当前位置:文档之家› 100测评网高二数学练习卷双曲线及标准方程

100测评网高二数学练习卷双曲线及标准方程

100测评网高二数学练习卷双曲线及标准方程
100测评网高二数学练习卷双曲线及标准方程

典型例题一

例1 讨论

19252

2=-+-k

y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9

解:(1)当9-k ,09>-k ,所给方程表示椭圆,此时k a -=252

k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0).

(2)当259<-k ,09<-k ,所给方程表示双曲线,此时,

k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0).

(3)25

说明:将具有共同焦点的一系列圆锥曲线,称为同焦点圆锥曲线系,不妨取一些k 值,画出其图形,体会一下几何图形所带给人们的美感.

典型例题二

例2 根据下列条件,求双曲线的标准方程. (1)过点??? ??4153,P ,??

?

??-

5316,Q 且焦点在坐标轴上. (2)6=c ,经过点(-5,2)

,焦点在x 轴上. (3)与双曲线14

162

2=-y x 有相同焦点,且经过点()

223, 解:(1)设双曲线方程为

12

2=+n

y m x ∵ P 、Q 两点在双曲线上,

∴???????=+=+1259256116225

9n

m n m 解得???=-=916n m

∴所求双曲线方程为19

162

2=+-y x

说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=

c ,

∴设所求双曲线方程为:

1622

=--λ

λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164

25

=--

λ

λ

∴5=λ或30=λ(舍去)

∴所求双曲线方程是15

22

=-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉.

(3)设所求双曲线方程为:

()16014162

2<<=+--λλ

λy x ∵双曲线过点()

223,,∴

144

1618=++-λ

λ

∴4=λ或14-=λ(舍)

∴所求双曲线方程为

18

122

2=-y x 说明:(1)注意到了与双曲线

14

162

2=-y x 有公共焦点的双曲线系方程为14162

2=+--λ

λy x 后,便有了以上巧妙的设法.

(2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面.

典型例题三

例 3 已知双曲线

116

92

2=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F

∠的大小. 分析:一般地,求一个角的大小,通常要解这个角所在的三角形. 解:∵点P 在双曲线的左支上 ∴621=-PF PF

∴362212

22

1=-+PF PF PF PF

∴1002

22

1=+PF PF

∵()

1004412222

2

1=+==b a c F F

∴ 9021=∠PF F

说明:(1)巧妙地将双曲线的定义应用于解题当中,使问题得以简单化.

(2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢?请读者试探索.

典型例题四

例 4 已知1F 、2F 是双曲线14

22

=-y x 的两个焦点,点P 在双曲线上且满足 9021=∠PF F ,求21PF F ?的面积.

分析:利用双曲线的定义及21PF F ?中的勾股定理可求21PF F ?的面积.

解:∵P 为双曲线14

22

=-y x 上的一个点且1F 、2F 为焦点. ∴4221==-a PF PF ,52221==c F F ∵

9021=∠PF F

∴在21F PF Rt ?中,202

212

22

1==+F F PF PF

∵()

162212

2212

2

1=-+=-PF PF PF PF PF PF

∴1622021=-PF PF ∴221=?PF PF ∴12

1

2121=?=

?PF PF S PF F 说明:双曲线定义的应用在解题中起了关键性的作用.

典型例题五

例5 已知两点()051,

-F 、()052,F ,求与它们的距离差的绝对值是6的点的轨迹. 分析:问题的条件符合双曲线的定义,可利用双曲线定义直接求出动点轨迹.

解:根据双曲线定义,可知所求点的轨迹是双曲线.

∵5=c ,3=a

∴164352

2

2

2

2

2

==-=-=a c b

∴所求方程

116

92

2=-y x 为动点的轨迹方程,且轨迹是双曲线. 说明:(1)若清楚了轨迹类型,则用定义直接求出其轨迹方程可避免用坐标法所带来的繁琐运算.

(2)如遇到动点到两个定点距离之差的问题,一般可采用定义去解.

典型例题六

例6 在ABC ?中,2=BC ,且A B C sin 2

1

sin sin =

-,求点A 的轨迹. 分析:要求点A 的轨迹,需借助其轨迹方程,这就要涉及建立坐标系问题,如何建系呢?

解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,则

()01,-B ,()01,C .

设()y x A ,,由A B C sin 2

1

sin sin =

-及正弦定理可得: 12

1

==

-BC AC AB ∵2=BC

∴点A 在以B 、C 为焦点的双曲线右支上设双曲线方程为:

()00122

22>>=-b a b

y a x , ∴12=a ,22=c ∴2

1

=

a ,1=c ∴4

32

2

2

=

-=a c b ∴所求双曲线方程为13

442

2

=-y x ∵01>=-AC AB ∴2

1>

x ∴点A 的轨迹是双曲线的一支上挖去了顶点的部分

典型例题七

例7 求下列动圆圆心M 的轨迹方程:

(1)与⊙()2222

=++y x C :内切,且过点()02,

A (2)与⊙()112

21=-+y x C :和⊙()412

22=++y x C :都外切.

(3)与⊙()9322

1=++y x C :外切,且与⊙()1322

2=+-y x C :内切.

分析:这是圆与圆相切的问题,解题时要抓住关键点,即圆心与切点和关键线段,即半径与圆心距离.如果相切的⊙1C 、⊙2C 的半径为1r 、2r 且21r r >,则当它们外切时,

2121r r O O +=;当它们内切时,2121r r O O -=.解题中要注意灵活运用双曲线的定义求出

轨迹方程.

