当前位置:文档之家› 高二数学导数运算法则

高二数学导数运算法则

最新导数的四则运算法则

导数的四则运算法则

§4 导数的四则运算法则 主讲:陈晓林时间:2012-2-23 一、教学目标: 1.知识与技能 掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。 2.过程与方法 通过用定义法求函数f(x)=x+x2的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。 3.情感、态度与价值观 培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象的数学思维方法。 二、教学重点:函数和、差、积、商导数公式的发掘与应用 教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导函数的概念和导数公式表。 1.导数的定义:设函数?Skip Record If...?在?Skip Record If...?处附近有定义,如果?Skip Record If...?时,?Skip Record If...?与?Skip Record If...?的比?Skip Record If...?(也叫函数的平均变化率)有极限即?Skip Record If...?无限趋近于某个常

数,我们把这个极限值叫做函数?Skip Record If...?在?Skip Record If...?处的导数,记作?Skip Record If...?,即?Skip Record If...? 2. 导数的几何意义:是曲线?Skip Record If...?上点(?Skip Record If...?)处的切线的斜率因此,如果?Skip Record If...?在点?Skip Record If...?可导,则曲线 ?Skip Record If...?在点(?Skip Record If...?)处的切线方程为?Skip Record If...?3. 导函数(导数):如果函数?Skip Record If...?在开区间?Skip Record If...?内的每点处都有导数,此时对于每一个?Skip Record If...?,都对应着一个确定的导数 ?Skip Record If...?,从而构成了一个新的函数?Skip Record If...?, 称这个函数 ?Skip Record If...?为函数?Skip Record If...?在开区间内的导函数,简称导数,4. 求函数?Skip Record If...?的导数的一般方法: (1)求函数的改变量?Skip Record If...?2)求平均变化率?Skip Record If...?(3)取极限,得导数?Skip Record If...?=?Skip Record If...??Skip Record If...?5.常见函数的导数公式:?Skip Record If...?;?Skip Record If...? (二)、探析新课 两个函数和(差)的导数等于这两个函数导数的和(差),即 ?Skip Record If...? 证明:令?Skip Record If...?, ?Skip Record If...??Skip Record If...?, ∴?Skip Record If...?,?Skip Record If...? 即?Skip Record If...?. 例1:求下列函数的导数:

基本初等函数的导数公式及运算法则

课时授课计划

教师活动 教学过程: 一?创设情景 2 1 四种常见函数y=c、y = x、y =x、y —的导数公式及应用 :■?新课讲授 学生活动学生自行预习

(二)导数的运算法则导数运算法则 1. 〔f(X)土g(x)i = f'(x) ±g'(x) 2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x) I f (x) I f (x) g (x) - f (x) g (x) / . . 3. = ——(g(x)HO) ]g(x) 一[g(x)f (2)推论:lcf(x) I - Cf'(x) (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05 所以p (10) =1.0510|n1.05 : 0.08 (元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2?根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) y = x3 -2x 3 (2) y 1 1 (3) y = x sin x ln x; (4)y (5)y (6)y 4x 1 -ln x 1 l n x (2 x2—5 x + 1) e x / 、sin x—xcosx (7) y =-------------------------- cosx +xsin x 通过预习自行完成 在老师的指导下独立完成后面几道题

导数的运算法则

课题:导数的运算法则 1、 求下列函数的导数 (1 )y = (2 )y = (3)12x y ??= ??? (4)12 =log y x (5)212sin 2x y =- 2、已知直线1l 为曲线2+-2y x x =在点(1,0)处的切线,2l 为该曲线的另一条切线,且12l l ⊥,(1)求直线2l 的方程;(2)求由直线1l ,2l 和x 轴所围成的三角形面积。 例1 求下列函数的导数 (1) )11)(1(x x y +- = ; (2) x x y 2= (3) x x x y +=s i n ; 例2 已知曲线C:x x x y 2323+-=,直线l:kx y =,且l与C切于点),(00y x )0(0≠x ,求直线l的方程及切点的坐标。 例3设)(x f 、)(x g 分别是定义在),0()0,(+∞?-∞上的奇函数和偶函数,当0'+'x g x f x g x f 且0)3(=-g ,求不等式0)()(

