当前位置:文档之家› 解析不等式恒成立问题_马继武

解析不等式恒成立问题_马继武

解析不等式恒成立问题_马继武

解析不等式恒成立问题

◆马继武

(山东胶南市第三中学

不等式恒成立问题等价转化

纵观近年来各地高考数学试题,有关不等式恒成立问题屡见不鲜,这类问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、知识交汇点多等特点。考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的值或取值范围。解决这类问题的关键是转化,通过等价转化能使问题起到“柳暗花明”的功效。而等价转化过程往往渗透着换元、化归、数形结合、分类讨论、函数与方程等数学思想方法,其常用方法主要有:更换主元法、分离参数法、数形结合法、最值法等,笔者试图通过本文能对学生突破这一难点有所启迪。

一、更换主元法

在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加明朗化,一般地,已知存在范围的量为变量,而待求范围的量为参数。

二、分离参数法

当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来,且分离后不等式另一边的函数(或代数式)的最值可求时,常用分离参数法

三、数形结合法

如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围。

四、最值法

当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解

注:恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题。

不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新。因此,在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高。

64

不等式恒成立问题

不等式恒成立问题 一、 教学目标 1、 知识目标;掌握不等式恒成立问题求参数的范围的求解方法并会运用 2、 能力目标;培养学生分析问题解决问题的能力 3、 情感目标;优化学生的思维品质 二、 教学重难点 1、教学的重点;不等式恒成立问题求参数的范围的求解方法并会运用 2、教学的难点;不等式恒成立问题求参数的范围的求解方法的选择 三、 教学方法:高三复习探究课:学生研讨探究----学生归纳小结-----学生巩 固练习----学生变式探究---学生总结 四、 教学过程 1、 引人 高三数学复习中的不等式恒成立问题,涉及到函数的性质、图象, 渗透着换元、化归、数形结合、函数方程等思想方法,有利于考查学生的综合解题能力,因此备受命题者的青睐,也成为历年高考的一个热点。我们今天这堂课来研究不等式恒成立求参数的取值范围问题的求解方法。引入课题 2、新课 下面我们来看例1例1、对一切实数x ]1,1[-∈,不等式 a x a x 24)4(2-+-+>0恒成立,求实数a 的取值范围(由学生完成) 由一个基本题得到不等式恒成立问题求参数的范围的求解方法 解法一;分离参数 由原不等式可得:a(x-2) > -x 2+4x-4 , 又因为x ∈[-1,1] ,x-2∈[-3,-1] a<2-x 又因为x ∈[-1,1],所以 a<1. 解法二;分类讨论、解不等式

(x-2)[x-(2-a)]>0 当a=0时不等式恒成立 当a<0 时x>2-a 或x<2 不等式恒成立 当a>0时x>2 或x<2-a 所以2-a>1 即a<1 所以a<1时不等式恒成立 解法三;构造函数求最值 设f(x)=x2+(a-4)x+4-2a 当(4-a)/2∈[-1,1],即a∈[2,6]时 -a2<0 不成立,舍弃; 当a>6时,f(-1)=1-a+4+4-2a>0 a<3 不成立,舍弃; 当a<2时,f(1)=1+a-4+4-2a=1-a>0 a<1 综上得:a<1 解法四;构造方程用判别式韦达定理根的分布 设x2+(a-4)x+4-2a=0 方程无实根或有两实根两根小于-1或两根大于1 △=(a-4)2-4(4-2a)=a2≥0 所以1-(a-4)+4-2a>0且(4-a)/2<-1 或1+(a-4)+4-2a>0 且(4-a)/2>16且a<3 或a<1且a<2, 所以a<1 解法五;数形结合(用动画来演示 a(x-2)>-x2+4x-4 设y=a(x-2) 和y=-x2+4x-4 分别作两函数的图象

函数不等式恒成立问题经典总结

函数、不等式恒成立问题解法(老师用) 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切 αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2 <---x x m ,;令)12()1()(2 ---=x x m m f ,则22≤≤-m 时,0)(