解:设动圆M 的半径为r

(1)∵⊙1C 与⊙M 内切,点A 在⊙C 外 ∴2-=r MC ,r MA =,2=

-MC MA

∴点M 的轨迹是以C 、A 为焦点的双曲线的左支,且有:

2

2=

a ,2=c ,272

22=-=a c b

∴双曲线方程为()

217

222

2

-≤=-x y x (2)∵⊙M 与⊙1C 、⊙2C 都外切 ∴11+=r MC ,22+=r MC ,

112=-MC MC

∴点M 的轨迹是以2C 、1C 为焦点的双曲线的上支,且有:

21=

a ,1=c ,4

32

22=-=a c b ∴所求的双曲线的方程为:

??? ?

?≥=-43134422

y x y

(3)∵⊙M 与⊙1C 外切,且与⊙2C 内切

∴31+=r MC ,12-=r MC ,421=-MC MC ∴点M 的轨迹是以1C 、2C 为焦点的双曲线的右支,且有:

2=a ,3=c ,5222=-=a c b

∴所求双曲线方程为:

()215

42

2≥=-x y x 说明:(1)“定义法”求动点轨迹是解析几何中解决点轨迹问题常用而重要的方法. (2)巧妙地应用“定义法”可使运算量大大减小,提高了解题的速度与质量.

(3)通过以上题目的分析,我们体会到了,灵活准确地选择适当的方法解决问题是我们无休止的追求目标.

典型例题八

例8 在周长为48的直角三角形MPN 中,?=∠90MPN ,4

3

tan =∠PMN ,求以M 、N 为焦点,且过点P 的双曲线方程.

分析:首先应建立适当的坐标系.由于M 、N 为焦点,所以如图建立直角坐标系,可知双曲线方程为标准方程.由双曲线定义可知a PN PM 2=-,c MN 2=,所以利用条件确定MPN ?的边长是关键.

解:∵MPN ?的周长为48,且4

3tan =

∠PMN , ∴设k PN 3=,k PM 4=,则k MN 5=. 由48543=++k k k ,得4=k . ∴12=PN ,16=PM ,20=MN .

以MN 所在直线为x 轴,以∴MN 的中点为原点建立直角坐标系,设所求双曲线方程

为122

22=+b

y a x )0,0(>>b a . 由4=-PN PM ,得42=a ,2=a ,42

=a .

由20=MN ,得202=c ,10=c .

由962

2

2

=-=a c b ,得所求双曲线方程为

196

42

2=-y x . 说明:坐标系的选取不同,则又曲线的方程不同,但双曲线的形状不会变.解题中,注意合理选取坐标系,这样能使求曲线的方程更简捷.

典型例题九

例9 P 是双曲线136

642

2=-y x 上一点,1F 、2F 是双曲线的两个焦点,且171=PF ,求2PF 的值.

分析:利用双曲线的定义求解.

解:在双曲线

136

642

2=-y x 中,8=a ,6=b ,故10=c . 由P 是双曲线上一点,得1621=-PF PF . ∴12=PF 或332=PF .

又22=-≥a c PF ,得332=PF .

说明:本题容易忽视a c PF -≥2这一条件,而得出错误的结论12=PF 或332=PF .

典型例题十

例10 若椭圆

122=+n y m x )0(>>n m 和双曲线12

2=-t

y s x )0,(>t s 有相同的焦点1F 和2F ,而P 是这两条曲线的一个交点,则21PF PF ?的值是( ) .

A .s m -

B .

)(2

1

s m - C .22s m - D .s m - 分析:椭圆和双曲线有共同焦点,P 在椭圆上又在双曲线上,可根据定义得到1PF 和

2PF 的关系式,再变形得结果.

解:因为P 在椭圆上,所以m PF PF 221=+.

又P 在双曲线上,所以s PF PF 221=-.

两式平方相减,得)(4421s m PF PF -=?,故s m PF PF -=?21.选(A). 说明:(1)本题的方法是根据定义找1PF 与2PF

的关系.(2)注意方程的形式,m ,s 是2a ,n ,t 是2b .

典型例题十一

例11 若一个动点),(y x P 到两个定点)0,1(-A 、)0,1(1A 的距离之差的绝对值为定值

a )0(≥a ,讨论点P 的轨迹.

分析:本题的关键在于讨论a .因21=AA ,讨论的依据是以0和2为分界点,应讨论以下四种情况:0=a ,)2,0(∈a ,2=a ,2>a .

解:21=AA .

(1)当0=a 时,轨迹是线段1AA 的垂直平分线,即y 轴,方程为0=x .

(2)当20<

142

2

22=--a

y a x . (3)当2=a 时,轨迹是两条射线)1(0≥=x y 或)1(0-≤=x y .

(4)当2>a 时无轨迹.

说明:

(1)本题容易出现的失误是对参变量a 的取值范围划分不准确,而造成讨论不全面. (2)轨迹和轨迹方程是不同的,轨迹是图形,因此应指出所求轨迹是何种曲线.

典型例题十二

例12 如图,圆42

2

=+y x 与y 轴的两个交点分别为A 、B ,以A 、B 为焦点,坐

标轴为对称轴的双曲线与圆在y 轴左方的交点分别为C 、D ,当梯形ABCD 的周长最大时,

求此双曲线的方程.

分析:求双曲线的方程,即需确定a 、b 的值,而42=c ,又2

2

2

b a

c +=,所以只需确定其中的一个量.由双曲线定义a BC AC 2=-,又BCA ?为直角三角形,故只需在梯形ABCD 的周长最大时,确定BC 的值即可.

解:设双曲线的方程为122

22=-b

x a y (0,0>>b a ),),(00y x C (00y ),

t BC =(220<

连结AC ,则?=∠90ACB . 作AB CE ⊥于E ,则有AB BE BC

?=2

∴4)2(02

?-=y t ,即4

22

0t y -=.

∴梯形ABCD 的周长0224y t l ++=

即10)2(2

1

822122+--=++-

=t t t l . 当2=t 时,l 最大.

此时,2=BC ,32=AC .

又C 在双曲线的上支上,且B 、A 分别为上、下两焦点, ∴a BC AC 2=-,即2322-=a . ∴13-=a ,即3242

-=a . ∴322

2

2

=-=a c b .

