当前位置:文档之家› 世纪之交的物理学革命

世纪之交的物理学革命

世纪之交的物理学革命
世纪之交的物理学革命

世纪之交的物理学革命

19世纪理论科学的巅峰状态以及其中隐含的危机以物理学最为典型。海王星的发现显示了牛顿力学无比强大的理论威力,光学、电磁学与力学的统一使物理学显示出一种形式上的完整,被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”有一个故事很可以说明在人们心目中,古典物理学的完善程度。德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了。”

1900年4月27日,英国著名的物理学家开尔文勋爵作了题为《热和光的动力理论上空的19世纪之乌云》的长篇讲演,指出古典物理学本来十分晴朗的天空上出现了两朵乌云。实际上,物理学天空上的乌云何止两朵。大量新现象与已成完美体系的古典理论之间的矛盾日渐突出,酿成了深刻的危机。正是这朵朵乌云带来了世纪之交的一场物理学革命,在这场革命中诞生了相对论和量子力学。

1、第一朵乌云:以太漂移实验

开尔文所称第一朵乌云指的是以太漂移实验。古典物理学统一诸种物理现象的主要方式,是找出该类物理现象的一个力学模型。例如,当我们把声音看成是声源振动在物质媒介中的纵向传播时,我们就将声学统一在关于振动的力学之中;当我们把热看成是细微分子的运动之后,我们就将热学统一在关于大量分子运动的力学之中。电磁学似乎与力学距离较远,但也有统一它们的方式。比如,我们同样可以将电磁波看成是某种电磁振荡在某种物质媒介中的传播,如果这种模型是成立的,那么,电磁学与力学之间也可以统一起来了。事实上,物理学家们就是这么做的,因为在他们看来,“一切物理现象都能够从力学的角度来说明,这是一条公理,整个物理学就建造在这条公理之上”。开尔文也说:“我的目标就是要证明,如何建造一个力学模型,这个模型在我们所思考的无论什么物理现象中,都将满足所要求的条件。在我没有给一种事物建立起一个力学模型之前,我是永远也不会满足的。如果我能够成功地建立起一个模型,我就能理解它,否则我就不能理解”。

用力学振荡模型来理解电磁现象面临的一个主要问题是,它是在什么物质媒介中振荡传播的。我们知道,声音的媒介可以是许多物质,如空气、水、铁轨等,没有这些东西,声音便不能传播。可是人们一直没有搞清楚电磁振荡靠的是什么媒介。有实验表明;它在真空中也能传播,这就说明,这种媒介不是我们所能看得见、摸得着的物质。法国哲学家笛卡尔曾经借用希腊词“以太”,提出过一种处处充满以太的宇宙模型。在他那里,以太正好就是看不见膜不着的一种新物质。物理学家们于是认为,电磁传播的媒介是以太。

问题在于以太将具有什么样的物理性质。比如,它有重量吗?它对物体的运动会产生阻力吗?它的密度有多大?但这些问题都非常难于回答。电磁波是一种横波,为了能传播这样一种波,以太媒介必得很硬,但行星运动中又看不出受到阻力的迹象,这使物理学家们感到十分为难。

更困难的问题是以太漂移问题。如果确实有以太存在,那么最好是假定它相对于太阳静止而相对于地球运动,因为只有这样才能很好地解释光行差现象。如果以太相对于地球运动,那么我们就应该可以通过某种方式探测出来。1879年,著名物理学家麦克斯韦提出了一种探测方法:让光线分别在平行和垂直于地球运动的方向等距离地往返传播,平行于地球运动方向所花的时间将会略大于垂直方向的时间:1881年,美国实验物理学家迈克尔逊(1852~1931)依此原理设计了一个极为精密的实验,未发现任何时间差。1887年,迈克尔逊再度与美国化学家莫雷(1838~1923)合作,以更高精度重复实验,得到的依然是“零结果”。作为一名以“探测以太漂移”为目的的实验物理学家,迈克尔逊认为自己的实验是失败的。