恒成立与存在性问题的基本解题策略

“恒成立问题”与“存在性问题”的基本解题策略 一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型 1、恒成立问题的转化:()a f x >恒成立?()max a f x >;()()min a f x a f x ≤?≤恒成立 2、能成立问题的转化:()a f x >能成立?()min a f x >;()()max a f x a f x ≤?≤能成立 3、恰成立问题的转化:()a f x >在M 上恰成立?()a f x >的解集为M ()()R a f x M a f x C M ?>???≤?? 在上恒成立 在上恒成立 另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥ 5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上 的值域为A ,g(x)在区间[c,d]上的值域为B,则A ?B. 9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方; 10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型 在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题. 函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;?某表达式的值恒大于a 等等… 恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。 恒成立问题在解题过程中大致可分为以下几种类型: ①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。 二、恒成立问题解决的基本策略 大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题。等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的。 (一)两个基本思想解决“恒成立问题” 思路1、max )]([)(x f m D x x f m ≥?∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤?∈≤上恒成立在 如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导

不等式恒成立问题的基本类型及常用解法 - 副本

不等式恒成立问题基本类型及常用解法 类型1:设f(x)=ax+b f(x) >0在x ∈[]n m ,上恒成立? ???0 )(0)( n f m f f(x) <0在x ∈[]n m ,上恒成立??? ?0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。 例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(2 1)12-+a x 恒成立的x 的取值范围。 类型2:设f(x)=ax 2+bx+c (a ≠0) f(x) >0在x ∈R 上恒成立?a >0 且△<0; f(x) <0在x ∈R 上恒成立?a <0 且△<0. 说明:①.只适用于一元二次不等式 ②.若未指明二次项系数不等于0,注意分类讨论. 例3.不等式3 642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。

类型3:设f(x)=ax 2+bx+c (a ≠0) (1) 当a >0时 ① f(x) >0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立?? ??0)(0)( n f m f . (2) 当a <0时 ① f(x) >0在x ∈[]n m ,上恒成立? ? ? ?0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . 说明:只适用于一元二次不等式. 类型4:a >f(x) 恒成立对x ∈D 恒成立?a >f(x)m ax , a <f(x)对x ∈D 恒成立? a <f(x)m in . 说明:①. f(x) 可以是任意函数 ②.这种思路是:首先是---分离变量,其次用---极端值原理。把问题转化为求函数的最值,若f(x)不存 在最值,可求出f(x)的范围,问题同样可以解出。 例4.(2000.上海)已知f(x)=x a x x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

不等式恒成立问题

不等式中恒成立问题的解法 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数 ),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00 a ; 2)0)(+-+-x m x m 的解集是R ,求m 的范围。 解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。 (1)当m-1=0时,元不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需???<---=?>-0 )1(8)1(0 12 m m m ,所以,)9,1[∈m 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 例2、若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a - <-即:4a >时,()()min 2730f x f a =-=-≥ 7 3 a ∴≤又4a >所以a 不存在; (2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ?? =-=--≥ ??? 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤ (3) 当22 a -> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又 4a <-74a ∴-≤<- 综上所得:72a -≤≤

关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法 不等式恒成立问题,在高中数学中较为常见。这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。 不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。 下面我们一起来探讨其中一些典型的问题 一、一次函数型——利用单调性求解 例1、若不等式对满足的所有实数m都成立,求x的取值范围。 若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。 分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。 解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立, 设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有: 此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。 给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于 ⅰ),或ⅱ) 可合并成 同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;

一元二次不等式恒成立问题专项练习

一元二次不等式恒成立问题专项练习 例题:设函数f (x )=mx 2-mx -1. (1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. (3)对于任意m ∈[1,3],f (x )<-m +5恒成立,求实数x 的取值范围. 解: (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0,满足题意; 若m ≠0,则??? m <0, Δ=m 2+4m <0,即-40时,g (x )在[1,3]上是增函数, ∴g (x )max =g (3)=7m -6<0,∴00, 又m (x 2-x +1)-6<0,∴m <6 x 2-x +1. ∵函数y =6x 2-x +1=6? ????x -122+34 在[1,3]上的最小值为67 ,∴只需 m <67即可.

