 热分析方法开始应用于铸造领域时用于分析铸铁的化学成分[3]。但是现在已经广泛应用于工业界的是利用其来分析铝合金的晶粒细化和Al-Si合金中的Si 变质程度[4]。热分析方法还是常用于评价铁合金、铝合金等的凝固过程及凝固过

《差热分析》报告

实验二差热分析 姓名 ________ 学号 ________ 院系 ________

差热分析 一引言 差热分析 (Differential Thermal Analysis. 简称 DTA) 就是通过温差测量来确定物质的物理 化学性质的一种热分析方法。本文通过实验讨论了如何分析DTA 的结果以获得有效的信息,并阐述了影响差热分析效果的各种因素。 二实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分 解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现 为物质与环境 (样品与参比物 )之间有温度差。差热分析( DTA )是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。 DTA 曲线是描述试样与参比物之间的 温差(T)随温度或时间的变化关系。在DTA 实验中,试样温度的变化是由于相转变或反 应的吸热或放热效应引起的。如:相转变、熔化、结晶结构的转变、升华、蒸发、脱氢反应、断裂或分解反应、氧化或还原反应、晶格结构的破坏和其它化学反应。一般说来,相转变、 脱氢还原和一些分解反应产生吸热效应;而结晶、氧化等反应产生放热效应。

图 1 差热分析的原理图(1- 参比物 ; 2- 试样 ; 3- 炉体 ; 4- 热电偶)图2试样和参比物的升温曲线DTA 的原理如图 1 所示。将试样和参比物分别放入坩埚,置于炉中以一定速率ν=dT/dt 进行程序升温,以T s、T r表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热 容量 C s、C r不随温度而变。则它们的升温曲线如图2所示。 若以T=T s-T r对 t 作图,所得 DTA 曲线如图3所示,在0-a 区间, T 大体上是一致的,形成DTA 曲线的基线。随着温度的增加,试样产生了热效应(例如相转变 ),则与参比物间的温差变大,在DTA 曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的 次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定 性地鉴定所研究的物质,而峰面积与热量的变化有关。 图 3DTA 吸热转变曲线 在热量测量中应用的最为广泛的计算式是Speil 式: t2Tdt= m a H A t1g s 式中 ma 是试样中活性物的质量,△H 是试样中活性物的焓变,g 是与仪器有关的系数,反映了仪器的几何形状试样和参比物在仪器中安置的方式对热传导的影响,λs 是试样的热导系数,△T 是试样和参比物的温度差,当g 和 s 作为常数处理时上式可以改写为:

ANSYS非稳态热分析及实例详解解析

第7 章非稳态热分析及实例详解 本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。 本章要点 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析

7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。 7.1.2 非稳态热分析的控制方程 热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下: []{}[]{}{}C T K T Q += 其中,[]{} C T 为热储存项。 在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下: []{}[]{}(){}C T K T Q t += 若分析为分线性,则各参数除了和时间有关外,还和温度有关。非线性的控制方程可表示如下: (){}(){}(){},C T T K T T Q T t +=???????? 7.1.3 时间积分与时间步长 1、时间积分 从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。利用ANSYS 11.0分析问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。 2、时间步长 两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。确定时间步长的方法有两种: (1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。

相关主题
文本预览
相关文档 最新文档