当前位置:文档之家› 碳素材料

碳素材料

碳素材料
碳素材料

碳素

炭和石墨材料是以碳元素为主的非金属固体材料,其中炭材料基本上由非石墨质碳组成的材料,而石墨材料则是基本上由石墨质碳组成的材料。为了简便起见,有时也把炭和石墨材料统称为炭素材料(或碳材料)。

1.(一)石墨电极类

2.(二)石墨阳极类

3.(三)特种石墨类

4.(四)石墨热交换器

5.(五)炭电极类

6.(六)炭块类

7.(七)炭糊类

8.(八)非标准炭、石墨制品类

9.(九)不透性石墨类

10.(十)电炭产品类

炭素纤维

展开

编辑本段主要特征?

轻量,多孔性,导电性,导热性,耐腐蚀性,润滑性,高温强度,耐热性,耐热冲击性,低热膨胀,低弹性,高纯度,可加工性

编辑本段主要分类

碳素散热片是以不干胶的形色直接将碳素散热片贴在芯片表面,碳素散热片因其柔软可与所贴附对象十分紧密的粘合、

另外因其高热传导性(树脂的5~15倍)、

横向的高热传导性(铜的两倍)、与传统使用中的导热硅胶、硅胶片、金属片等比较、

铝 230W/M.K

铜 390W/M.K

硅胶类 5-20W/M.K

(高碳素散热薄膜200-700W/M.K) 我司新产品,

高碳素散热片能将热量均匀扩散更大幅度的散热。

高热传导平面用散热片:

利用其平面的高热传导性(铜的两倍)、可将热迅速传递到金属壳以及散热型材上、降低发热点的温度、从而达到更好的散热效果、想了解此

款材料的业界朋友、可以随时来电、恭候你的询问:深圳市宝安区福永福园二路骏星工业园b栋四层:深圳市众力高科技

炭素制品按产品用途可分为石墨电极类、炭块类、石墨阳极类、炭

碳素材料

电极类、糊类、电炭类、炭素纤维类、特种石墨类、石墨热交换器类等。石墨电极类根据允许使用电流密度大小,可分为普通功率石墨电极。高功率电极、超高功率电极。炭块按用途可分为高炉炭块、铝用炭块、电炉块等。炭素制品按加工深度高低可分为炭制品、石墨制品、炭纤维和石墨纤维等。炭素制品按原料和生产工艺不同,可分为石墨制品、炭制品、炭素纤维、特种石墨制品等。炭素制品按其所含灰分大小,又可分为多灰制品和少灰制品(含灰分低于l%)。

我国炭素制品的国家技术标准和部颁技术标准是按产品不同的用途和不同的生产工艺过程进行分类的。这种分类方法,基本上反映了产品的不同用途和不同生产过程,也便于进行核算,因此其计算方法也采用这种分类标准。下面介绍炭素制品的分类及说明。

编辑本段主要制品

碳素行业的上游企业主要有:1、无烟煤的煅烧企业;2、煤焦油加工生产企业;3、石油焦生产及煅烧企业。炭和石墨制品:

(一)石墨电极类

主要以石油焦、针状焦为原料,煤沥青作结合剂,经煅烧、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能对炉料进行加热熔化的导体,根据其质

碳素产品

量指标高低,可分为普通功率、高功率和超高功率。石墨电极包括:(1)普通功率石墨电极。允许使用电流密度低于 17A/厘米2的石墨电极,主要用于炼钢、炼硅、炼黄磷等的普通功率电炉。

(2)抗氧化涂层石墨电极。表面涂覆一层抗氧化保护层的石墨电极,形成既能导电又耐高温氧化的保护层,降低炼钢时的电极消耗。

(3)高功率石墨电极。允许使用电流密度为18~25A/厘米2的石墨电极,主要用于炼钢的高功率电弧炉。

(4)超高功率石墨电极。允许使用电流密度大于 25A/厘米 2的石墨电极。主要用于超高功率炼钢电弧炉。

(二)石墨阳极类

主要以石油焦为原料,煤沥青作粘结剂,经煅烧、配料、混捏、压型、焙烧、浸渍、石墨化、机加工而制成。一般用于电化学工业中电解设备的导电阳极。包括:

(1)各种化工用阳极板。

(2)各种阳极棒。

(三)特种石墨类

主要以优质石油焦为原料,煤沥青或合成树脂为粘结剂,经原料制备、配料、混捏、压片、粉碎、再混捏、成型、多次焙烧、多次侵渍、纯化及石墨化、机加工而制成。一般用于航天、电子、核工业部门。

它包括光谱纯石墨,高纯、高强、高密以及热解石墨等。

(四)石墨热交换器

将人造石墨加工成所需要的形状,再用树脂浸渍和固化而制成的用于热交换的不透性石墨制品,它是以人造不透性石墨为基体加工而成的换热设备,主要用于化学工业。包括:

(1)块孔式热交换器;

(2)径向式热交换器;

(3)降膜式热交换器;

(4)列管式热交换器。

(五)炭电极类

以炭质材料如无烟煤和冶金焦(或石油焦)为原料、煤沥青为粘结剂,不经过石墨化,经压制成型而烧成的导电电极。它不适合熔炼高级合金钢的电炉。包括:

(l)多灰电极(用无烟煤、冶金焦、沥青焦生产的电极);

(2)再生电极(用人造石墨、天然石墨生产的电极);

(3)炭电阻棒(即炭素格子砖);

(4)炭阳极(用石油焦生产的预焙阳极);

(5)焙烧电极毛坯。

(六)炭块类

以无烟煤、冶金焦为主要原料,煤沥青为粘结剂,经原料制备、配料、混粘、成型、焙烧、机加工而制成。其中高炉炭块作为耐高温抗腐蚀材料用于砌筑高炉内衬;底部炭块、侧部炭块、电炉块则用于铝电解槽和铁合金电炉等。包括:

(1)高炉炭块;

(2)铝槽炭块(底部炭块及侧部炭块);

(3)电炉炭块。

(七)炭糊类

以石油焦、无烟煤、冶金焦为主要原料,煤沥青为粘结剂而制成。有的用于各种连续自焙电炉作为导电电极使用的电极糊;有的用于连续自焙式铝槽作为导电阳极使用的阳极糊;有的用于高炉砌筑的填料和耐火泥浆的粗缝糊和细缝糊。高炉用自焙炭块虽用途不同,但和糊类制品的生产工艺相仿,暂归在糊类制品内。包括:

(1)阳极糊;

(2)电极糊(包括标准、非标准电极糊);

(3)底糊(包括多灰、少灰底糊);

(4)密闭糊(包括多灰、少灰密闭糊);

(5)其它糊(包括粗缝糊、细缝糊、自焙炭砖等)。

(八)非标准炭、石墨制品类

这是指用炭、石墨制品经过进一步加工而改制成的各种异型炭、石墨制品。包括铲型阳极、制氟阳极以及各种规格的坩埚、板、棒、块等异型品。

(九)不透性石墨类

这是指经树脂及各种有机物浸渍、加工而制成的各种石墨异型品,包括热交换器的基体块。

(十)电炭产品类

这是指炭精棒、电刷等产品。

编辑本段炭素纤维

它包括各种炭纤维、石墨纤维、预氧丝、炭布、炭带、炭绳、炭毡及其复合材料。其中炭纤维为含碳量高于93%的纤维。用聚丙烯睛纤维、粘胶丝和沥青纤维经碳化制成。热处理温度由低至高,可分别制成耐热纤维、碳化纤维和石墨纤维。

炭素材料抗折强度测定方法-编制说明

《炭素材料抗折强度测定方法》国家标准修订说明 1、工作概况:(包括任务来源、协作单位、主要过程) 1.1 任务来源 根据钢标委〔2018〕34 号《全国钢标准技术委员会关于下达2018 年第三批国家标准制修订计划项目的通知》要求,由山西西姆东海炭素材料有限公司(现更名为山西鑫贤炭素材料科技有限公司)、中钢集团新型材料(浙江)有限公司、冶金工业信息标准研究院负责修订《炭素材料抗折强度测定方法》标准,计划编号为20181769-T-605。 1.2 标准过程 1.2.1 项目组专门成立了标准修订小组,小组由山西鑫贤炭素材料科技有限公司、中钢集团新型材料(浙江)有限公司、冶金工业信息标准研究院、山东八三石墨新材料厂组成,负责《炭素材料抗折强度测定方法》标准的修制工作; 1.2.2 确定工作方案,对国内外有关炭素的生产和使用情况进行了调查研究、收集资料,根据近几年石墨电极、等静压石墨、铝用预焙阳极和阴极炭块的生产和使用实际情况以及抗折强度检测情况进行了分析对比,根据调研情况、试验数据及分析对比情况,编写了标准修订初稿。 1.2.3 2019年9月,全国钢标准化技术委员会炭素分技术委员会在山西省介休市组织召开了标准修订的研讨会。会上各位专家对标准修订初稿进行了认真的审核、评议,提出了诚恳、宝贵的修订建议,会后标准修订小组根据专家意见进行了补充修改和完善,形成《炭素材料抗折强度测定方法》标准修订的征求意见稿。 2标准修订的必要性 2.1标准要适时修订,GB/T3074.1-2008《炭素材料抗折强度测定方法》国家标准于2008年修订后,距目前已达10年以上时间,已超过修订年限。 2.2随着行业技术的不断进步和检测技术的发展,现行标准中的部分内容已不适应目前炭素材料发展的需求,为更好地满足炭素行业抗折强度的测定,促进行业进步和发展,需要对本标准进行修订。 3标准修订依据 2.2.1 按照中华人民共和国国家标准GB/T1.1-2009《标准化工作导则第1部分:

第三章 材料的磁学性能

一,一,基本概念 1. 1.磁畴:在未加磁场时铁磁金属内部已经磁化到饱和状态的小区域。 2. 2.磁导率:磁导率是磁性材料最重要的物理量之一,表示磁性材料传导和 通过磁力线的能力,用μ表示,其中μ=B/H.单位为亨利/米(H·m-1). 3. 3.自发磁化:在未加磁场时铁磁金属内部的自旋磁矩已经自发地排向了同 一方向的现象. 4. 4.磁滞损失:磁滞回线所包围的面积相当于磁化一周所产生的能量损耗。 5. 5.磁晶各向异性: 6. 6.退磁场:非闭合回路磁体磁化后,磁体内部产生一个与磁化方向相反的磁场。 第三章材料的磁学性能 随着近代科学技术的发展,金属和合金磁性材料,由于它的电阻率低、损耗大,已不能满足应用的需要,尤其是高频范围。 磁性无机材料除了有高电阻、低损耗的优点以外,还具有各种不同的磁学性能,因此它们在无线电电子学、自动控制、电子计算机、信息存储、激光调制等方面,都有广泛的应用。磁性无机材料一般是含铁及其它元素的复合氧化物,通常称为铁氧体(ferrite)。它的电阻率为10~106Ω·m,属于半导体范畴。目前,铁氧体已发展成为一门独立的学科。 本章介绍磁性材料的一般磁性能,着重讨论铁氧体材料的性能与应用。 7.1磁矩和磁化强度 7.1.1磁矩 (1)定义 在磁场的作用下,物质中形成了成对的N、S磁极,称这种现象为磁化。与讨论电场时的电荷相对应,引入磁量的概念,并把磁量叫做磁极强度或磁荷。将一对等量异号的磁极相距很小的距离,把这样的体系叫做磁偶极子。 在外磁场的影响下,磁偶极子沿磁场方向排列。为达到与磁场平行,该磁矩在力矩 T=Lq m Hsin (7.1) 的作用下,发生旋转。式中的系数Lq m定义为磁矩M(Wb·m)。 磁矩这一物理量是磁相互作用的基本条件,是物质中所有磁现象的根源。磁矩的概念可用于说明原子、分子等微观世界产生磁性的原因。 (2)原子磁矩 物质是原子核和电子的集合体,要理解物质的磁性起源,就要考虑原子具有的磁矩。现在我们可以从以下三方面来分析原子中的磁矩。 ①电子轨道运动产生的磁矩 ②电子自旋产生的磁矩 ③原子核的磁矩 7.1.2磁化强度 磁化强度的物理意义是单位体积中的磁矩总和。设体积元△V内磁矩的矢量和为∑M,则磁化强度M为 (7.2) 式中M i的单位为Wb·m,V的单位为m3,因而磁化强度M的单位为Wb·m2,即与磁场强度H的单位一致。