例1. 根据基本初等函数的导数公式和导数运算法则,求函数3123y x x x =-++导数. 变式:( 1)2log y x =; (2)2x y e =; (3)522354y x x x =-+-; (4)3cos 4sin y x x =- 例2求下列函数的导数: (1)32log y x x =+; (2)n x y x e = (3)y=2e -x 2. 复合函数: 1.定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记住 2.复合函数的求导法则 复合函数(())y f g x =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。 例。3 求下列函数的导数: (1)2(23)y x =+; (2)1x y e -+=; (3)sin()y x π?=+

1.2.2 导数的运算法则(一)

1.2.2 导数的运算法则(一) 知识要点 1,两个函数的和(或差)的导数,等于这两个函数的导数的 , 即()()'u x v x ±=???? 2,两个函数的积的导数,等于 ,加上 , 即()()'u x v x ?=???? 。特别地,()'cu x =???? (其中c 为常数)。 3,两个函数的商的导数,等于 减去 ,再除以 。即

知识点一,直接求导 例1,求下列函数的导数 (1)2 3cos y x x x =+ (2)1x y x = + (3)tan y x = (4)lg x y x e =- 变式训练1,求下列函数的导数 (1)23y x = (2)5314353 y x x x =-++(2)2sin cos y x x x =+ (4)ln 1 x y x =+ 知识点二,先变形再求导 例2,求下列函数的导数 (1) y =(2)cos 2sin cos x y x x = + (3))22sin cos 22x x y =- 变式训练2,求下列函数的导数 (1)2311y x x x x ??=+ + ??? (2)44sin cos 44 x x y =+ 知识点三,导数的综合应用 例3,已知函数21n x y x ??= ?+??过点11,9P ?? ??? ,求函数在点P 处的切线方程。 变式训练3,某质点的运动规律是322s t t t =-+,求其最小速度m v

水平基础题 1.已知物体的运动方程是s =14 t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( ) A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 2.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x -1 C .y =2x -2 D .y =-2x -2 3.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2 B .0 C .钝角 D .锐角 4.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________. 5.求下列函数的导数: (1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1); (3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x . 水平提升题 6.曲线y =x sin x 在点??? ?-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( ) A.π2 2 B .π2 C .2π2 D.12 (2+π)2 7.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( ) A .sin x B .-sin x C .cos x D .-cos x 8.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( ) A .f (x )=g (x ) B .f (x )-g (x )为常数 C .f (x )=g (x )=0 D .f (x )+g (x )为常数 9.曲线y =cos x 在点P ????π3,12处的切线的斜率为______. 10.已知函数f (x )=ax +b e x 图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________. 11.已知两条曲线y =sin x 、y =cos x ,是否存有这两条曲线的一个公共点,使在这个点处,两条曲线的切线互相垂直?并说明理由. 12.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程. 提升拓展题 13.求满足下列条件的函数f (x ): (1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1. 14,求下列函数()f x 的导数(其中是可导函数) 1(1)(2)y f y f x ??== ???

北师大版数学高二-高中数学《导数的计算-基本初等函数的导数及导数的运算法则》教案3 选修2-2

高中数学《导数的计算-基本初等函数的导数及导数的运算法则》教案3 选修2-2 一、教学目标: 了解复合函数的求导法则,会求某些简单复合函数的导数. 二、教学重点: 掌握复合函数导数的求法 教学难点: 准确识别一个复合函数的复合过程以便准确应用求导法则进行求导. 三、教学过程: (一)复习引入 1. 几种常见函数的导数公式 (C )'=0 (C 为常数). (x n )'=nx n -1 (n ∈Q). ( sin x )'=cos x . ( cos x )'=- sin x . 2.和(或差)的导数 (u ±v )'=u '±v '. 3.积的导数 (uv )'=u 'v +uv '. (Cu )'=Cu ' . 4.商的导数 ).0(2≠'-'='??? ??v v v u v u v u (二)讲授新课 1.复合函数: 如 y =(3x -2)2由二次函数y =u 2 和一次函数u =3x -2“复合”而成的.y =u 2 =(3x -2)2 . 像y =(3x -2)2这样由几个函数复合而成的函数,就是复合函数. 练习:指出下列函数是怎样复合而成的. .)12(tan )4( ;)3cos 1()3( );11(sin )2( ;)1()1(33232+=+=-=-=x x y x y x y x y 复合函数的导数 一般地,设函数u =?(x )在点x 处有导数u'x =?'(x ),函数y =f (u ) 在点x 的对应点u 处有导数y'u =f '(u ) ,则复合函数y =f (?(x )) 在点x 处也有导数,且 y'x =y'u ·u'x . 或写作 f 'x (?(x ))=f '(u ) ?'(x ). 复合函数对自变量的求导法则,即复合函数对自变量的导数,等于已知函数对中间变量的函数,乘中间变量对自变量的导数. 例1 求y =(3x -2)2的导数. 解:y'=[(3x -2)2]' =(9x 2-12x +4)'=18x -12. 法1 函数y =(3x -2)2又可以看成由y =u 2 ,u =3x -2复合而成,其中u 称为中间变量. 由于y'u =2u ,u'x =3, 因而 y'x =y'u ·u'x =2u ·3=2u ·3=2(3x -2)·3=18x -12. 法2 y'x =y'u ·u'x 例2 求y =(2x +1)5的导数. 解:设y =u 5,u =2x +1, 则 y'x =y'u ·u'x =(u 5)'u ·(2x +1) 'x =5u 4·2=5(2x +1)4·2=10(2x +1)4.