为了解释“零结果”,1889年爱尔兰物理学家菲兹杰拉德(1851~1901)提出了物体在以太风中的收缩假说。他认为,在运动方向上,物体长度将会缩短,以致我们无法在光学实验中探测出以太漂移的迹象。1892年,荷兰物理学家洛伦兹(1853—1928)也独立地提出了收缩假说,并且给出了著名的洛伦兹变换。该变换使得相对于以太运动以及相对于以太静止的两种坐标系均满足同样形式的麦克斯韦方程,使经典物理学得以消除乌云,保全形式上的完美。但洛伦兹的工作已经大大修改了许多传统的观念,例如,运动粒子的质量不再是不变的,速度均以光速为上限等。

法国数学家、物理学家、哲学家彭加勒(185—1912)是相对论的重要先驱。1895年,在《谈谈拉摩

先生的理论卜文中,他已经以其高超的哲学智慧为“以太问题”的解决指出了新的方向。他认为,像洛伦兹这样为新的实验引进新的孤立假设的做法是不经济的,以太漂移实验的零结果应该被看成是如下原理的自然结果,即用任何实验手段都不可能测量到物质的绝对运动,所有的实验都只可能测量到物质相对于物质的相对运动。1902年,在《科学与假设》中,彭加勒把这个原理称为“相对性原理”。此外,他还提出“光速不变”是一个不能诉诸实验检验的公设,同时还讨论了同时性问题。

2、爱因斯坦与相对论

洛伦兹的工作主要是对;日体系的修正,彭加勒的工作也只给出了一个概念框架,真正揭开物理学革命之序幕的是爱因斯坦。这位犹太血统的物理学家1879年3月14日生于德国南部的小城乌尔姆。和牛顿一样,爱因斯坦年幼时也未表现出智力超群,相反,到了四五岁他还不会说话。家里人生怕他是个低能儿。上中学之后,他的学业也不突出,除了数学很好外,其他功课都不怎么样。尤其是拉丁文和希腊文课,爱因斯坦学得一塌糊涂。他对这些古典语言太不感兴趣了。老师劝他退学算了,说他不会有大出息的。就这样,人类历史上最伟大的天才中途退学了。

1895年,16岁的爱因斯坦来到了瑞士苏黎世,准备投考苏黎世的联邦工业大学。本来他的年龄不够,不能参加报考,但家里托了点关系,因为爱因斯坦失学在家总不是个事。第一次爱因斯坦没有考上。那些需要死记硬背的功课像德文。法文、动物学、植物学等都没有考好,但他的数学和物理课考得很不错。教授们安慰他还年轻,下次再来,先找个中学上。这样,爱因斯坦又进了离苏黎世不远的阿劳镇中学。在阿劳期间,是爱因斯坦人生中比较快乐的一段时光。他尝到了瑞士自由的空气和阳光,决心放弃德国国籍。

1896年1月28日,爱因斯坦正式成为一个无国籍者。当年,他终于考进了联邦工业大学。在大学期间,爱因斯坦还是只对自己感兴趣的学科着迷,而忽视其他科目。这时候,他迷上了物理学而对数学反而冷落了。数学课全凭一位叫格罗斯曼的同学的笔记来应付。1900年,他大学毕业了,但一时找不到工作。1901年2月,他取得了瑞士国籍,但工作依然没有着落。到了依然是格罗斯曼帮了他的忙。格的父亲有位朋友在伯尔尼专利局当局长,经说情爱因斯坦在那里找到了一份固定职业——当技术员。1902年,爱因斯坦在伯尔尼定居了,而且在那里与几个朋友组织了一个学习小组,讨论科学和哲学的前沿问题。因常在一个叫奥林匹亚的小咖啡馆聚会,他们把自己的小组称做奥林匹亚科学院。

早在16岁时爱因斯坦就在想一个问题,如果一个人以光速运行,他将看到一幅什么样的世界景象呢?电磁波是不是就像凝固了那样静止不动呢?如果是那样,电动力学就完了。看起来,电动力学的麦克斯韦方程只对一个绝对静止不动的参考系即以太参考系是成立的。可是这与牛顿力学所遵从的惯性系等效原理相矛盾。所有的牛顿定律对于所有的惯性系都是成立的,伽利略恰当地称之为相对性原理。他的著名实验是,一个坐在船舱里的人无论用什么物理实验,也无法确定该船是否在相对于河流做均匀直线运动即惯性运动。可是,电动力学为什么不遵从伽利略的相对性原理呢?