∴所求双曲线方程为13

23242

2=--x y .

说明:解答本题易忽视BC 的取值范围,应引起注意.

典型例题十三

例13 A 、B 、C 是我方三个炮兵阵地,A 和B 正东6千米,C 在B 正北偏西30°,相距4千米,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B 、C 两地比A 距P 地远,因此s 4后,B 、C 才同时发现这一信号,此信号的传播速度为1s

km ,A 若

炮击P 地,求炮击的方位角.

分析:点P 到B 、C 距离相等,因此点P 在线段BC 的垂直平分线上.又

4=-PA PB ,因此P 在以B 、A 为焦点的双曲线的右支上.由交轨法可求P 的坐标,

进而求炮击的方位角.

解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则

)0,3(-B 、)0,3(A 、)32,5(-C .

因为PC PB =,所以点P 在线段BC 的垂直平分线上. 因为3-=BC k ,BC 中点)3,4(-D ,所以直线

)4(3

1

3+-

=-x y D :. ① 又4=-PA PB ,故P 在以A 、B 为焦点的双曲线右支上.

设),(y x P ,则双曲线方程为15

42

2=-y x )0(≥x . ② 联立①、②式,得8=x ,35=y 所以)35,8(P .因此

33

83

5=-=

PA k . 故炮击的方位角为北偏东?30.

说明:空间物体的定位,一般先利用声音传播的时间差建立双曲线方程,然后借助曲线的交轨来确定.这是解析几何的一个重要应用.

本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.

双曲线及其标准方程

§9.6 双曲线 1.双曲线的概念 平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c),则点P的轨迹叫____________.这两个定点叫双曲线的________,两焦点间的距离叫________. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0: (1)当________时,P点的轨迹是双曲线; (2)当a=c时,P点的轨迹是____________; (3)当________时,P点不存在. 标准方程 x2 a2 - y2 b2 =1 (a>0,b>0) y2 a2 - x2 b2 =1 (a>0,b>0) 图形 性质 范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点 顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=± b a x y=± a b x 离心率e= c a ,e∈(1,+∞),其中c=a2+b2 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线 的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的 半虚轴长 a、b、c 的关系 c2=a2+b2 (c>a>0,c>b>0) [难点正本疑点清源] 1.双曲线中a,b,c的关系 双曲线中有一个重要的Rt△OAB(如右图),

它的三边长分别是a 、b 、c .易见c 2=a 2+b 2 , 若记∠AOB =θ,则e =c a =1 cos θ . 2.双曲线的定义用代数式表示为||MF 1|-|MF 2||=2a ,其中2a <|F 1F 2|,这里要注意两点: (1)距离之差的绝对值. (2)2a <|F 1F 2|. 这两点与椭圆的定义有本质的不同: ①当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; ②当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; ③当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; ④当2a >|F 1F 2|时,动点轨迹不存在. 3.渐近线与离心率 x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线的斜率为b a = b 2 a 2=c 2-a 2a 2 =e 2 -1.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小. 1.已知点F 1(-4,0)和F 2(4,0),一曲线上的动点P 到F 1,F 2距离之差为6,该曲线方程 是 _____________________________________________________________________. 2.双曲线mx 2 +y 2 =1的虚轴长是实轴长的2倍,则m =___________________________. 3.已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C 的离心率为________. 4.(2011·山东)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 2 9 =1有相同的焦点,且 双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________. 5.若双曲线x 2a 2-y 2 b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的 离心率为 ( ) A . 5 B .5 C . 2 D .2 题型一 双曲线的定义 例1 已知定点A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,求另一焦点F 的轨迹方程. 探究提高 双曲线的定义理解到位是解题的关键.应注意定义中的条件“差的绝对值”,弄清所求轨迹是双曲线的两支,还是双曲线的一支.若是一支,是哪一支,以

双曲线及其标准方程详解

2.2 双曲线 2.2.1 双曲线及其标准方程 【课标要求】 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】 1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点 ) 自学导引 1.双曲线的定义 把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么? 提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示. (2)若“常数大于|F 1F 2|”(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 想一想:如何判断方程x a 2-y b 2=1(a >0,b >0)和y a 2-x b 2=1(a >0,b >0)所表示双曲线的焦点 的位置? 提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上. 名师点睛 1.对双曲线定义的理解 (1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在. (2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上. (3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|). (4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.” 2.双曲线的标准方程 (1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程. (2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,

求双曲线标准方程的技巧

求双曲线标准方程的技巧 在求双曲线标准方程时,如果能根据已知条件设出方程的合理形式,可以简化运算,优化解题过程。下面结合例题介绍求双曲线标准方程的方法。 一 双曲线的一般方程 例1 求经过点(3,P ,() Q -的双曲线标准方程。 分析 双曲线的标准方程有两种形式:22x a -2 2y b =1(a >0,b >0)或22y a -22x b =1(a > 0,b >0),可以讨论解决。也可以应用下面的方法解决。 解 设双曲线方程为2 Ax +2 By =1(AB <0)。因为所求双曲线经过点 ( 3,P ,() Q -,所以9281,7249 1. A B A B +=??+=?解得A =-175,B =125。故所求双曲线 方程为225y -2 75 x =1。 说明 求双曲线标准方程一般用待定系数法,当双曲线的焦点位置不确定时,为了避免讨论焦点的位置,一般设双曲线方程为2Ax +2 By =1(AB <0),这样可以简化运算。 二 等轴双曲线 例2 等轴双曲线的中心在原点,焦点在x 轴上,与直线x -2y =0交于两点A 、B , 且AB = 分析 根据等轴双曲线的特点,可以设含有一个参数的方程2 x -2 y =2 a (a >0),求出 a 即可。 解 设等轴双曲线方程为2 x -2 y =2 a (a >0)。由222,20. x y a x y ?-=?-=?解得交点A 、B 的 坐标分别为 、? ? 。因为AB 3=所以a =3。故所求双曲线方程为2 x -2 y =9。 说明 等轴双曲线是一类特殊的双曲线,它有一些特殊的性质,比如:离心率e ,渐近线方程为y =x ±且互相垂直等等。 三 共焦点双曲线 例3 已知过点() 2,且与双曲线216x -2 4 y =1有共同焦点的双曲线的标准方程。