高二数学选修2-2导数的计算

导数的计算 教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式; 2、能利用导数公式求简单函数的导数。 教学重难点: 能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 一、 用定义计算导数 问题1:如何求函数()y f x c ==的导数? 2.求函数()y f x x ==的导数 3.函数2()y f x x ==的导数 4.函数1()y f x x == 的导数 5 .函数y = 二 1.基本初等函数的导数公式表 分几类 1、幂函数 2.三角函数 3指数函数 4.对数函数 补充 1 ()f x x = '21 ()f x x =- ( )f x = '()f x =

2公式的应用 典型题一、求导数 A x y x y x y x y y x y cos )6(log )5(ln )4(1)3(5 )2()1(125==== ==、求下列函数的导数 例 思考 求()f x '的方法有哪些? 3.导数的四则运算法则: 问题 ln x x ?如何求? 推论:[]''()()cf x cf x = 提示:积法则,商法则, 都是 前导后不导, 前不导后导, 但积法则中间是加 号, 商法则中间是减号.。 常见错误:[]'''()()()()f x g x f x g x ?= ' ''()()(()0)()()f x f x g x g x g x ??=≠???? 典型题二、导数的四则运算法则 例题3根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+

(2)sin y x x =?; (3)2(251)x y x x e =-+?; (4)cos x y x lnx =- A 变式练习1 1y x x =+ sin (cos )x y x x e =- cos x y x = +lnx 2sin y x x = sin cos x y x = A 变式2.求下列函数的导数 (1)y=23x +3cosx, (2)y=(1+2x)(2x-3) (3)y=sin x x (4)y=2 ln 1x x + A 变式3.已知f (x )=xcosx ﹣sinx ,则f′(x )=( ) 解:∵f (x )=xcosx ﹣sinx , ∴f ′(x )=cosx ﹣xsinx ﹣cosx=﹣xsinx , 已知函数f (x )=2 x lnx ,则f′(x )等于( ) 函数y=e x sinx 的导数等于( ) A . e x cosx B . e x sinx C . ﹣e x cosx D . e x (sinx+cosx ) 分析: 利用导数乘法法则进行计算,其中(e x )′=e x ,sin ′x=cosx . 解答: 解:∵y=e x sinx , ∴y ′=(e x )′sinx+(e x )?(sinx )′ =e x sinx+e x cosx

数学基本初等函数的导数公式及导数的运算法则教案

§则 教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 教学重点:基本初等函数的导数公式、导数的四则运算法则 教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景 四种常见函数y c =、y x =、2y x =、1y x = 的导数公式及应用 二.新课讲授 (一)基本初等函数的导数公式表 (二)导数的运算法则 导数运算法则 1.[]'''()()()()f x g x f x g x ±=± 2.[]' ''()()()()()()f x g x f x g x f x g x ?=± 3.[] ' ''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ??-=≠???? (2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 函数 导数 函数 导数

例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的 01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01) 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t = 所以'10(10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =x x --+1111; (3)y =x · sin x · ln x ; (4)y = x x 4 ; (5)y =x x ln 1ln 1+-. (6)y =(2 x 2-5 x +1)e x (7) y =x x x x x x sin cos cos sin +- 【点评】 ① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数. (1) 因为'2 5284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'2 5284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨. 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越

(完整word版)高二导数计算练习题(基础题)