在伯尔尼专利局的岁月里,爱因斯坦广泛关注着物理学界的前沿动态,在许多问题上深人思考,形成了自己独特的见解。1905年是科学史上值得记取的一年,这一年中,爱因斯坦在德国《物理学年鉴》上发表了五篇论文,其中的三篇每篇均是划时代的成就。

一篇论文发表在《物理学年鉴》第门卷第132—148页,是关于光电效应的。当时人们已经发现,金属在光的照射下可以发射出电子,但奇怪的是,光的强度只与电子的多少有关,而不能使电子的发射能量变大。对这一点古典物理学无法解释。爱因斯坦将德国物理学家普朗克在此之前提出的量子观点大胆推广,指出光是由一定能量的光量子组成。正是这些光量子激发了金属内部的电子,而且,只有一定能量的光量子能被金属所吸收,并激发一定能量的电子。这就解释了光电效应。由于这篇论文,爱因斯坦获得了1921年的诺贝尔物理奖。

第二篇论文发表在《物理学年鉴》第17卷第549—560页,是关于布朗运动的。布朗运动是1827年英国植物学家布朗发现的显微镜下花粉颗粒的无规则运动,长期以来得不到解释。分子运动论建立之后,曾有人从大量分子无规则运动的观点解释布朗运动,但爱因斯坦第一个从数学上详尽地解决了这一问题。

最伟大的成就是第三篇论文《论动体的电动力学》,刊于《物理学年鉴》第17卷第891—921页。在这篇论文中,爱因斯坦提出了他举世闻名的相对性理论即相对论。这是他多年来思考以太与电动力学问题的结果。他从同时性的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础

上给动体的电动力学以完整的形式。以太概念不再是必要的,以太漂移问题也不再存在。如果迈克尔逊的实验导致了零结果,那么它正是一次成功的实验,证明所谓以太漂移根本就是虚幻的。

何谓同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢,这个问题看似平常,却至关重要。一般来说,我们会通过信号来确认。为了得知异地事件的同时性我们就得知道信号传递的速度。为了测出一个信号的传递速度,我们必须测出两地的空间距离以及信号传递所需的时间。测空间距离当然简单,麻烦在于测时间。我们必须假定两地各有一只已经对好了的钟,从两只钟的读数差可以知道信号传播的时间。但问题在于,我们为了将两只处在不同地方的钟对好,又需要一种信号。这个信号能否将钟对好,这个问题也不好轻易回答。如果按我们先前的思路,它还需要一种新信号。这样无穷后退,两地事件的同时性就无法确认。但是,在上述思路中有一点是明确的,即同时性必与一种信号相联系,否则我们说两件事情同时发生是没有意义的。

光信号可能是用来对钟的最合适的信号,但光速不是无限大,这就会产生一个新奇的结论:对于静止的观察者同时的两事件,对于运动的观察者就不是同时的。设AB两地各发生了一个事件(比如发生了一次闪光),在AB的中点C处的观察者,由AB两地发来的光信号同时到达这一点,推测两事件是同时发生的。按定义,它也的确是同时发生的,因此地面上的每一位静止的观察者均会同意。但一个由A向B 运动的观察者却不同意,因为也是在C点,他却发现B点的闪光先于A点到达,按定义,B事件先于A 事件,它们是不同时的。也就是说,同时性不是绝对的,而取决于观察者的运动状态。这一结论否定了牛顿力学所引以为基础的绝对时间和绝对空间框架。

同时性的相对性带来了一系列的物理后果,其中广为人知的是尺缩钟慢效应。尺缩钟慢效应说的是:对于两个相互运动的参照系来说,处在某参照系中的观察者将会发现另一参照系中的物体其运动方向缩短了,其时钟走慢了。这两个效应都只是相对论效应,在本参照系中的观察者将看不出这种效应。而且,相对论效应是相互的,你看见我的尺缩钟慢,我也看见你的尺缩钟慢。