数列型不等式恒成立条件下确定参数范围问题解题策略

数列型不等式恒成立条件下确定参数范围问题解题策略【摘要】不等式地恒成立问题是学生较难理解和掌握地一个难点,以数列为载体地不等式恒成立条件下确定参数范围问题其综合性更强,它是一类常见地考试卷型,常出现在高考压轴题中,它与函数恒成立问题既有类似之处,又有一些差别,学生容易出错,甚至不知所措.这里通过几个例子归纳这类问题地几种常用解法和需要注 意地问题. 【关键词】不等式恒成立问题;数列;参数范围问题 不等式地恒成立问题是学生较难理解和掌握地一个难点,以数列为载体地不等式恒成立条件下确定参数范围问题其综合性更强,它是一类常见地考试卷型,常出现在高考压轴题中,它与函数恒成立问题既有类似之处,又有一些差别,学生容易出错,甚至不知所措.这里通过几个例子归纳这类问题地几种常用解法和需要注意地问 题. 1 最值法是解数列型不等式恒成立求参数地取值范围问题地一种 非常重要地方法,其解题原理是f(n>>m恒成立f(n> min>m,f(n>0. ∵an>0,∴只需lga[n(a-1>+a]>0. <1)当a>1时,lga>0,只要n(a-1>+a>0,n>a1-a. <2)当0a1-a. 为了使b n+1>b n对任何正整数n都成立,只需a1-a小于n

地最小值1,令a1-a1或0 评析以上两例是综合性极强地好题,是数列不等式恒成立求参数地取值范围,转化为解不等式或求函数 地最值,这是高中数学中有关确定参数范围题目地涅槃. 2 数列型不等式恒成立求参数地取值范围问题,对于某些最值不容易求出地问题,我们可以考虑先实行变量分离,再求其最值.所谓变量分离,是指在含有参数地数列不等式中,通过恒等变形,使参数与主元分离于不等式两端,则所蕴涵地数列关系便由隐变显,从而问 题转化为求主元函数地值域或上,下限(上限为最大值地临界值、 下限为最小值地临界值>,进而求出参数范围.这种方法由于思路清晰、规律明显、操作性强,因而应是一种较好地求参方法. 例3 <2003年新教材高考题改编题)设a0为常数,数列{a n}地通项公式a n=15[3n+(-1>n-12n]+(-1>n2na0(n∈n*>,若对任意n≥1不等式a n>a n-1恒成立,求a0地取值范 围. 解 a n-a n-1=2×3n-1+(-1>n-13×2n-15+ (-1>n3×2n- 1a0, 故a n>a n-1等价于(-1>n-1(5a0-1>-15×322k-2+15. 此式对k=1,2,…恒成立,有 a0>-15×322×1-3+15=0. 综上所述,①式对任意n∈n+成立,有0 故a0地取值范

不等式恒成立问题的大全

不等式恒成立问题 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00a ; 2)0)(+-+a x a x 对R x ∈恒成立,即有 04)1(22<--=?a a 解得3 11>-x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ????-≤--≥-≥?1220)1(0m F 解得23-≤≤-m 。 综上可得实数m 的取值范围为)1,3[-。 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 1.已知两个函数2()816f x x x k =+-, 32()254g x x x x =++,其中k 为实数. O x y x -1

不等式有解和恒成立问题

不等式有解和恒成立问题 Prepared on 24 November 2020

不等式有解和恒成立问题 知识点的罗列,文字不宜太多,简洁明了最好) ? 知识点一:不等式恒成立问题 ? 知识点二:不等式有解问题 分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题) 含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。 注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的) 一、不等式有解问题 例题:当m 为何值时,2211223 x mx x x +-<-+对任意的x ∈R 都成立 解法1:二次函数法: 移项、通分得: 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<< 解法2:分离参数法: 注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么: 注意到,在上式中我们用到了这样一个性质: 总结:解决恒成立问题的方法:二次函数法和分离参数法 变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目) 【试题来源】(上海2016杨浦二模卷) 【题目】设函数x x g 3)(=,x x h 9)(=,若b x g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】:因为b x g a x g x f +++= )()1()(是实数集上的奇函数,所以1,3=-=b a . )1 321(3)(+-=x x f ,)(x f 在实数集上单调递增.