一、基本初等函数的导数公式: (1)f(x)=C (C 为常数),则f ’(x)=_______ (2)f(x)=)(Q a x a ∈,则f ’(x)=_______ (3)f(x)=sinx ,则f ’(x)=_______ (4)f(x)=cosx ,则f ’(x)=_______ (5)f(x)=x a ,则f ’(x)=_______ (6)f(x)=x e ,则f ’(x)=_______ (7)f(x)=x a log ,则f ’(x)=_______ (8)f(x)=x ln ,则f ’(x)=_______ 二、导数的运算法则: 已知)(),(x g x f 的导数存在,则: (1)_______________])()([='±x g x f (2)__________________])()([='?x g x f (3)=']) ()([x g x f ____________________ 导数计算练习题 1、已知()2f x x =,则()3f '等于( ) A .0 B .2x C .6 D .9 2、()0f x =的导数是( ) A .0 B .1 C .不存在 D .不确定 3、y 的导数是( ) A .23x B .21 3 x C .12 - D 4、曲线n y x =在2x =处的导数是12,则n 等于( ) A .1 B .2 C .3 D .4 5、若()f x =()1f '等于( )

A .0 B .13- C .3 D .13 7、函数()2 2423y x x =-+的导数是( ) A .()2823x x -+ B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+- 8、求函数212y x =-在点1x =处的导数。 9、求下列各函数的导数 (1) 235y x x =-+ (2) 1y x =+(3) 222 2x y x =+ (4) 3 y = (5) 1)y = (6) (y x =+ (7) ()()y x a x b =--

导数公式及其运算法则

§122基本初等函数的导数公式及导数的运算法则 (两课时) 学习目标 1. 理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2. 理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数 3. 复合函数的分解,求复合函数的导数 . 一、预习与反馈(预习教材P l4~ P l9,找出疑惑之处) 复习1:常见函数的导数公式: cosx)' ________ ; (5) (e x )' ________ ; ⑹(a x )' 1 ⑺(l nx)' ________ ; (8) (log a x)' log a e x 复习2:根据常见函数的导数公式计算下列导数 新知 1. 可导函数的四则运算法则 法则1 [u(x) v(x)]' ______________ . ( 口诀:和与差的导数等于导数的和与差 ). 法则2 [u(x)v(x)] ____________ . ( 口诀:前导后不导,后导前不导,中间是正号 ) 法则3 [凹] __________________ ( v(x) 0)( 口诀:分母平方要记牢,上导下不导,下 v(x) (1) C' _______ (C 为常数);(2) (x n )' n € N +; (3) (sin x)' ______ 6 (1)y x (2) y - x

导上不导,中间是负号) 1 例1. 根据基本初等函数的导数公式和导数运算法则,求函数 y x 3 2x 丄3导数. x 变式:(1) y log 2x ; 例2求下列函数的导数: (1) y x 3 log 2 x ; 2. 复合函数: 1. 定义:一般地,对于两个函数y =f (u )和u g(x)如果通过变量u,y 可以表示成x 的函数, 那么这个函数为函数 _________ 和 ______________ 的复合函数,记住 _____________________ 2. 复合函数的求导法则 复合函数y f(g(x))的导数和函数y =f (u ), u g(x)的导数间的关系式 为 ________________ ,即y 对x 的导数等于 _________________ 的乘积。 例。3求下列函数的导数: 2 x 1 (1) y (2x 3) ; ( 2) y e ; (3) y sin( x ) x (2) y 2e ; (3) y 2x 5 3x 2 5x 4; (4) y 3cosx 4sin x (3)y=2e -x

基本初等函数的导数公式及运算法则教案

§1.2.2基本初等函数的导数公式及导数的运算法则 一.教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点: 基本初等函数的导数公式和导数的四则运算法则的应用 三.教学过程: (一).创设情景 复习五种常见函数y c =、y x =、2y x =、1y x = 、y = 用 (二).新课讲授 1(1)基本初等函数的导数公式表

(2)根据基本初等函数的导数公式,求下列函数的导数. (1)2y x =与2x y = (2)3x y =与3log y x = 2.(1 推论:[]' '()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+(2)sin y x x =?;(3)2(251)x y x x e =-+?;(4)4 x x y =; 【点评】 ① 求导数是在定义域内实行的. ② 求较复杂的函数积、商的导数,必须细心、耐心. 四.典例精讲 例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 分析:商品的价格上涨的速度就是函数关系()(15%)t p t =+的导数。 解:根据基本初等函数导数公式表,有'() 1.05ln 1.05t p t = 所以'10(10) 1.05ln 1.050.08p =≈(元/年)