爱因斯坦相对论所引起的物理学革命首先是时间空间观革命。这场革命的本质是恢复了物理时间作为测度时间的测度本性:时间必须是一个可观测量。时间作为一个可观测量具体体现在“同时性”的可操作性方面。牛顿力学认为存在一个普适的时间,它对不同地方、不同参照系都同样适用,因此,说两事件同时发生就带有绝对性:不论两事件发生在同一地点还是发生在不同地点,不论是从与事件相对静止的惯性系看还是从与事件相对运动的惯性系看,都是同时的。经典力学主张同时性的绝对性。但是,这样的同时性却缺乏一个操作定义。绝对时间是不可观测的。

恢复测度时间之测度本质的举动,将时间、空间与物质运动重新联系在一起,特别是,从测度的角度看,时间与空间不再是独立不倚的两个东西,而是相互不可分割的统一体中的两个方面。明可夫斯基(1864—1909)发展了这一思想,将时间与空间结合起来组织成空一时(space-time)概念。他指出,“空间自身和时间自身,被宣告退隐,惟有它们的某种结合来维持一个独立的实在。……空间和时间消失在阴影中,惟有世界自身存在。”世界不再像传统所认为的,是三维空间中的物质客体在一维时间之中的演化,相反,世界本身就是一个四维的空一时流形(manifold),是一个整块宇宙(block universe)。在每一时刻我们所经验到的世界,只是四维连续统中的某一剖面或者切片。世界就像是一盘电影胶片,只不过它将其图片一幅幅地向我们展示。

在明可夫斯基的四维世界图景中,运动与时间性实际上已经消失。牛顿世界图景中三维世界的演化,今天成了四维世界的存在。再没有什么演化问题。四维空-时在数学意义上不过就是数学意义上的回维空间。用明可夫斯基的四维空间理论最简单明了地解释了双生子佯谬:不存在由两种不同时间尺度带来的矛盾,物理实在是惟一的四维空间。相对论放弃了相互独立的绝对时间和绝对空间概念,但并没有放弃“绝对性”本身,在相对论中起绝对作用的是四维空一时。

钟慢效应意味着一切周期现象的节奏都变慢了,包括人的生命问期,这就引出了一个十分有趣的双生子宇航难题。假定有一对孪生兄弟,其中的一个要以接近于光速(为了充分显示相对论效应)的速度股一次宇宙航行,按照相对论效应,呆在地球上的那位就会发现其兄弟生命周期放慢,比如,自己活了10年,对方才过了1年。当然,按照相对论,在宇宙飞船上的那位,也会发现呆在地球上的兄弟生命周期放慢.因为在他看来,地球以一个与飞船速度相等的速度反向运动。现在假定,宇航结束了,两兄弟又相遇在一起了,那么他们究竟谁更老。谁更年轻?在狭义相对论的范围内,这个难题是不能解决的。但我们必须注意

到,在前述问题中,地球与飞船的运动状态并不相同。飞船为了离开地球以及最后回到地球,都需要经历一段加(减)速时期,而这是狭义相对论所不能处理的。只有最后引人广义相对论,这个问题才有一个最后的答案:历经加速度的那位生命周期更慢些。广义相对论将引力与加速度等效起来,而在引力场中,生命周期将会慢下来。

爱因斯坦得出的这些与日常经验大相径庭的结论,过于离奇,一开始并未引起科学界的注意。爱因斯坦的论文只在德国有所反响:气运的是,德国物理学的权威人物普朗克高度赞扬这篇论文,认为爱因斯坦的工作可以与哥白尼相媲美。

可以与哥白尼相提并论的人还在伯尔尼的专利局里打杂呢!普朗克的学生劳厄来伯尔尼找爱因斯坦,他直奔伯尔尼大学找一位叫爱因斯坦的教授,可料想不到,这位“教授”还是一名公务员。1907年,爱因斯坦听从友人的建议,提交那篇著名的论文申请联邦工业大学的编外讲师职位,但得到的答复是论文无法理解。德国物理学界对爱因斯坦已经耳熟能详,可在瑞士,新时代的哥白尼还是得不到一个大学教职。许多有名望的人开始为他鸣不平了。1908年10月23日,爱因斯坦终于得到了编外讲师的职位。次年,当上了副教授。

1912年,爱因斯坦当上了教授。1913年,应普朗克之邀担任新成立的威廉皇帝物理研究所所长和柏林大学教授。这时期,爱因斯坦在考虑将已经建立起来的相对论推广二原先的理论只涉及惯性参考系,没有考虑到加速运动,因而被称为狭义相对论。

正在人们忙于理解狭义相对论时,爱因斯坦正接近完成广义相对论。1916年,爱因斯坦在老同学格罗斯曼的帮助下,运用黎曼几何完成了广义相对论的最终形式。在这个理论中,引力是被考虑的主要问题。按照牛顿力学,任何物体既有惯性质量,也有引力质量。牛顿第二定律中的质量是惯性质量,而万有引力定律中的质量是引力质量。人们通常理所当然地认为它们是相等的,把它们统称为质量,可是,这种相等是偶然的吗?