炭素工艺学资料

74 如何评价炭材料生产用石油焦的质量?炭材料生产用石油焦的质量可用灰分、硫分、挥发分、锻后焦真密度、粉焦量和杂质元素含量来衡量。灰分含量是石油焦的主要质量指标,硫分对于炭材料生产来说是一种有害元素。石油焦的挥发分高低显示了焦炭的焦化程度,其对锻烧操作有较大的影响。锻后焦的真密度大小标志着石油焦的石墨化难易程度,锻后焦真密度越大,石油焦越易石墨化,并且石墨化产品电阻率较低。为了更全面地分析炭材料用石油焦的使用性能,有时还需要检测石油焦的堆积密度、振实密度与锻后焦的电阻率、热膨胀系数和机械性能长可破碎性、脆性和磨损率)。 101 什么是煤沥青,煤沥青具有哪些用途? 煤沥青全称为煤焦油沥青,是煤焦油蒸馏提取馏分(如轻油、酚油、蔡油、洗油和葱油等)后的残留物。煤沥青常温下为黑色固体,无固定的熔点,呈玻璃相,受热后软化,继而熔化。煤沥青主要用途为:( l )生产各种类型炭材料的勃结剂和浸渍剂,这一部分产量最大;( 2 )生产针状焦和炭纤维等高技术产品,产量不大,但附加值很高;( 3 )防水防腐材料和筑路材料。 123 什么叫锻烧?炭质原料锻烧的目的是什么? 炭质原料在高温下进行热处理,排出所含的挥发分,并相应地提高原料理化性能的生产工序称为锻烧。煅烧目的:( 1 )排除炭质原料所含的挥发分;( 2 )排除炭质原料所含的水分;( 3 )提高炭质原料的密度和机械强度;( 4 )提高炭质原料的导电性能;( 5 )提高炭质原料的化学稳定性和抗氧化性能。 25 影响混捏质量的因素有哪些? ( l )混捏温度。混捏温度降低,混捏不均,不易成型,并且生坯疏松且结构不均匀。混捏温度升高,有利于提高混捏质量以及糊料的成型( 2 )混捏时间。混捏时间短,糊料混捏不均匀,混捏时间过长,使干料粒度组成发生变化,糊料质量变差。( 3 )干料性质。干料颗粒表面粗糙,糊料塑性好。( 4 )载结剂用量。勃结剂用量过少、,糊料塑性变差。勃结剂用量增大,糊料的塑性就越来越好。 280 什么是炭材料的成型?炭材料成型方法有哪几种,它们各适用于哪些制品的成型? 炭材料的成型是指混捏好的炭质糊料在成型设备施加的外部作用力下产生塑性变形,最终压制成为具有一定形状、尺寸、密实度和强度的生坯(或称为生制品)的工艺过程。在炭材料生产中,常用的成型方法有模压法、挤压法、振动成型法和等静压成型法。 ( l )模压法。模压法是先按制品的形状和尺寸制成模具,然后将混捏好的糊料按一定数量装入模具内,对糊料施加压力,使糊料压缩成型,最后将压制好的生坯从模具中顶出即可。根据对糊料施加压力的形式不同可分为单向模压(从上部或下部对糊料施加压力)和双向模压(上、下同时对糊料施加压力)。模压法适用于压制3 个方向尺寸相差不大、密度均匀以及结构致密的制品。模压法常用设备为立式液压机。( 2 )挤压法。挤压法是将糊料装入油压机的糊缸内,用压机的主柱塞对糊料施加压力,糊料不断密实和运动,最后通过可更换的嘴子挤出所需形状的生坯,达到要求的长度后用切刀切断。在炭材料生产中挤压成型得到广泛应用,可以压制各种制品的毛坯,具有生产量大和生产效率高等优点,适合于压制长条形的圆柱状或管状生坯。挤压法可半连续生产。挤压成型常用设备有卧式液压挤压机(油压或水压)和螺旋挤压机。 ( 3 )振动成型法。振动成型法是将糊料装入模具内,同时在糊料上放置重锤和液压装置施加压力,利用机械的高速振动(频率20 一3OHz ,振幅0 . 1 一3mm ) ,使装在成型模内的糊料处于强烈的振动状态,从而使糊料密实成型。振动成型适合于生产3 个方向尺寸相差不大的粗短生坯和异形生坯。振动成型主要设备为振动成型机。 ( 4 )等静压法。等静压法是将磨好的糊粉装入橡胶或塑料制成的弹性模具内,封好放入高压容器内,用超高压泵打入液体介质(油或水),对装有糊粉的弹性模具从各个方向均匀加压,使糊料受压成型。等静压成型适合生产各向同性生坯和各种异形生坯。等静压成型设备为等静压成型机。 用途:模压成型主要用于电炭行业生产电刷块和机械密封用炭材料的生坯,也可用于尺寸不太大的冷压石墨生坯的生产。挤压成型广泛应用于石墨电极生坯的生产,也可用于炭块和石墨块生坯的成型。振动成型主要用于预焙炭阳极、炭块和炭电极生坯的生产。

碳素材料简介

碳素材料简介 炭和石墨材料是以碳元素为主的非金属固体材料,其中炭材料基本上由非石墨质碳组成的材料,而石墨材料则是基本上由石墨质碳组成的材料。为了简便起见,有时也把炭和石墨材料统称为炭素材料(或碳材料)。 主要分类: 碳素散热片是以不干胶的形色直接将碳素散热片贴在芯片表面,碳素散热片因其柔软可与所贴附对象十分紧密的粘合,另外因其高热传导性(树脂的5-15倍)、横向的高热传导性(铜的两倍),与传统使用中的导热硅胶、硅胶片、金属片等比较,高碳素散热片能将热量均匀扩散更大幅度的散热。 高热传导平面用散热片: 利用其平面的高热传导性(铜的两倍),可将热迅速传递到金属壳以及散热型材上,降低发热点的温度,从而达到更好的散热效果。 炭素制品按产品用途可分为石墨电极类、炭块类、石墨阳极类、炭电极类、糊类、电炭类、炭素纤维类、特种石墨类、石墨热交换器类等。石墨电极类根据允许使用电流密度大小,可分为普通功率石墨电极、高功率电极、超高功率电极。炭块按用途可分为高炉炭块、铝用炭块、电炉块等。炭素制品按加工深度高低可分为炭制品、石墨制品、炭纤维和石墨纤维等。炭素制品按原