双曲线及其标准方程(1)

双曲线及其标准方程(1) 福建师大附中苏诗圣 教学目标:理解双曲线的定义,明确焦点、焦距的意义;能根据定义,按求曲线方程的步骤导出双曲线的标准方程,并能熟练写出两类标准 方程;培养学生分析问题能力和抽象概括能力。学会用辩证的观 点从椭圆的定义到双曲线定义的“变化”中认识其“不变”性, 并从中发现数学曲线的简洁美和对称美,培养学生学习数学的兴 趣。 教学重点:双曲线的定义和双曲线的标准方程. (解决办法:通过一个简单实验得出双曲线,再通过设问给出 双曲线的定义;对于双曲线的标准方程通过比较加深认识.) 教学难点:双曲线的标准方程的推导 (解决办法:引导学生完成,提醒学生与椭圆标准方程的推导 类比.) 教学方法:启发式 教学过程:复习椭圆的定义及标准方程→新知探索→数学实验→双曲线→展示现实生活中的双曲线→双曲线的定义 →对定义的思考→双曲线标准方程的推导→例与练 →课堂小结→作业→研究性学习 一、复习引入: 前面我们已经学习了椭圆的有关知识,请同学们回忆一下椭圆的定义。 问题1:椭圆的定义是什么? (板书)平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。 二、新知探索 1、思考:把椭圆定义中的“距离的和”改为“距离的差”,那么这样 点是否存在?若存在,轨迹会什么? 2、实物拉链演示:双曲线的形成(请同学参与协助画图) (取一条拉链,拉开它的一部分,在拉开的两边的长度相等,现将 其中的一边剪掉一段(长为2a),两端点分别固定在黑板的两个定点 F1、F2上,把粉笔放在拉链关上,随着拉链的逐渐拉开或闭合,粉

双曲线及其标准方程练习题

课时作业(十) [学业水平层次] 一、选择题 1.方程x 22+m -y 2 2-m =1表示双曲线,则m 的取值范围( ) A .-2<m <2 B .m >0 C .m ≥0 D .|m |≥2 【解析】 ∵已知方程表示双曲线,∴(2+m )(2-m )>0. ∴-2<m <2. 【答案】 A 2.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( ) A.x 29-y 2 16=1 B.y 29-x 2 16=1 C.x 29-y 2 16=1(x ≤-3) D.x 29-y 2 16=1(x ≥3) 【解析】 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,a =3,知b 2=16, ∴P 点的轨迹方程为x 29-y 2 16=1(x ≥3). 【答案】 D 3.(2014·福州高级中学期末考试)已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )

A.x 22-y 2 3=1 B.x 23-y 2 2=1 C.x 24-y 2 =1 D .x 2 -y 2 4=1 【解析】 由? ?? |PF 1|· |PF 2|=2,|PF 1|2+|PF 2|2 =(25)2 , ?(|PF 1|-|PF 2|)2=16, 即2a =4,解得a =2,又c =5,所以b =1,故选C. 【答案】 C 4.已知椭圆方程x 24+y 2 3=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为( ) A.2 B. 3 C .2 D .3 【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a =1,c =2,所以双曲线的离心率为e =c a =2 1=2. 【答案】 C 二、填空题 5.设点P 是双曲线x 29-y 2 16=1上任意一点,F 1,F 2分别是其左、右焦点,若|PF 1|=10,则|PF 2|=________. 【解析】 由双曲线的标准方程得a =3,b =4. 于是c = a 2+ b 2=5. (1)若点P 在双曲线的左支上,

双曲线及其标准方程练习题一

《双曲线及其标准方程》练习题一 1.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方 程是( ) -y 216=1 -x 216=1 C.x 29-y 216=1(x ≤-3) -y 2 16=1(x ≥3) 2.“ab<0”是“方程c by ax =+22表示双曲线”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分又不必要条件 3.双曲线的两焦点坐标是F 1(3,0),F 2(-3,0),2b =4,则双曲线的标准方程是( ) -y 24=1 -x 24=1 C.x 23-y 22=1 -y 2 16=1 4.方程x =3y 2-1所表示的曲线是( ) A .双曲线 B .椭圆 C .双曲线的一部分 D .椭圆的一部分 5.双曲线x 216-y 2 9=1上一点P 到点(5,0)的距离为15,那么该点到点(-5,0)的距 离为( ) A .7 B .23 C .5或25 D .7或23 6.圆P 过点 ,且与圆 外切,则动圆圆心P 的轨迹方程( ). A . ; B . C . D . 7.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2 2=1有相同的焦点,则a 的值是( ) B .1或-2 C .1或12 D .1 8. 已知ab<0,方程y= —2x+b 和bx 2+ay 2=ab 表示的曲线只可能是图中的( ) 9.双曲线m y x =-222的一个焦点是)3,0(,则m 的值是_______。 10.过双曲线)0,0(122 22>>=-b a b y a x 的焦点且垂直于x 轴的弦的长度为_____。

双曲线及其标准方程(一)