狭义相对论与牛顿的万有引力理论实际上存在矛盾。在牛顿看来,引力是即时作用,引力场就像是一个绝对时空的载体。这种看法为时空的相对性观念所不容。爱因斯坦将相对性原理推广到引力场中,指出引力场就相当于一个非惯性系。人们对一个物体是正被加速,还是正处在引力场中原则上无法做出区分。这一原则被称为等效原理。惯性质量与引力质量相等是等效原理的一个自然的推论。广义相对论还指出,由于有物质的存在,空间和时间会发生弯曲,引力场实际上是一个弯曲的时空。

广义相对论首先解释了水星近日点的进动。这个进动被曾经预测海王星的法国天文学家勒维列用行星摄动方法来解释,他推测水星附近存在一个新的行星“火神星”。可是许多年过去了但谁也没有发现什么“火神星”。爱因斯坦用太阳引力使空间弯曲的理论,很好地解释了水星近日点进动中无法解释的43秒。

广义相对论的第二大预言是引力红移,即在强引力场中光谱应向红端移动。20年代,天文学家在天文观测中证实了这一点。广义相对论的第三大预言是引力场使光线偏转,这一预言最为引人注目,因为它最终得到了天文验证。最靠近地球的大引力场是太阳引力场。爱因斯坦预言,遥远的星光如果掠过太阳表面,将会发生一点七秒的偏转。这个预言很难验证,因为大白天太阳太亮,看不到星光,晚上能看到星光太阳又下山了。但也有机会,那就是日全食的时候。1919年5月29日,这个机会终于来了。在英国天文学家爱丁顿(1882一1944)的鼓动下,英国人派出了两支远征队,一支到非洲西部的普林西比岛,由爱丁顿本人率领,另一支到南美的索布腊尔,由另一位天文学家克劳姆林(1865—1939)带队。两支队伍不久就带回了个食时的太阳照片。经反复核对和比较,最终结论是,星光在太阳附近的确发生了一点七秒的偏转。1919年11月6日,皇家学会和皇家天文学会正式宣读了两支队伍的观测报告,确认了广义相对论的结论是正确的。当时的皇家学会会长汤姆逊致词说:“爱因斯坦的相对论是人类思想史上最伟大的成就之一,也许就是最伟大的成就,它不是发现一个孤岛,而是发现了新的科学思想的新大陆。

狭义和广义相对论的诞生,革新了物理科学的基本概念框架。由于近代世界图景主要由物理科学提供,也可以说相对论革新了世界图景。世界图景不再是“筐子装东西”式的“时空十物质”模式。由于时空与物质及其运动之间发生了关联,世界图景成了“时空一场一物质一流形”。经典物理学中时空与物质之间的二分消解了,物质运动与时间空间成为一体。爱因斯坦说:“空间一时间未必能被看做是一种可以离开物理实在的实际客体而独立存在的东西。物理客体不是在空间之中,而是这些客体有着空间的广延。因此,‘空虚空间’这个概念就失去了它的意义。

相对论在时空观方面的革命完全奠基于对希腊古典科学精神的再度弘扬。这种精神就是对世界普遍性的追求,对宇宙和谐的追求,对数学简单性的追求。在狭义相对论中,“光速不变原理”起到重要的作用,它的功能在于统一电动力学与牛顿力学。爱因斯坦自己说过:“狭义相对论的成就可以表征为一般地指出了普通常数c(光速)在自然规律中所起的作用。”在广义相对论中,“等效原理’即引力场与加速系的等效是一个关键,它的功能也是为物理学的大统一奠定基础。可以说,为物理学奠定新的统一的概念基础是相对论的最重要贡献,也是它导致物理学革命的主要原因。