料和生产工艺不同,可分为石墨制品、炭制品、炭素纤维、特种石墨制品等。炭素制品按其所含灰分大小,又可分为多灰制品和少灰制品(含灰分低于l%)。 我国炭素制品的国家技术标准和部颁技术标准是按产品不同的用途和不同的生产工艺过程进行分类的。这种分类方法,基本上反映了产品的不同用途和不同生产过程,也便于进行核算,因此其计算方法也采用这种分类标准。下面介绍炭素制品的分类及说明。 主要制品 碳素行业的上游企业主要有:1、无烟煤的煅烧企业;2、煤焦油加工生产企业;3、石油焦生产及煅烧企业。炭和石墨制品: (一)石墨电极类 主要以石油焦、针状焦为原料,煤沥青作结合剂,经煅烧、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能对炉料进行加热熔化的导体,根据其质量指标高低,可分为普通功率、高功率和超高功率。石墨电极包括:(1)普通功率石墨电极。允许使用电流密度低于17A/厘米2的石墨电极,主要用于炼钢、炼硅、炼黄磷等的普通功率电炉。 (2)抗氧化涂层石墨电极。表面涂覆一层抗氧化保护层的石墨电极,形成既能导电又耐高温氧化的保护层,降低炼钢时的电极消耗。

《碳素结构钢》(GB700—88)标准

《碳素结构钢》(GB700—88)标准 编制情况综述 唐一凡 (冶金工业信息标准研究院北京 100730) 摘要:重点介绍《碳素结构钢》(GB700-88)修订的必要性,介绍修订后的标准,并进行评述。(GB700—88)对原普碳钢标准是一次大的改革,采用了国际先进标准和国外技术路线,提锰降碳,减少磷硫含量;分质量等级,按不同质量等级分别规定不同的化学成分和性能指标,提高了基础标准的通用性,适应市场经济发展需要;钢的牌号表示方法改为用屈服点、质量等级、脱氧程度表示,反映了工程结构钢的特点,便于使用选材。新标准与国际接轨,便于与国际进行技术交流和我国产品进入国际市场。 关键词:碳素结构钢标准修订 A COMPILATION SUMMARY OF“CARBON STRUCTURAL STEEL” (GB700—88) Tang yifan (Information Standard Institute of Ministry of Metallurgical Industry Beijing 100730) ABSTRACT This paper highlights the necessity of revising“Carbon Structural Steel”(GB700-88),introduces the revised standards and gives a review.The content of Mn is raised and the contents of C,P and S are decreased using the international advanced standards and the foreign technical line.The different chemical composition and performance index are specified according t0 different quality classifications,which can meet the development market economy.The yield point, quality grade and deoxidation are used to express the brands Of steels,which reflects the features Of engineering structural steels.The new standards are also favorable for technical exchange internationally for China’s products to enter international market. KEY WORDS carbon structural steel standard revision 普通碳素钢量大面广,占钢总产量75%左右,广泛用于国民经济各个部门。其标准水平高低,不仅关系到整个钢铁企业产品质量、技术进步,也影响到各类应用工程的质量与技术水平。我国最早的普碳钢标准是完全照用前苏联的标准,后虽几经修改,但到1979年及以前的标准始终未能脱离苏标的框框,标准水平落后。把普碳钢分为甲、乙、特等3类,可以随便改钢;一个牌号只有一种成分,一种性能,不能满足不同的使用要求,特别是重要结构用钢的要求;钢材厚度(或直径)大小分档与性能(屈服点、延伸率和冷弯)的关系不合理;牌号的表示方法,既没有反映出钢材的主要性能,和化学成分也没有挂上钩,不直观、不科学、也不便使用选材;钢材的基本保证条件中没有冲击韧性指标,而这是重要结构必须保证的性能项目;此外旧标准的规定与国际标准不接轨、不协调,也很不利于开放与交流。为此,按照国家标准要与国际标准接轨的方针,1987年对普碳钢标准进行了重大的修订,以IS0630一1987标准为主要参照,同时吸取相应国外标准的优点,并注意结合国情,保留自身特点,修订后的标准,即《碳素结构钢》(GB700—88),从形式到内容都有很大变化,采用了国外技术路线,与国际接轨,标准水平有了显著提高。多年来应用,均有良好的反映与评价。 l 内容与适用范围 GB700~88标准名称改为《碳素结构

铝用炭素材料检测方法.

铝用炭素材料检测方法磨损率的测定 编制说明 中国铝业股份有限公司 二○○八年六月

《铝用炭素材料检测方法磨损率的测定》 行业标准编制说明 根据中色协综字[2007]132号《关于下达2007年有色金属行业标准制修订和行业标准样品研(复)制项目计划的通知》的安排,中国有色金属标准计量质量研究所归口的有色行业标准YS/T《铝用炭素材料检测方法》中《磨损率的测定》由中国铝业股份有限公司贵州分公司负责起草,为此贵州分公司成立了专门起草小组,负责该标准的编制起草工作。 本次制定遵循了GB/T1.1—2000《标准化工作导则第1部分标准的结构和编写规则》、GB/20000.1—2001《标准化工作指南第2部分采用国际标准的规则》的规定。 根据标准制定的计划安排,2008年4月15日至4月18日《炭素材料检测方法磨损率的测定》预审会在全国有色金属标准化技术委员会主持下于浙江省杭州市戴斯大酒店召开,参加会议的×个单位的×名代表对中铝贵州分公司申报起草的《炭素材料检测方法磨损率的测定》方法的预审稿进行了认真分析、广泛讨论,提出了9项建议和要求:⑴标准名称由“磨损率的测定”改为“阴极碳块磨损率的测定;⑵标准“1 范围”中“底部阴极碳块”改为“阴极碳块”;⑶标准“2 规范性引用文件”中增加侧部碳块的取样方法;⑷标准“4.2摩擦材料”中注明使用砂纸应符合的标准;⑸标准5.2条中试样的尺寸“长度”改为“高度”;⑹标准中应对摩擦材料砂纸使用过程中产生卷边情况,测试结果是否有效作出说明; ⑺测试样品是如何固定的?⑻参照YS/T63.12标准对本标准的精密度作出说明,在下一次会议上提供有关精密度的测定数据;⑼在标准中应说明该标准测定的阴极碳块磨损率不代表电解槽中阴极碳块的实际磨损值。 起草单位根据预审会的要求,综合代表们提出的上述建议和要求,于6月底前完成了标准修改工作,并同时提出了标准送审稿、意见汇总等资料,标准修改的具体内容如下: ⑴将标准名称由“磨损率的测定”改为“阴极碳块磨损率的测定; ⑵在标准“1 范围”中将“底部阴极碳块”改为“阴极碳块”; ⑶在标准“2 规范性引用文件”中增加了侧部碳块的取样方法;