含参数的一元二次不等式的解法与恒成立问题

} 11 |{1)5(1)4(} 1 1|{10)3(} 1|{0)2(}1,1 |{0)1(<<>Φ =<<<<>=>< a a a ; 例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()044222 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|>--ax x ; 3、ax 2 -(a +1)x +1<0(a ∈R) }2,2 |{,1)5(}2|{,1)4(}2 ,2|{,10)3(} 2|{,0)2(} 22 |{,0)1(>< >≠=><<<<=<<?; 例3 解不等式042 >++ax x

高中数学恒成立问题的解题策略

高中数学恒成立问题的解题策略 论文摘要:在高中数学教学中,我们经常会碰到某些恒成立的问题。恒成立问题在解题过程中大致可分为以下两种类型:一是利用函数图像与性质;二是变量分离。本文对此进行了分析。 关键词:恒成立问题;函数图像;数学 在高中教学中,我们经常会碰到在给定条件下某些结论恒成立的问题,我们怎样来解决呢? 函数在给定区间上某结论成立问题,其表现形式通常有:(在给定区间上某关系恒成立;(某函数的定义域为全体实数R;(某不等式的解为一切实数;(某表达式的值恒大于等等…… 恒成立问题,涉及到一次函数、二次函数的性质、图像,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。 恒成立问题在解题过程中大致可分为以下两种类型:一是利用函数图像与性质,例如,一次函数、二次函数等;二是变量分离。恒成立问题还要注意与存在性问题的区别和联系。 一、利用函数图像与性质 例1:对任意恒成立,求的取值范围。 解:令, 本题关于的二次函数,若二次函数大于0在R上恒成立且(即图像恒在轴上方)。

若二次函数小于0在R上恒成立且(即图像恒在轴下方)。 我们也会经常碰到二次函数在某一给定区间上的恒成立问题,碰到这样的情况,如果我们仍旧可以利用函数图像来解决的话,会更得心应手。 变式1:对任意恒成立,求的取值范围。 解:若对任意恒成立,令,利用其函数图像, ,得 变式2:若时,恒成立,求的取值范围。 分析:可以看成关于的二次函数,也可以看成关于的一次函数,所以在不等式中出现了两个字母:及,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然,可将视作自变量,则上述问题即可转化为在内关于的一次函数小于0的恒成立问题。 若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷。给定一次函数,若在内恒有,则根据函数的图像(直线)可得上述结论等价于;同理,若在内恒有,则有, 利用的函数图像可知, 变式3:对任意及时,恒成立,求的取值 范围。 分析:不等式中出现了三个字母:,及,关键在于先把哪个字母看成是变量,另外两个作为常数。 方法一:若先把看成关于的二次函数,且在上恒大于等于0,则,即,