双曲线及其标准方程(一) 教学目的: 1.使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用; 2.通过对双曲线标准方程的推导,提升学生求动点轨迹方程的水平; 3.使学生初步会按特定条件求双曲线的标准方程; 4.使学生理解双曲线与椭圆的联系与区别以及特殊情况下的几何图形(射线、线段等); 5.培养学生发散思维的水平 教学重点:双曲线的定义、标准方程及其简单应用 教学难点: 教 具:多媒体 教学过程: 一、复习引入: 1 椭圆定义: 平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭 圆的焦点,两焦点间的距离叫做椭圆的焦距 2.椭圆标准方程: (1)2222=+b y a x (2)2222=+b x a y 其中22b c a +=二、讲解新课: 1.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于2 1F F )的动点的轨迹叫双曲线 即 a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距 概念中几个容易忽略的地方:“平面内”、“距离的差的绝对值”、“常数小于2 1F F ” 2.双曲线的标准方程: 根据双曲线的定义推导双曲线的标准方程:推导标准方程的过程就是求曲线方程的过程,可根据求动点轨迹方程的步骤,求出双曲线的标准方程 过程如下:(1)建系设点;(2)列式;(3)变换;(4)化简;(5)证 明 12 222=-b y a x ,此即为双曲线的标准方程 它所表示的双曲线的焦点在x 轴上,焦点是)0,(),0,(21c F c F -,其中222 b a c += 若坐标系的选择不同,可得到双曲线的不同的方程,如焦点在 y 轴上,则焦点是),0(),,0(21c F c F -,将y x ,互换,得到122 22=-b x a y ,此也是双曲线的标准方程 3.双曲线的标准方程的特点: (1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种: 焦点在x 轴上时双曲线的标准方程为:122 22=-b y a x (0>a ,0>b ); 焦点在y 轴上时双曲线的标准方程为:122 22=-b x a y (0>a ,0>b ) (2)c b a ,,相关系式222 b a c +=成立,且0 ,0,0>>>c b a 其中a 与b 的大小关系有三种情况。 4.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2 x 、2 y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即 2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上 5.双曲线与椭圆之间的区别与联系 三、讲解范例: 例1 已知双曲线两个焦点的坐标为)0,5()0,5(21F F -,双曲线上一点P 到)0,5()0,5(21F F ,-的距离之差的绝对值等于6,求双曲线标准方程 变题1:将条件改为双曲线上一点P 到 1F ,2F 的距离的差等于6,如何? 变题2:将条件改为双曲线上一点P 到1F ,2F 的距离的差的绝对值等于10,如何? 例2 四、课堂练习: 五、小结 : 1、双曲线的两类标准方程是)0,0(12222>>=-b a b y a x 焦点在x 轴上,)0,0(122 22>>=-b a b x a y 焦点 在 y 轴上 c b a ,,相关系式222b a c +=成立,且,0,0>>>c b a 其中a 与b 的大小关系:能够为 a b a b a ><=,,

双曲线的标准方程

双曲线的标准方程 (第一课时) (一)教学目标 掌握双曲线的定义,会推导双曲线的标准方程,能根据条件求简单的双曲线标准方程. (二)教学教程 【复习提问】 由一位学生口答,教师板书. 问题1:椭圆的第一定义是什么? 问题2:椭圆的标准方程是怎样的? 【新知探索】 1.双曲线的概念 如果把上述定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程双是怎样的呢? (1)演示 如图,定点、是两个按钉,是一个细套管,点移动时, 是常数,这样就画出双曲线的一支,由是同一个常数,可以画出双曲线的另一支. 这样作出的曲线就叫做双曲线. (2)设问

①定点、与动点不在同一平面内,能否得到双曲线? 请学生回答,不能.指出必须“在平面内”. ②到与两点的距离的差有什么关系? 请学生回答,到与的距离的差的绝对值相等,否则只表示双曲线的一支,即是一个常数. ③这个常是否会大于或等? 请学生回答,应小于且大于零.当常数时,轨迹是以、 为端点的两条射线;当常数时,无轨迹. (3)定义 在此基础上,引导学生概括出双曲线的定义: 平面内与两个定点、的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距. 2.双曲线的标准方程 现在我们可以用类似求椭圆标准方程的方法来求双曲线的标准方程,请学生思考、回忆椭圆标准方程的推导方法,随即引导学生给出双曲线标准方程的推导. (1)建系设点 取过焦点、的直线为轴,线段的垂直平分线为轴建立在直角坐标系(如图).

设为双曲线上任意一点,双曲线的焦距为,则、,又设点与、的距离的差的绝对值等于常数. (2)点的焦合 由定义可知,双曲线上点的集合是 (3)代数方程 (4)化简方程 由一位学生演板,教师巡视, 将上述方程化为 移项两边平方后整理得: 两边再平方后整理得: 由双曲线定义知即,∴, 设代入上式整理得: 这个方程叫做双曲线的标准方程.它所表示的双曲线的焦点在轴上,焦点是、,这里. 如果双曲线的焦点在轴上,即焦点,,可以得到方程 这个方程也是双曲线的标准方程. 教师应当指出: (1)双曲线的标准方程与其定义可联系起来记忆,定义中有“差”,则方程“-”号连接,

双曲线及其标准方程(1)