炭素生产原料

2 炭素生产用原材料 生产炭和石墨材料的原料都是炭素原料。由于来源和生产工艺的不同,其化学结构、形态特征及理化性能均存在很大差异。按照物态来分类,它们可以分为固体原料(即骨料)和液体原料(即粘结剂和浸渍剂)。其中,固体原料按其无机杂质含量的多少又可以分为多灰原料和少灰原料。少灰原料的灰分一般小于1%,例如石油焦、沥青焦等。多灰原料的灰分一般为10%左右,如冶金焦、无烟煤等。此外,生产中的返回料如石墨碎等也可作为固体原料。由于各种原料的作用和使用范围不同,对它们也有不同的质量要求。在炭素生产中还使用石英砂等作为辅助材料。 2.1 固体原料(骨料) 骨料的种类、制造方法及主要特征和用途归纳于表2-1。 表2-1 骨料的种类、制法及主要特征和用途 石油焦的来源 石油焦是各种石油渣油、石油沥青或重质油经焦化而得到的固体产物。由于焦化的方式不同,石油焦可分为延迟焦和釜式焦。目前,石油行业生产的是延迟焦,釜式焦已被淘

汰。 延迟焦化是将原料油经深度热裂化转化为气体烃类,轻、中质馏分油及焦炭的加工过程。其原料一般是深度脱盐后的原油经减压蒸馏所得的渣油。有时还在减压渣油中配有一定比例的热裂化渣油或页岩油。石油焦的质量主要取决于渣油的性质,同时也受焦化条件的影响,我国几种主要减压渣油及其所产石油焦的性质列于表2-2。 表2-2 几种主要减压渣油及其石油焦的性质 渣油首先与分馏塔馏出的馏分气进行间接换热,然后经加热炉加热到500±10℃,此温度已达到渣油的热解温度,但由于油料在炉管中具有较高的流速(冷油流速达1.4-2.2m/s),来不及反应就离开了加热炉,使焦化反应延迟到焦炭塔中进行,故这种焦化工艺称为延迟焦化。随着油料的进入,焦炭塔中焦层不断增高,直到达到规定的高度为止。生产中,一个焦炭塔进行反应充焦,另一个已充焦的焦炭塔经吹蒸汽与水冷后,用10-12Mpa的高压水通过水龙带从一个可以升降的焦炭切割器喷出,把焦炭塔内的焦炭切碎,使之与水一起由塔底流入焦炭池中。焦炭池中的焦炭经脱水后即得生石油焦。每个焦炭塔一次出焦约250t,循环周期约为48h。分馏塔是分馏焦化馏分油的设备,为了避免塔内结焦,要求控制塔底温度不超过400℃。同时,还须采用塔底油循环过滤的方法滤去焦粉,提高油料的流动性。延迟焦化的典型工艺流程如图2-1所示。 延迟焦化法生产效率高,劳动条件好,但所得焦挥发分较高,结构疏松,机械强度较差。 石油焦的性质与质量要求 石油焦是一种黑色或暗灰色的蜂窝状焦,焦块内气孔多数呈椭圆形,且一般相互贯通。 对其使用影响较大的有灰分、硫分、挥发分和煅后真密度。 (1)灰分石油焦的灰分主要来源于原油中的盐类杂质。原油经脱盐处理后残留的

炭素工艺学

炭素材料的制备原料 1、石油焦 2、沥青焦 3、冶金焦 4、无烟煤 5、煤沥青 6、其他辅助原料 1、石油焦 石油焦是石油炼制过程中的副产品。石油经过常压或减压蒸馏,分别得到汽油、煤油、柴油和蜡油,剩下的残余物称为渣油。将渣油进行焦化便得到石油焦。因而石油焦的性质主要取决于渣油的种类。 石油焦是生产各种炭素材料的主要原料。这种焦炭灰分比较低,一般小于1%。 石油焦在高温下容易石墨化。石油焦的特性对炭素材料的性能有很大影响。 延迟焦化是将原料经深度热裂化转化为气体烃类,轻、中质馏分油及焦炭的加工过程。 原料一般是深度脱盐后的原油经减压蒸馏所得的渣油。有时在减压渣油中配有一定比例的热裂化渣油或页岩油。 (1)焦化反应 石油焦是由渣油经过焦化工艺而制得的产品。渣油的组成很复杂。渣油与原油同样都是由各种烃类和烃类化合物组成的。在渣油中还有沥青质组分。它与沥青焦有相似之处,但它含有较多氧、氮、硫。在重柴油馏分中沥青质脱去一个脂族基便能转化为树脂质。树脂质和沥青质在高温下会进行缩聚反应,最后可得焦炭。 渣油的焦化反应可归纳为: 1) 渣油中的树脂质—沥青质—焦炭 2) 渣油中的芳香烃等—高分子缩聚物—树脂质—沥青质—焦炭 3) 渣油中的烷烃、环烷烃、带长侧链稠环—芳香烃—高分子缩聚物—树脂质—沥青质—焦炭 (2)石油焦的分类 根据石油焦结构和外观,石油焦产品可分为针状焦、海绵焦、弹丸焦和粉焦4种。 根据硫含量的不同,可分为高硫焦和低硫焦。 石油焦按照硫含量、挥发分和灰分等指标的不同,分为3个牌号,每个牌号又按质量分为A、B两种。 根据原料渣油的不同,石油焦又分为裂化石油焦、常减压石油焦和页岩石油焦 2、沥青焦 沥青焦是一种含灰分和硫分均较低的优质焦炭,它的颗粒结构致密,气孔率小,挥发分较低,耐磨性和机械强度比较高,其来源是以煤沥青为原料,采用高温干馏(焦化)的方式制备而得。 沥青焦虽然也是一种易石墨化焦,但与石油焦相比,经过同样的高温石墨化后,真密度略低,且电阻率较高、线膨胀系数较大。沥青焦是生产铝用炭素阳极和阳极糊的原料,也是生产石磨电极、电炭制品的原料。 生产沥青焦的原料是中温沥青和高温沥青,高温沥青是中温沥青在氧化釜中用热空气氧化而成。高温沥青粘度大,装炉温度较高,挥发分含量小,有利于装炉操作。 由于沥青焦成焦温度较高,达到1300~1350℃,所以不经煅烧也可以直接使用。但沥青焦从炼焦炉中推出后采用浇水熄火,一般水分含量大,所以在生产中它与石油焦一起按比