不等式恒成立问题及能成立问题

例谈不等式恒成立问题和能成立问题的解题策略 ——谈2008年江苏高考数学试卷第14题 摘要:所有问题均可分成三类:恒成立问题、能成立问题和不成立问题。《例谈不等式恒成立问题和能成立问题》介绍了解决不等式恒成立问题和不等式能成立问题常用的直接法、分离参数法、分类讨论法、数形结合法等,采用了等价转化的处理策略。 关键词:分离参数、分类讨论、数形结合、等价转化,换元,求最值。 2008年江苏高考数学试卷第14题是一道很好的恒成立问题:设函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,则实数a 的值为 。解析如下: 析:将()0f x ≥中的,a x 分离,然后求函数的最值。 解:函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,函数3()31()f x ax x x R =-+∈对于任意[)(]1,0,0,10x x x ∈-∈=及其有()0f x ≥都成立。 若[)1,0x ∈-,33213()310f x ax x a x x =-+≥?≤- +,设1t x =则1t ≤- 3232133(1)t t t x x ∴-+=-+≤-,令323(1)y t t t =-+≤-,则'2360y t t =-+< 323(1)y t t t ∴=-+≤-单调递减,32min 1(1)3(1)4t y y =-==--+-=,4a ∴≤(1) 若(]0,1x ∈,33213()310f x ax x a x x =-+≥?≥- +,设1t x =,则1t ≥ 3232133(1)t t t x x ∴-+=-+≥,令323(1)y t t t =-+≥,则'2363(2)y t t t t =-+=--,当12t ≤≤时'0y ≥,323(1)y t t t =-+≥单调递增;当2t >时'0y <,323(1)y t t t =-+≥单调递减,32max 22324t y y ===-+?=,4a ∴≥(2) 若0x =则a R ∈,()0f x ≥成立(3) 由题意知(1)(2)(3)应同时成立4a ∴= 解题中采取了不等式恒成立问题的处理策略: 1、若f(x)≥a 对x ∈D 恒成立,只须f(x)min (x ∈D)≥a 即可。 2、若f(x)≤a 对x ∈D 恒成立,只须f(x)max (x ∈D)≤a 即可。

微专题不等式恒成立问题常见类型及解法

恒成立问题常见类型及解法 恒成立问题在解题过程中大致可分为以下几种类型:(1)一次函数型;(2)二次函数型;(3)变量分离型;(4)利用函数的性质求解;(5)直接根据函数的图象求解;(6)反证法求解。 一、一次函数型 给定一次函数()==+y f x kx b (k ≠0),若()=y f x 在[m,n]内恒有()f x >0,则根据函数的 图象(线段)可得①0()0>??>?k f m 或②0()0?k f n ,也可合并成f (m)0f (n)0>??>?, 同理,若在[,]m n 内恒有()0() 2 1-m x 对一切[]2,2∈-m 都成立,求实数x 的取值范围。 【解析】令f (m)=(21-x )m -2x +1,则上述问题即可转化为关于m 的一次函数 =y ()f m 在区间[-2,2]内函数值小于0恒成立的问题。考察区间端点,只 要(2)(2)-?? ? <0,<0f x f 即x 的取值范围是(12 ,1 2). 二、二次函数型 若二次函数2 (0,)=++≠∈y ax bx c a x R 的函数值大于(或小于)0恒成立,则有 a 00>???

及二次函数的图象求解。 典例2关于x 的方程9x +(4+a )3x +4=0恒有解,求a 的取值范围。 【解析】方法1(利用韦达定理) 设3x =t,则t>0.那么原方程有解即方程t 2 +(4+a )t+4=0有正根。 1212 Δ0 (4)040 ≥?? ∴+=-+>??=>?g x x a x x ,即2(4a)160a 4?+-≥?<-?,a 0a 8a 4≥≤-?∴?<-?或,解得a ≤-8. 方法2(利用根与系数的分布知识) 即要求t 2 +(4+a )t+4=0有正根。设f(t)= t 2 +(4+a )t+4. 当?=0时,即(4+a )2 -16=0,∴a =0或a =-8. 当a =0时,f(t)=(t+2)2=0,得t=-2<0,不合题意; 当a =-8时,f(t)=(t-2)2 =0,得t=2>0,符合题意。∴a =-8。 当?>0,即a <-8或a >0时, ∵f(0)=4>0,故只需对称轴4a 02 +->,即a <-4.∴a <-8. 综上可得a ≤-8. 三、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。 典例3设函数2 ()1f x x =-,对任意2,3x ??∈+∞????,2 4()(1)4()x f m f x f x f m m ??-≤-+ ??? 恒成立,则实数m 的取值范围是 【解析】依据题意得2 2222214(1)(1)14(1)---≤--+-x m x x m m 在3[,)2∈+∞x 上恒定成 立,即2 2213241-≤--+m m x x 在3[,)2∈+∞x 上恒成立。 当32=x 时函数2321=--+y x x 取得最小值53 -, 所以 221543-≤-m m ,即22(31)(43)0+-≥m m ,解得2≤-m 或2 ≥m 。 四、利用函数的性质解决恒成立问题 若函数f(x)是奇(偶)函数,则对一切定义域中的x,f(-x)= -f(x),(f(-x)=f(x))恒成立;若函数y=f(x)的周期为T ,则对一切定义域中的x,有f(x)=f(x+T)恒成立;若函数