双曲线及其标准方程 (1) 理解双曲线的定义,明确焦点、焦距的意义;能根据定义,按求 曲线方程的步骤 导出双曲线的标准方程, 并能熟练写出两类标准 方程; 培养学生分析问题能力和抽象概括能力。 学会用辩证的观 点从椭圆的定义到双曲线定义的“变化”中认识其“不变”性, 并从中发现数学曲线的简洁美和对称美, 培养学生学习数学的兴 趣。 双曲线的定义和双曲线的标准方程. ( 解决办法:通过一个简单实验得出双曲线,再通过设问给出 双曲线的定 义;对于双曲线的标准方程通过比较加深认识. 双曲线的标准方程的推导 (解决办法:引导学生完成,提醒学生与椭圆标准方程 的推导 类比. ) 教学过程:复习椭圆的定义及标准方程 7 新知探索 7 双曲线 7 展示现实生活中的双曲线 7 对定义的思考 7 双曲线标准方程的推导 7 课堂小结 7 作业 7 研究性学习 一、 复习引入: 前面我们已经学习了椭圆的有关知识, 请同学们回忆一下椭圆的定义。 问题 1:椭圆的定义是什么? (板书)平面内与两定点 F i 、F 2的距离的和等于常数(大于|F I F 2|)的点的 轨迹叫做椭 圆. 这两个定点叫做椭圆的焦点, 两焦点间的距离叫做焦距。 二、新知探索 思考:把椭圆定义中的“距离的和”改为“距离的差”,那么这样 点是否存在? 若存在,轨迹会什么? 2、实物拉链演示:双曲线的形成(请同学参与协助画图) (取一条拉链,拉开它的 一部分,在拉开的两边的长度相等,现将 其中的一边剪掉一段(长为2a ),两端点分别固定在黑板的两个定点 F1、F2上,把粉笔放在拉链关上,随着拉链的逐渐拉开或闭合,粉 教学方法: 启发式 福建师大附中 苏诗圣 教学目标: 教学重点: 教学难点: 数学实验 7 双曲线的定义 7 例与练 1、

2.3.1 双曲线及其标准方程

§ 2.3双曲线 2.3.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题. 1.双曲线的有关概念 (1)双曲线的定义 平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线. 平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为________________________________________________________________________. 平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________. (2)双曲线的焦点和焦距 双曲线定义中的两个定点F 1、F 2叫做__________________,两焦点间的距离叫做__________________. 2.双曲线的标准方程 (1)焦点在x 轴上的双曲线的标准方程是______________________,焦点F 1__________,F 2__________. (2)焦点在y 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________. (3)双曲线中a 、b 、c 的关系是________________. 一、选择题 1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a(a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2.若ax 2+by 2=b(ab<0),则这个曲线是( ) A .双曲线,焦点在x 轴上 B .双曲线,焦点在y 轴上 C .椭圆,焦点在x 轴上 D .椭圆,焦点在y 轴上 3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1 B .x 23-y 2=1 C .y 2-x 23=1 D .x 22-y 22=1 4.双曲线x 2m -y 23+m =1的一个焦点为(2,0),则m 的值为( ) A .12 B .1或3 C .1+22 D .2-12 5.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( ) A .抛物线 B .圆

求双曲线标准方程的技巧

求双曲线标准方程的技巧 在求双曲线标准方程时,如果能根据已知条件设出方程的合理形式,可以简化运算,优化解题过程。下面结合例题介绍求双曲线标准方程的方法。 一 双曲线的一般方程 例1 求经过点(3,P ,() Q -的双曲线标准方程。 分析 双曲线的标准方程有两种形式:22x a -22y b =1(a >0,b >0)或22y a -2 2 x b =1(a >0,b >0),可以讨论解决。也可以应用下面的方法解决。 解 设双曲线方程为2 Ax +2 By =1(AB <0)。因为所求双曲线经过点 ( 3,P ,() Q -,所以9281,7249 1. A B A B +=??+=?解得A =-175,B =125。故所求双曲 线方程为225y -2 75 x =1。 说明 求双曲线标准方程一般用待定系数法,当双曲线的焦点位置不确定时,为了避免讨论焦点的位置,一般设双曲线方程为2Ax +2 By =1(AB <0),这样可以简化运算。 二 等轴双曲线 例2 等轴双曲线的中心在原点,焦点在x 轴上,与直线x -2y =0交于两点A 、B , 且AB = 分析 根据等轴双曲线的特点,可以设含有一个参数的方程2 x -2 y =2 a (a >0),求出a 即可。 解 设等轴双曲线方程为2 x -2 y =2 a (a >0)。由222, 20.x y a x y ?-=?-=? 解得交点A 、B 的坐标分别为 、? ?。因为AB 3a = a =3。故所求双曲线方程为2x -2y =9。 说明 等轴双曲线是一类特殊的双曲线,它有一些特殊的性质,比如:离心率e ,渐近线方程为y =x ±且互相垂直等等。 三 共焦点双曲线

双曲线及其标准方程练习题答案及详解

双曲线及其标准方程练习题 高二一部数学组 刘苏文 2017年5月2日 一、选择题 1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 2 1-k =1表示双曲线,则k 的取值范围是( ) A .-10 C .k ≥0 D .k >1或k <-1 3.动圆与圆x 2 +y 2 =1和x 2 +y 2 -8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线 4.以椭圆x 23+y 2 4 =1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是 -y 2 =1 B .y 2 -x 23=1 -y 2 4 =1 -x 2 4 =1 5.“ab <0”是“曲线ax 2 +by 2 =1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2| =2,则该双曲线的方程是( ) -y 2 3 =1 -y 2 2=1 -y 2=1 D .x 2 -y 2 4 =1 7.椭圆x 24+y 2m 2=1与双曲线x 2m 2-y 2 2 =1有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在 8.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) -y 27=1 -y 2 7=1(y >0) -y 2 7=1或x 27-y 29=1 -y 2 7 =1(x >0) 9.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2 的周长是( ) A .16 B .18 C .21 D .26 10.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2 b =1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点, 则|PF 1|·|PF 2|的值为( )