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料;

炭素材料真密度的测定方法

炭素材料真密度的测定方法 一、定义 炭素材料的质量与真实体积的比值。 二、测定真密度的意义 1.材料真密度的大小可以说明材料基本质点的质密程度及排列规正化程度。 2.测定不同品种炭质材料、原料、焙烧半成品或石墨电极的真密度可以了解原料的炭化程度及在不同条件下的热处理程度,如煅烧、焙烧、石 墨化程度等。 3.测量真密度的大小可以推测炭素材料的其他物理化学性能,如真密度与电阻率成反比,与抗氧化性能成正比。 三、需要测定真密度的炭素材料 1.原料针状焦≥2.13沥青焦≥1.96 冶金焦≥1.95 普煅无烟煤1.71―1.75 (附,沥青焦、冶金焦不作常规分析) 2.煅烧料焙烧品石墨化 四、真密度测定方法 常用的方法有:溶剂置换法,气体置换法及X射线衍射仪测定法。 1.溶剂置换法 此方法是先将试样破碎至0.05mm以下,用酒精、甲苯或蒸馏水,在一定温度下浸润(用酒精、甲苯或蒸馏水去填充试样颗粒的孔隙),然后用比较称量法,求得真比重的大小。因为溶剂分子也不能全部进入所有孔隙(例如孔径极小的毛细孔和一些即使颗粒破碎到很小仍然封闭的孔),因而得到的溶剂置换体积只是被测试样骨架的近似体积(一般略大于真实体积),所以用溶剂置换法测出的真比重只是一个近似数,用不同大小的试样颗粒,不同溶剂及不同浸润条件时测出的真比重也略有不同。 2.气体置换法 此方法主要用于精确的科学研究中,如用氦气去填充试样颗粒之间和颗粒上的孔隙,氦气能进入除封闭气孔外的全部毛细孔,因而用氦气置换法求出被测试样骨架的体积更接近真实体积,但费用高。 3.X射线衍射仪测定法

本方法用此测定仪测出晶格参数再按下式计算: 五、用溶剂置换法测定试样的真密度 1.质量m用天平即可,本测定方法的关键是求试样的体积v 2.测真实体积v主要存在两个难点a、有封闭气孔b、形状不规则解决方法:a、破碎,把试样破至一定粒度级,我们认为此粒度 下的颗粒是实心的,规程上要求是100目以下 (0.15mm)。 b、将试样装在一定范围容积容器中加一定压力(4 0Kg/)使试样变为一定直径和高度的试体后根据公式 计算。 用二甲苯做溶剂,抽真空、恒温、称重、计算 此方法的弊端:a、有毒;b、抽真空时易溅料;c、测定用时 长;d、步骤复杂 现在实际生产所执行的标准是部标YB4091-92 计算公式 六、校密度瓶 1.空重 将密度瓶浸在浓硫酸重铬酸钾饱和溶液中浸泡1-2小时,取出用水冲洗,再分别用乙醇、丙酮冲洗,最后用蒸馏水冲洗,放入干燥箱中在120±2℃下,烘干2小时。取出放入干燥器中,冷却至室温称量,精确至 0.0001g。重复几次测定,至少有三次称量误差在0.0004g以内,取平 均值为密度瓶质量。 2.测水值 将蒸馏水注入瓶中,在25±0.5℃的水浴中保温30分钟以上,然后将 瓶中液面吸至刻度线处,擦净后称其质量,精确至0.0001g,重复测定几次,至少有三次以上密度瓶水值称量误差不大于0.0024g,取其平均值为密度瓶水值。 3.求密度瓶容积 上式可转化为→①

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

方大炭素财务分析

目录 一、公司概况 二、企业财务指标分析 (一)偿债能力分析 (二)盈利能力分析 (三)营运能力分析 (四)发展能力分析 (五)行业间的对比 三、杜邦财务综合分析 四、意见和改进措施

一、公司概况 方大炭素是亚洲最大的炭素制品生产供应基地。公司炭素制品综合生产能力达到26万吨,其中石墨电极和炭素新材料23万吨,炭砖3万吨。方大炭素按照各子公司设备和技术水平,优势互补,规范生产,分工协作,可生产国内外客户所需的各品种、规格的石墨电极和炭素制品。产品分为3大系列,38个品种,126种规格。 方大炭素主导产品有超高功率、高功率、普通功率石墨电极;高炉用微孔炭砖、半石墨质炭砖,铝用普通阴极炭砖、大截面半石墨质阴极炭砖,石墨化阴极炭砖,各种矿热炉用内衬炭砖;高档炭糊;特种石墨制品、生物炭制品、炭毡和炭/炭复合材料等炭素新材料产品,其中多项为国内首创。 二、企业财务指标分析 (一)偿债能力分析 1.短期偿债能力分析 相关指标: 1.营运资本=流动资产—流动负债 2.流动比率=流动资产/流动负债 3.速动比率=速动资产/流动负债 速动资产=流动资产—存货 4.现金比率=货币现金/流动负债*100%

上述指标计算得出该企业虽然有一定的偿还能力,但是短期偿还能力相对比较低,但是现金比率高于标准值。因此虽然流动比率和速动比率值不太理想,但是对于公司的短期偿债能力还是给予肯定评价的,并且在逐年上升。 2.长期偿债能力分析 A 资产规模对长期偿债能力影响的分析 相关指标: 1.资产负债率=负债总额/总资产*100% 2.有形资产负债率=负债总额/(总资产—无形资产) *100% 3.股东权益比率=股东权益/总资产*100% 或=1—资产负债率 4.产权比率=负债总额/股东权益*100% 5.有形净值负债率=负债总额/(净资产—无形资产)*100% 6.固定资产适合率=固定资产净值/(股东权益+非流动负债)*100% 7.固定资产与非流动负债比率=固定资产净值/非流动负债*100% 8.资产非流动负债率=非流动负债/总资产*100%