最新整理高二数学教案导数的计算导学案及练习题_1.docx

最新整理高二数学教案导数的计算导学案及练习题学习要求1.能根据定义求函数y=c,y=x,y=x2,y=1x的导数. 2.能利用给出的基本初等函数的导数公式求简单函数的导数. 学法指导 1.利用导数的定义推导简单函数的导数公式,类推一般多项式函数的导数公式,体会由特殊到一般的思想.通过定义求导数的过程,培养归纳、探求规律的能力,提高学习兴趣. 2.本节公式是下面几节课的基础,记准公式是学好本章内容的关键.记公式时,要注意观察公式之间的联系,如公式6是公式5的特例,公式8是公式7的特例.公式5与公式7中lna的位置的不同等. 1.几个常用函数的导数 原函数导函数 f(x)=cf′(x)= f(x)=xf′(x)= f(x)=x2f′(x)= f(x)=1x f′(x)= f(x)=x f′(x)= 2.基本初等函数的导数公式 原函数导函数 f(x)=cf′(x)= f(x)=xα(α∈Q*)f′(x)= f(x)=sinxf′(x)=

f(x)=cosxf′(x)= f(x)=axf′(x)=(a》0) f(x)=exf′(x)= f(x)=logax f′(x)=(a》0且a≠1) f(x)=lnxf′(x)= 探究点一几个常用函数的导数 问题1怎样利用定义求函数y=f(x)的导数? 问题2利用定义求下列常用函数的导数:(1)y=c(2)y=x(3)y=x2(4)y=1x(5)y=x 问题3导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度.(1)函数y=f(x)=c(常数)的导数的物理意义是什么? (2)函数y=f(x)=x的导数的物理意义呢? 问题4画出函数y=1x的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程. 探究点二基本初等函数的导数公式 问题1利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题? 问题2你能发现8个基本初等函数的导数公式之间的联系吗? 例1求下列函数的导数:(1)y=sinπ3;(2)y=5x;(3)y=1x3;(4)y=4x3; (5)y=log3x. 跟踪1求下列函数的导数:(1)y=x8;(2)y=(12)x;(3)y=xx;(4)y=例2判断下列计算是否正确.

1.2.2导数的运算法则(二)

1.2.2 导数的运算法则(二) 【学习目标】理解复合函数概念,记住复合函数的求导法则.理解导数的物理及几何意义;会求曲线上某点处的切线. 【基本概念】一般地,对于两个函数)(u f y =和)(x g u =,如果通过变量y u ,可以表示成x 的 ,那么称这个函数为函数)(u f y =和)(x g u =的 ,记作 . 如果函数)(),(x g u u f y ==和它们的复合函数))((x g f y =的导数 分别记为,]))(([),(),('=''=''='x g f y x g u u f y x x u 那么='x y . 即y 对x 的导数等于y 对 的导数与u 对 的导数的 . 【例证题】 例1 求下列函数的导数 (1)5)32(+=x y (2))1ln(2+=x y (3)32--=x e y (4))sin(?π+=x y (其中?π,均为常数)

例2 求下列函数的导数 (1))63sin(2π +=x x y (2)x x x y 3cos 2sin += (3)x x y -= 1 (4))12(2+=x y (5))132(log 22++=x x y (6)x x y 2sin ln = 例3 已知抛物线c bx ax y ++=2通过点)1,1(,且在点)1,2(-处与直线3 -=x y 相切,求c b a ,,的值.

姓名: 学号: 【作业】 1、函数,)23()(3x x f -=则)(x f '=( ) 2)23(3.x A - 2)23(6.x B - 2)23(6.x C -- 3)23(2.x D -- 2、若函数),32cos(3)(π+=x x f 则)2(π f '=( ) 33.-A 33.B 36.-C 36.D 3、函数12+=x y 的导数为( ) 121 .2+x A 12.2+x x B 1.2+-x x C 1.2+x x D 4、函数42-=x e y 在点2=x 处的切线方程为( ) 032.=--y x A 032.=-+y x B 012.=+--e y ex C 012.=-++e y ex D 5、★函数22cos 53sin x x y +=的导数是( ) 2s i n 53s i n 2.x x A - 2s i n 106sin 2.x x x B - 2s i n 106sin 3.x x C + 2s i n 106sin 3.x x x D - 6、若函数)1(log )(3-=x x f ,则2=' x y = . 7、已知函数x x x x x x f 1 53)(2+-+=,则)(x f '= . 8、曲线4 1-+=x x y 在点8=x 处的切线方程是 . 9、曲线106323-++=x x x y 的切线中,斜率最小的切线方程是 .

相关主题
文本预览
相关文档 最新文档