对数学简单性的追求是爱因斯坦创立相对论的动机。他在一次报告中说,“相对论是要从逻辑经济上来改善世纪交替时所存在的物理学基础而产生的”。希腊时代毕达哥拉斯学派所倡导的追求“宇宙的数学和谐”的精神,是西方科学最具支配作用的基因。带动近代科学之诞生的哥白尼的工作和开普勒的工作,均归属于这一希腊精神的弘扬。爱因斯坦在纪念开普勒的文章中写道:“我们在赞赏这位卓越人物的同时,又带着另一种赞赏和敬仰的感情,但这种感情的对象不是人,而是我们出生于其中的自然界的神秘的和谐。古代人已设计出一些曲线,用来表示规律性的最简单的可想象形式。在这中间,除了直线和圆以外,最重要的就是椭圆和双曲线。我们看到,这最后两种在天体的轨道中体现了出来—一至少是非常近乎如此。这好像是说:在我们还未能在事物中发现形式之前,人的头脑应当先独立地把形式构造出来。开普勒的惊人成就,是证实下面这条真理的一个特别美妙的例子,这条真理是:知识不能单从经验中得出,而只能从理智的发现同观察到的事实两者的比较中得出。”相对论继承了科学理论的形式化理想,实现了在极度数学化上的物理统一性。广义相对论的几何化思路则可以看成是毕达哥拉斯主义所达到的新的峰巅。

11月7日,新闻媒介报道了英国天文学家的观测结果。爱因斯坦一下子成了世界名人。记者们蜂拥而至,索求签名照片的信件像雪片一般飞来。各国均向他发出访问邀请。爱因斯坦每到一地,均受到国王般的礼遇。

在德国,日益高涨的排犹运动使爱因斯坦忧心忡忡。在德国科学家之中也有人反对相对论,说这是犹太物理学,应该加以抵制。1921年爱因斯坦获得了诺贝尔奖,但这奖来得十分不易。当时有不少德国的诺贝尔奖获得者威胁说,如果给相对论授奖,他们就要退回已获的奖章。结果评选委员会找到了一个办法,让爱因斯坦作为光电效应理论的建立者而得奖,相对论始终没有获诺贝尔奖。

19刀年,加州理工学院院长密立根邀请爱因斯坦每年冬天去美国访问讲学。1932年冬天,他在美国得知希特勒终于上台了,他的家也被抄了。他决定不再回德国。新泽西州普林斯顿高等研究所给了他一个高级研究员的职位,他便在普林斯顿定居下来了。

爱因斯坦最后十年,将全部精力投人到统一场论的研究中。他希望将引力与电磁现象统一起来,但到了也没有能成功。他总是孤身一人在物理学的最前沿拼杀,用他自己的话说,总是选木板中那些最厚的地方钻孔。他永远只做最难做的开创性工作,这种性格也使他远离当时最火热的量子力学的发展。

在他的后半生,爱因斯坦卷入了当时复杂的国际政治中。他对到处弥漫的战争气氛感到十分不安和担忧。他从小就十分厌恶战争,热爱和平,因此一直持一种极端的和平主义立场。他号召青年人不要当兵,兵工厂应该罢工。但在第二次世界大战中,爱因斯坦眼看由一小撮法西斯主义者发起的战争完全不可避免时,他改变了自己的态度,认为应该拿起枪来,与法西斯主义者做斗争,以尽早结束战争。为了防止德国纳粹最先造出原子弹,给人类带来巨大的危害,爱因斯坦亲自给当时的美国总统罗斯福写信,建议尽早研制原子弹。美国终于进行了曼哈顿工程,于1945年7月16日成功地试爆了第一颗原子弹。但这时德国人已经战败,第二和第三颗原子弹投到了日本,很快使日本投降,结束了第二次世界大战。爱因斯坦眼看战后愈演愈烈的核军备竞赛,忧心冲忡,感到自己有责任制止核武器的扩散。他参加了无数的会议,发表了无数的宣言,致力于消灭原子弹的政治活动,但收效甚微。他的狭义相对论中著名的公式E=mc2是释放原子能的理论依据,他写给罗斯福的信是研制原子弹的直接动因,在某种意义上爱因斯坦可以被称为原子弹之父,但当他发现原子武器是人类的瘟神时,他的痛苦是无法形容的。