双曲线及其标准方程解答

2. 2 双曲线 2. 2.1 双曲线及其标准方程 【课标要求】 1. 了解双曲线的定义、几何图形和标准方程的推导过程. 2 ?会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】 1?用定义法、待定系数法求双曲线的标准方程. (重点) 2 ?与双曲线定义有关的应用问题. (难点) 01二课前探翌学 挑醪盘落实 自学导引 1.双曲线的定义 把平面内与两个定点 F 1、F 2的距离的差的绝对值等于常数 (小于IF 1F 2I)的点的轨迹叫做 双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 试一试:在双曲线的定义中,必须要求 “常数小于IF 1F 2I”,那么“常数等于IF 1F 2I” , “常数大于IF 1F 2I”或“常数为0”时,动点的轨迹是什么? 提示 (1) 若“常数等于IF 1F 2I”时,此时动点的轨迹是以 F 1, F 2为端点的两条射线 F 1A ,F 2B(包括端点),如图所示. ~A~~P__B~ 想一想:如何判断方程 予—泊=1(a>0,b>0)和* —詁=1(a>0,b>0)所表示双曲线的焦点 的位置? 提示 如果x 2 项的系数是正的,那么焦点在 x 轴上,如果y 2 项的系数是正的,那么焦点 在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点 在哪一个坐标轴上. 名师点睛 1.对双曲线定义的理解 (1) 把定常数记为 2a ,当2a<|F 1F 2|时,其轨迹是双曲线;当 2a = IF 1F 2I 时,其轨迹是以 F 1、F 2为端点的两条射线(包括端点);当2a>|F 1F 2|时,其轨迹不存在. (2) 距离的差要加绝对值,否则只为双曲线的一支.若 F 1、F 2表示双曲线的左、右焦 点,且点P 满足|PF 1|— |PF 2|= 2a ,则点P 在右支上;若点P 满足|PF 2|—|PF 1|= 2a ,则点P 在 左支上. (3) 双曲线定义的表达式是 ||PF 1|— |PF 2|| = 2a(0<2a<|F 1F 2|). (4) 理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距 离.” (2)若“常数大于IF 1F 2I”,此时动点轨迹不存在. ⑶若“常数为0”,此时动点轨迹为线段 F 1F 2的垂直平分线. 2.双曲线的标准方程

双曲线及其标准方程习题

双曲线及其标准方程习 题 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

[学业水平训练] 1.动点P到点M(1,0)及点N(3,0)的距离之差为2,则点P的轨迹是( ) A.双曲线B.双曲线的一支 C.两条射线D.一条射线 解析:选D.依题意|PM|-|PN|=2=|MN|, 所以点P的轨迹不是双曲线,而是一条射线. 2.若方程x2 10-k + y2 5-k =1表示双曲线,则k的取值范围是( ) A.(5,10) B.(-∞,5) C.(10,+∞) D.(-∞,5)∪(10,+∞)解析:选A.由题意得(10-k)(5-k)<0,解得5

双曲线的定义及标准方程 (1)

双曲线的定义及标准方程 题型一、圆锥曲线的标准方程 例1、讨论 19252 2 =-+ -k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k ,所给方程表示椭圆,此时k a -=252 ,k b -=92 , 162 2 2 =-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时,k a -=252 ,k b -=92 ,162 2 2 =+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

双曲线及其标准方程(一)

课 题:8.3双曲线及其标准方程(一) 教学目的: 1.使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用; 2.通过对双曲线标准方程的推导,提高学生求动点轨迹方程的能力; 3.使学生初步会按特定条件求双曲线的标准方程; 4.使学生理解双曲线与椭圆的联系与区别以及特殊情况下的几何图形(射线、线段等); 5.培养学生发散思维的能力 教学重点:双曲线的定义、标准方程及其简单应用 教学难点:双曲线标准方程的推导及待定系数法解二元二次方程组 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: “双曲线及其标准方程”是在讲完了“圆的方程”、“椭圆及其标准方程”之后,学习又一类圆锥曲线知识,也是中学解析几何中学习的重要的内容之一,它在社会生产、日常生活和科学技术止有着广泛的应用,大纲明确要求学生必须熟练掌握 本节教材仍是继续训练学生用坐标法解决方程与曲线有关问题的重要内容,对它的教学将帮助学生进一步熟悉和掌握求曲线方程的一般方法 双曲线的定义和标准方程是本节的基本知识,所以必须掌握 而掌握好双 应用双曲线的有关知识解决数学问题和实际应用问题是培养学生基本技能和基本能力的必要环 坐标法是中学数学学习中必须掌握的一个重要方法,它充分体现了化归思想、数形结合思想,是用以解决实际问题的一个重要的数学工具 犹如前面学 双曲线和其方程分属于几何和代数这两个分立的体系,但是通过直角坐标系人们又将它们很好地结合在一起 因此我们要充分利用这节教材对学生进行好思想教育 双曲线的标准方程,内容可分为二个课时,第一课时内容主要是双曲线的定义和标准方程以及课本中的例1;第二课时主要是课本中的例2、例3及几个变式例题 教学过程: 一、复习引入: 1 椭圆定义: 平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁( 线段)两定

双曲线及其标准方程练习题答案及详解

双曲线及其标准方程练习题答案及详解 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

练习题 高二一部数学组刘苏文2017年5月2日 一、选择题 1.平面内到两定点E、F的距离之差的绝对值等于|EF|的点的轨迹是() A.双曲线 B.一条直线C.一条线段D.两条射线 2.已知方程-=1表示双曲线,则k的取值范围是( ) A.-10C.k≥0D.k>1或k<-1 3.动圆与圆x2+y2=1和x2+y2-8x+12=0都相外切,则动圆圆心的轨迹为( ) A.双曲线的一支B.圆C.抛物线D.双曲线 4.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是 A.-y2=1 B.y2-=1C.-=1 D.-=1 5.“ab<0”是“曲线ax2+by2=1为双曲线”的( ) A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 6.已知双曲线的两个焦点为F1(-,0)、F2(,0),P是此双曲线上的一点,且PF1⊥PF2, |PF1|·|PF2|=2,则该双曲线的方程是( ) A.-=1 B.-=1 C.-y2=1 D.x2-=1 7.椭圆+=1与双曲线-=1有相同的焦点,则m的值是( ) A.±1B.1C.-1 D.不存在 8.已知点F1(-4,0)和F2(4,0),曲线上的动点P到F1、F2距离之差为6,则曲线方程为( ) A.-=1 B.-=1(y>0) C.-=1或-=1 D.-=1(x>0) 9.已知双曲线的左、右焦点分别为F1、F2,在左支上过F1的弦AB的长为5,若2a=8,那么 △ABF2的周长是( ) A.16 B.18C.21 D.26 10.若椭圆+=1(m>n>0)和双曲线-=1(a>0,b>0)有相同的焦点,P是两曲线的一个交点,则 |PF1|·|PF2|的值为( ) A.m-a B.m-b C.m2-a2 D.- 二、填空题