铝用碳素材料检测方法

铝用碳素材料检测方法 第16部分微量元素的测定 X-射线荧光光谱分析方法 编制说明 (审定稿) 中国铝业郑州有色金属研究院有限公司 2018-10

编制说明 1 工作简况 1.1 目的与意义 铝用炭素材料主要作为电解铝生产中电解槽阳极材料使用,在我国每年的铝用炭素材料中仅预焙阳极一项生产量已经超过1500万吨。 X射线荧光光谱法测定铝用炭素微量元素含量是当今最主要的方法,采用压片法,将粉末状碳素样品和一定比例的粘结剂混合,在振动磨上研磨一定时间,压片机压制成片后进行测定。现行铝用炭素材料检测方法YS/T 63.16-2006是2006年颁布实施,该标准是对国际标准ISO 12980:2000的修改采用,距今已超过十年,标准中对铝用碳素类检测的相关规定已经不能完全涵盖当今行业发展的需求。2006年版本中主要问题如下: 第一,2006年版本中规定的铝用炭素的类别明确的只包括预焙阳极,但实际与预焙阳极相似的煅后焦、石油焦等阳极材料有必要明确写入标准中第二,测定元素种类的规定。2006版标准中规定的元素种类规定了硫、钒、钠、钙、硅、铁、镍、钛、铝九类元素,但对于碳素出口企业,因当今国内外环境保护的需要,重金属元素如铅、锌、铬、锰等重金属测定频率直线攀升,这几类元素急需纳入铝用炭素分析检测标准的规定元素中。 第三,YS / T 63.16-2006照搬ISO 12980:2000中样品粒度条件,要求样品粒度全部通过63 μm(230目)筛网,但压片条件却由原标准中的铝环镶边法改为直接压片法。根据实验在碳化钨研钵中一个未研磨预焙阳极样品(30 g左右)要研磨至通过63 μm筛网需要60-100 s的时间,料钵中的钨元素会大量引入样品;石油焦样品本身具有粘结性,经过长时间研磨,样品团聚,粒度先降低随后逐渐增大;同时达到通过63 μm的样品由于粒度过细,按照2006版研磨后直接压片的条件,样品团聚性不强,不易成型;同时国内外标准样品中粒度普遍在70-130 μm左右,仍未达到63 μm要求。故63μm的粒度要求不符合实际情况。 第四,原有标准中规定的元素含量测定范围较窄,不能代表整个行业检测的技术需要,应该予以优化拓宽。 第五,样品的重复性限规定宽泛,需要根据实际测定数据逐一列出。 因此有必要对相关标准YS/T 63.16-2006进行修订。通过制定更加科学、完

碳素材料的发展

碳素材料的应用及发展趋势 摘要 炭素是以高纯度优质无烟煤,经过深加工改变煤的一些性质得出的,原子C,炭素制品按产品用途分为石墨电极类、炭块类、石墨阳极类、炭电极类、糊类、电炭类等等。俗称炭砖或电炉块,主要用于冶金行业:有色金属和无色金属的冶炼以及电石、磷化工企业!炭块按用途可分为高炉炭块、铝用炭块、电炉块等。炭素制品按加工深度高低可分为炭制品、石墨制品、炭纤维和石墨纤维等炭素制品按原料和生产工艺不同,可分为石墨制品、炭制品、炭素纤维、特种石墨制品等。炭素制品按其所含灰分大小,又可分为多灰制品和少灰制品(含灰分低于l%)。 炭素新材料是指用于高技术领域的碳和石\墨材料,主要用于航空、航天、核能、风能、硬质材料制造、电子、医疗、建筑、环保等行业。因此21世纪被称为“碳世纪”。目前已经形成规模应用的炭素新材料主要有各种特种石墨、碳纤维、碳复合材料等。 关键词 金属;碳素;材料;加工

1.导电材料 用电弧炉或矿热电炉冶炼各种合金钢、铁合金或生产电石(碳化钙)、黄磷时,强大的电流通过炭电极(或连续自焙电极-即电极糊)或石墨化电极导入电炉的熔炼区产生电弧,使电能转化成热能,温度升高到2000℃左右,从而达到冶炼或反应的要求。金属镁、铝、钠一般用熔盐电解制取,这时电解槽的阳极导电材料都是采用石墨化电极或连续自焙电极(阳极糊、有时用预焙阳极)。熔盐电解的温度一般在1000℃以下。生产烧碱(氢氧化钠)和氯气的食盐溶液电解槽的阳极导电材料,一般都用石墨化阳极。生产金刚砂(碳化硅)使用的电阻炉的炉头导电材料,也使用石墨化电极。 除上述用途外,炭和石墨制品作为导电材料广泛用于电机制造工业作为滑环和电刷,以及用作干电池中的炭棒或产生弧光用的弧光炭棒,水银整流器中的阳极等。 2.耐火材料 由于炭素制品能耐高温和有较好的高温强度及耐腐蚀性,所以很多冶金炉内衬可用炭块砌筑,如高炉的炉底、炉缸和炉腹,铁合金炉和电石炉的内衬,铝电解槽的底部及侧部。许多贵重金属和稀有金属冶炼用的坩埚、熔化石英玻璃等所用的石墨坩埚,也都是用石墨化坯料加工制成的。 3.耐腐蚀的结构材料 经过有机树脂或无机树脂浸渍过的石墨材料,具有耐腐蚀性好、导热性好、渗透率低等特点,这种浸渍石墨又称为不透性石墨。它大量应用于制作各种热交换器、反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵等设备,广泛应用于石油炼制、石油化工、湿法冶金、酸碱生产、合成纤维,造纸等工业部门,可节省大量的不锈钢等金属材料。 4.耐磨和润滑材料 炭素材料除具有化学稳定性高的特性外,还有较好的润滑性能。在高速、高温、高压的条件下,用润滑油来改善滑动部件的耐磨性往往是不可能的。石墨耐磨材料可以在-200℃到2000℃温度下的腐蚀性介质中并在很高的滑动速度下(可达100m/s)不用润滑油而工作。因此,许多输送腐蚀性介质的压缩机和泵广泛采用石墨材料制成的活塞环、密封圈和轴承。它们运转时无需加入润滑剂。