1955年4月18日,爱因斯坦在普林斯顿的家中病逝。爱因斯坦生前反复强调不设立坟墓,不立纪念碑,因此遵照遗嘱,没有举行公开的葬礼,火化时只有几位最亲近的朋友在场,骨灰则被秘密保存。法国物理学家朗之万评论说:“在我们这一时代的物理学家中,爱因斯坦将位于最前列。他现在是,将来也还是人类宇宙中有头等光辉的一颗巨星。很难说,他究竟是同牛顿一样伟大,还是比牛顿更伟大;不过,可以肯定他说,他的伟大是可以同牛顿相比拟的。按照我的见解,他也许比牛顿更伟大,因为他对于科学的

贡献,更加深刻地进人了人类思想基本概念的结构中。

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

世纪之交的物理学革命

自然科学刚跨入20世纪,物理学领域内首先掀起了革命的浪潮。19世纪末,物理学实验上的一系列重大发现,冲击着经典物理学的连续观念、绝对时空观念和原子不可再分的观念,使原有的经典理论显得无能为力。这一冲击,对当时的物理学家们的影响是很大的。因为19世纪40年代以后,由伽利略和牛顿奠定基础的古典物理学理论,由于海王星和能量守恒原理的发现,法拉第、麦克斯韦电磁理论的辉煌成就以及分子运动论的建立,在科学的各个领域中所向披靡,包罗了大至日月星辰,小至原子、分子的物理世界,从而使当时不少物理学家认为物理理论已接近最后完成,今后只需在细节上作些补充和发展,在小数点第六位上做文章。著名的德国物理学家基尔霍夫(1824—1887)说:“物理学将无所作为了,至少也只能在已知规律的公式的小数点后面加上几个数字罢了。”世界著名物理学家开尔文(1824—1907)也认为:“在已经建成的科学大厦中,后辈物理学家只能做一些零碎的修补工作了。”但是,他又敏锐地发现,在物理学晴朗的天空里,还有两朵小小的令人不安的乌云,这就是迈克耳逊-莫雷实验和黑体辐射实验。它们的存在引起许多著名的物理学家的不安。 世纪之交的新挑战 19世纪80年代以后,物理学的经典理论不断完善,与此同时,物理学实验上却陆续发现一些重大的结果。至少有7个重大发现,不但旧理论无法解释,有的还导致观念上的更新。

第一个实验是1887年赫兹(1857—1894)在验证麦克斯韦(1831—1879)预言电磁波存在的实验过程中,发现了光电效应。按照经典理论,从金属表面逸出电子的数目与光的强度有关,而与光的频率无关。这一矛盾,赫兹无法解释,但他仍以“论紫外光对放电现象的效应”为题发表论文,描述了这一现象和结果,向物理学经典理论发起了挑战。 第二个实验是1887年的迈克耳逊-莫雷实验。这一结果使持有光是“以太”中的波动这一观点的人大失所望,连迈克耳逊本人也不了解这一实验结果的重要意义。 第三个实验是1895年伦琴(1845—1923)发现了X射线。这一发现是对“不可入性是物质的固有属性”观念的挑战,也是对建筑在这一观念基础上的经典物理学的有关理论的挑战。 第四个实验是1896年贝克勒尔(1852—1908)发现了放射性辐射(参阅本书第50页)。这一实验结果表明化学元素是能蜕变的,它会变成其他元素,改变了人们一成不变的观念。 第五个实验是1897年汤姆孙(1856—1940)发现了电子。电子的发现和证实,表明比原子小的粒子是存在的,原子并不是最小的客体,指出了经典的物质结构理论的局限性。 第六个实验是1898年居里夫妇发现放射性元素。这一重要发现,同样证明化学元素是要蜕变的,而原子并不是不可分的,它会放射出更小的粒子而改变自己的性质,再次说明经典理论的局限性。