高中数学恒成立问题

高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。 一、构造函数法 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 例1 已知不等式对任意的都成立,求的取值范围. 解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的 一切实数恒成立对恒成立.当时, 即 解得故的取值范围是. 注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法 在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法. 例2已知函数(为常数)是实数集上的奇函数,函数 在区间上是减函数. (Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围. 解:由题意知,函数在区间上是减函数. 在上恒成立 注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数 都有恒成立,则;若对于取值范围内的任一个数都有 恒成立,则. 三、数形结合法 如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围. 例 3 已知函数若不等式恒成立,则实数的取值范围是 .

关于函数恒成立问题的解题策略

关于恒成立问题的解题策略 整理人:凌彬 一、恒成立问题的基本类型 在数学解题中经常碰到在给定条件下某些结论恒成立的命题. 函数在给定区间上某结论成立问题,其表现形式通常有: ①在给定区间上某关系恒成立;②某函数的定义域为全体实数R ; ③某不等式的解为一切实数; ④某表达式的值恒大于a ,等等 ┅ 恒成立问题,涉及到一次函数、二次函数的性质、图像,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查综合解题能力,是历届高考的热点之一. 恒成立问题在解题过程中大致可分为以下几种类型: ①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质; ⑤直接根据函数的图像. 二、恒成立问题解决的基本策略 A 、两个基本思想解决“恒成立问题” 思路1:()m f x ≥在x D ∈上恒成立max [()]m f x ?≥; 思路2:()m f x ≤在x D ∈上恒成立min [()]m f x ?≤. 如何在区间D 上求函数()f x 的最大值或者最小值问题,可以通过题目的实际情况,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导,等等方法求函数()f x 的最值. 此类问题涉及的知识比较广泛,在处理上也有许多特殊性,希望大家多多注意积累. B 、赋值型——利用特殊值求解 等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得. 例1.由等式43243212341234(1)(1)(1)(1)x a x a x a x a x b x b x b x b ++++=++++++++; 定义映射f :12341234(, , , )a a a a b b b b →+++,则f :(4,3,2,1)_____→ 解:取0x =,则412341a b b b b =++++,又由已知41a =,所以12340b b b b +++=. 例2.如果函数()sin 2cos2y f x x a x ==+的图像关于直线8x π=- 对称,那么____a = 解:取0x =及4x π=-,则(0)()4 f f π=-,即1a =-. 此法体现了数学中从特殊到一般的转化思想.

导数中含参数问题与恒成立问题的解题技巧

函数、导数中含参数问题与恒成立问题的解题技巧与方法 含参数问题及恒成立问题方法小结: 1、分类讨论思想 2、判别法 3、分离参数法 4、构造新函数法 一、分离讨论思想: 例题1: 讨论下列函数单调性: 1、()x f =();1,0,≠>-a a a a x 2、()x f =)0,11(1 2≠<<--b x x bx 二、判别法 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022a a a 或 (2)?? ???<-=-=-040)2(202a a 解(1)得???<<-<2 22a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习1. 已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。 三、分离法参数: 分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题.即: (1) 对任意x 都成立()min x f m ≤ (2)对任意x 都成立。 例3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

相关主题
文本预览
相关文档 最新文档