求双曲线标准方程的技巧(20210226102409)

已知过点(3x/2,2),且与双曲线 汙宁F 有共同焦点的双曲线的标准方程。 求双曲线标准方程的技巧 在求双曲线标准方程时,如果能根据已知条件设岀方程的合理形式,可以简化运算,优化 解题过程。下而结合例题介绍求双曲线标准方程的方法。 —双曲线的一般方程 例1求经过点P (3,2j7).Q (-6Q7)的双曲线标准方程。 分析 双曲线的标准方程有两种形式:二-二=1 (?>0.b>0 )或^-4=1("> cr ir x b ? 0, /9>0),可以讨论解决。也可以应用下而的方法解决。 解 设双曲线方程为Ax 2 + By 2 =1 ( AZ? < 0 ) o 因为所求双曲线经过点 说明 求双曲线标准方程一般用待立系数法,当双曲线的焦点位置不确立时,为了避免 讨论焦点的位竄一般设双曲线方程为+ = 这样可以简化运算。 二等轴双曲线 例2等轴双曲线的中心在原点,焦点在x 轴上,与直线x-2y=0交于两点A 、B, 且|AB| = 2>/T5O 求此等轴双曲线的方程。 分析 根据等轴双曲线的特点,可以设含有一个参数的方程x 2-y 2=tr (6/>0 ) 岀 〃即可。 解 设等轴双曲线方程为X 2-V 2=?2 (4>0)。由[x '-y~=a ^解得交点A 、3的 [x-2y = 0? 说明 等轴双曲线是一类特殊的双曲线,它有一些特殊的性质,比如:离心率e = >/2,渐 近线方程为y=±x 且互相垂直等等。 三共焦点双曲线 />(3,2育),0(-6血7),所以< 5 + 283 = 1, 72A+49B = 1? 解得A —严諾。故所求双曲线 方程为針 2 —=1。 75 所以“=3。故所求双曲线方程为X 2-F=9O

双曲线及其标准方程(教案)

《双曲线及其标准方程》 [教案] 常德市一中王第教学目标: 1.通过教学,使学生熟记双曲线的定义及其标准方程,理解双曲线的定义,体会双曲线标准方程的探索推导过程. 2. 使学生在学会知识的过程中,进一步熟练用坐标法建立曲线方程,培养学生等价转化、数形结合等数学思想,提高学生分析问题、解决问题的能力. 3. 通过对定义与方程的探索、评价,优化学生的思维品质,培养学生运动变化、辨证统一的思想. 教学重点与难点 双曲线的定义和标准方程及其探索推导过程是本课的重点. 定义中“差的绝对值”、a与c的大小关系的理解与标准方程的建立是难点. 教学方法:实验发现法、电化教学法、启导法、类比教学法 教学用具:CAI课件、演示教具 课时安排:一课时 教学过程: 一、课题导入 师:椭圆的定义是什么? (学生口述椭圆的定义,教师利用CAI课件把椭圆的定义和图象放出来.) 师:椭圆定义是由轨迹的问题引出来的,我们把满足几何条件|PF1|+|PF2|=2a(常数)(2a>|F1F2|)的动点P的轨迹叫椭圆.下面,我们来做这样一个实验: (同学分组实验:利用拉链演示双曲线的生成过程,导入课题) 师:通过这个实验,我们发现笔尖画出了这样两条特殊的曲线,这是一类什么曲线呢?这就是我们今天要研究的“双曲线及其标准方程”(板书课题) 二、定义探究 师:我们知道满足几何条件|PF1|+|PF2|=2a(常数)的动点P的轨迹是椭圆,那双曲线应该是点P满足什么几何条件的轨迹呢?

(引导学生从刚才的演示实验中寻找答案: |PF 1|-|PF 2|=2a 或|PF 2|-|PF 1|=2a ) 师:是不是有以上规律呢?为了更直观的体现我们刚才的实验过程,下面我们来验证一下. (播放双曲线flash 生成动画,验证几何条件) 师:实验证明当点P 满足以上几何条件时,我们得到的轨迹确实是双曲线,如果 |PF 1|>|PF 2|,则得到曲线的右支,如果|PF 2|>|PF 1|则得到曲线的左支, 能否用一个等式将两几何条件统一起来呢? (引导学生思考,此时只需在|PF 1|-|PF 2|=2a 左边加上绝对值) 师:作为此时差的绝对值2a 与|F 1F 2|大小关系怎样? (结合图象,学生分析:应该有2a 〈|F 1F 2|) (在上述讨论的基础上引导学生类比椭圆定义概括出双曲线的定义,教师板书) 三、方程推导 师:平面解析几何的基本思想是利用代数的方法来研究几何问题,借助于曲线的方程来揭示曲线的性质.下面我们来探究双曲线的方程.首先请回忆椭圆的标准方程是什么? (学生口述教师板书椭圆的标准方程) 师:椭圆的标准方程我们是借助于椭圆的定义用坐标法建立起来的,在此我们完全可以仿效求椭圆标准方程的方法探求双曲线方程. (学生在草稿纸上试着完成,教师板书方程的推导过程) 建立直角坐标系,设双曲线上任意一点的坐标为P(x 、y),|F 1F 2|=2c ,并设F 1(-c,0),F 2(c,0). 由两点间距离公式,得 |PF 1|=22)(y c x ++,|PF 2|=22)(y c x +- 由双曲线定义,得 |PF 1|-|PF 2|=±2a 即

相关主题
相关文档 最新文档