碳素材料

碳化硅的制备/C-AlPO4多层防护 在C/C复合材料上的涂层 氧化动力学和机理 黄剑锋、温东阳、李云涛 1)重点实验室的辅助化学及技术,适用于化工、教育部,陕西科技大学,西安 710021,中 国 2)光实用材料及光化学实验室、物理与化学技术学院,中国科学院,中国北京100190 [手稿收到12月21日,2009年,在2010年4月6日修订的形式) 摘要 为了提高碳/碳(C / C)复合材料的抗氧化性, 用一种简单的、低成本的方法创造的SiC/ C-AlPO4多层涂料是虚构的碳/碳复合材料。内部碳化硅键合两层法被制备靠胶结作用过程和外 部C-AlPO4涂料被沉淀用热液电泳沉积的过程。用X-射线(XRD)、扫描电镜(SEM)和能谱仪(EDS)扫描多层复合材料的相组成和微观结构。对多涂层复合材料的抗氧化性能、氧化行为和破坏特 性进行研究。结果表明:多层涂层显示出明显双层结构。内层由β-SiC、α-SiC相位以一定比 例的硅相组成,这外层是由碳-磷酸铝(C-AlPO4)组成。采用扫描电镜(SEM)观察在内部和外部 的层次之间显示出良好的粘接性。多层涂层表现出了良好的抗氧化性,温度范围从1573到1773 K时,在空气中碳/碳复合材料涂层相应的氧化活化能被计算出是117.2KJ/mol。氧化过程是主要受控于C-AlPO4涂料的氧气的扩散,氧化气体的逃逸所留下的同一时期的产物分子会 导致多层涂层的破坏。 关键词:碳/碳复合材料、磷酸铝;热液电泳沉积;涂层;氧化 1、介绍 作为一种重要的高温结构材料碳/碳(C / C)复合材料提供了许多传统材料所无法比拟的优点,如低密度、高比表率和高温下稳定的力学性能。因此它们在航天飞机和航空器材上可以被 使用。这些应用需要的C / C复合材料要在一个氧化气氛的环境中生成。不幸的是,周围环境温 度在723K以上碳/碳复合材料容易被氧化,氧化速率随着温度的增加而迅速增长。 为了保护高温下的碳/碳复合材料,抗氧化涂层是一种合理的选择。因其在C / C矩阵和外 层具有良好的物理和化学兼容性,在碳/碳复合材料和外面的高温陶瓷层之间碳化硅陶瓷涂层 通常被认为是最好的粘结层之一。因此,外层材料的选择变得更重要。 碳磷酸铝的性质(C-AlPO4)使它成为了一种有前途的候选耐高温材料。这些性质可以被概 括为:高熔点、低杨氏模量、低氧气渗透和抗侵蚀。除此之外,其热膨胀系数(5.5×10-6)和碳化硅(4.3~5.4×10-6)的接近,比SiC有更好的物理和化学兼容性,其结果将导致更少的缺陷及矩阵处氧化的活性。另一方面, 因其众多的优点如低成本、高效和简单的操作,热液电泳技

碳素材料工艺基础

碳素材料工艺基础 各种新型碳素功能材料 第一章碳素材料的物质结构 § 1.1碳原子及其价态 碳原子的基态电子层结构是1s22s22p x12p y1基态碳原子只有两个未成对的价电子,对外只能形成两个共价键,因此,基态碳原子是二价的。 绝大部分碳化合物的碳为四价,当基态碳原子受到激发,一个2s电子跃迁到2p轨道时,电子层结构就成为1s22s2p x2p y2p z ,碳原子就有了四个为成对的价电子,成为四价。 碳原子从基态到激发态要吸收161.5千卡/摩尔的能量,但和不同的原子化合时需要的能量大小却不一样,例如,C—H的键能为98.8千卡/摩尔,C—O的键能为84.0千卡/摩尔。 在所有的四价碳化合物中,碳原子处于三种价态中的一种状态,这就是四面体、三角形及线形键。 (1)四面体键碳原子的四个等值价键是由1个s—电子和三个p—电子杂化而成sp3杂化态,每个建中S成分占1/4,p成分占3/4,四个键的电子轨道形状相同,但方向不同,每个 轨道的对称轴指向四面体的顶角,任意两键之间的夹角都是109°28′。 (2)三角形键在具有双键的不饱和的有机物、芳香族化合物和石墨中,碳原子中有三个等值价键分布在直角坐标系的xy平面上,互成120°角,这种等值价键是由1个s—电子和2个p—电子杂化而成sp2杂化态,每个键中,s成分占1/3,p成分占2/3,碳原子的第四个电子,又叫π电子,它的哑铃型对称的电子云指向直角坐标的z方向,成为π键。 苯分子中的π键又不同于乙烯中的π键,苯分子成六方平面结构,有六次对称轴即苯分子中所有碳—碳键长都是相等的,这就必须部分采用多中心分子轨道,认为苯分子中六个π电子是共有的,它们按六个碳—碳键平均分布,这种键叫做非定域键或离域键,实验发现,在苯、丁二烯、稠环芳香烃以及石墨中都是这种键,任何其他键结构式都不能反映它们的特性,这种现象称为共轭现象,这类分子称为共轭分子。石墨和类石墨层面,是碳—碳共轭键加共轭键,键长为1.42埃,π电子可以自由地在层间漂移,并对相邻层面提供一种键力,由于它能使石墨具有热、电传导性,与金属的自由电子类似,所以,在碳—石墨物质中π键也称金属键。 石墨层间有一种较弱的键,成为范德华键,它不是电子云离域的原子间作用力,而是分子或原子间一些弱作用力的统称。总之,石墨中有三种键在起作用,即碳—碳共价键(σ键)、共轭π键和范德华引力。 (3)线形键在乙炔(HC≡CH)和氢氰酸(HC≡N)分子中,碳—碳、碳—氮原子间是三键。这类分子的几何构型为直线型,碳原子的一个s—电子与一个p—电子作线性杂化为σ键,其余2个p电子形成二个π键,这样就生成两个杂化了的sp电子云,键角180°。

磁性材料的基本特性

磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 磁性材料是一种重要的电子材料。早期的磁性材料主要采用金属及合金系统,随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。

相关主题
文本预览
相关文档 最新文档