世纪之交的物理学革命

世纪之交的物理学革命 19世纪理论科学的巅峰状态以及其中隐含的危机以物理学最为典型。海王星的发现显示了牛顿力学无比强大的理论威力,光学、电磁学与力学的统一使物理学显示出一种形式上的完整,被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”有一个故事很可以说明在人们心目中,古典物理学的完善程度。德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了。” 1900年4月27日,英国著名的物理学家开尔文勋爵作了题为《热和光的动力理论上空的19世纪之乌云》的长篇讲演,指出古典物理学本来十分晴朗的天空上出现了两朵乌云。实际上,物理学天空上的乌云何止两朵。大量新现象与已成完美体系的古典理论之间的矛盾日渐突出,酿成了深刻的危机。正是这朵朵乌云带来了世纪之交的一场物理学革命,在这场革命中诞生了相对论和量子力学。 1、第一朵乌云:以太漂移实验 开尔文所称第一朵乌云指的是以太漂移实验。古典物理学统一诸种物理现象的主要方式,是找出该类物理现象的一个力学模型。例如,当我们把声音看成是声源振动在物质媒介中的纵向传播时,我们就将声学统一在关于振动的力学之中;当我们把热看成是细微分子的运动之后,我们就将热学统一在关于大量分子运动的力学之中。电磁学似乎与力学距离较远,但也有统一它们的方式。比如,我们同样可以将电磁波看成是某种电磁振荡在某种物质媒介中的传播,如果这种模型是成立的,那么,电磁学与力学之间也可以统一起来了。事实上,物理学家们就是这么做的,因为在他们看来,“一切物理现象都能够从力学的角度来说明,这是一条公理,整个物理学就建造在这条公理之上”。开尔文也说:“我的目标就是要证明,如何建造一个力学模型,这个模型在我们所思考的无论什么物理现象中,都将满足所要求的条件。在我没有给一种事物建立起一个力学模型之前,我是永远也不会满足的。如果我能够成功地建立起一个模型,我就能理解它,否则我就不能理解”。 用力学振荡模型来理解电磁现象面临的一个主要问题是,它是在什么物质媒介中振荡传播的。我们知道,声音的媒介可以是许多物质,如空气、水、铁轨等,没有这些东西,声音便不能传播。可是人们一直没有搞清楚电磁振荡靠的是什么媒介。有实验表明;它在真空中也能传播,这就说明,这种媒介不是我们所能看得见、摸得着的物质。法国哲学家笛卡尔曾经借用希腊词“以太”,提出过一种处处充满以太的宇宙模型。在他那里,以太正好就是看不见膜不着的一种新物质。物理学家们于是认为,电磁传播的媒介是以太。 问题在于以太将具有什么样的物理性质。比如,它有重量吗?它对物体的运动会产生阻力吗?它的密度有多大?但这些问题都非常难于回答。电磁波是一种横波,为了能传播这样一种波,以太媒介必得很硬,但行星运动中又看不出受到阻力的迹象,这使物理学家们感到十分为难。 更困难的问题是以太漂移问题。如果确实有以太存在,那么最好是假定它相对于太阳静止而相对于地球运动,因为只有这样才能很好地解释光行差现象。如果以太相对于地球运动,那么我们就应该可以通过某种方式探测出来。1879年,著名物理学家麦克斯韦提出了一种探测方法:让光线分别在平行和垂直于地球运动的方向等距离地往返传播,平行于地球运动方向所花的时间将会略大于垂直方向的时间:1881年,美国实验物理学家迈克尔逊(1852~1931)依此原理设计了一个极为精密的实验,未发现任何时间差。1887年,迈克尔逊再度与美国化学家莫雷(1838~1923)合作,以更高精度重复实验,得到的依然是“零结果”。作为一名以“探测以太漂移”为目的的实验物理学家,迈克尔逊认为自己的实验是失败的。 为了解释“零结果”,1889年爱尔兰物理学家菲兹杰拉德(1851~1901)提出了物体在以太风中的收缩假说。他认为,在运动方向上,物体长度将会缩短,以致我们无法在光学实验中探测出以太漂移的迹象。1892年,荷兰物理学家洛伦兹(1853—1928)也独立地提出了收缩假说,并且给出了著名的洛伦兹变换。该变换使得相对于以太运动以及相对于以太静止的两种坐标系均满足同样形式的麦克斯韦方程,使经典物理学得以消除乌云,保全形式上的完美。但洛伦兹的工作已经大大修改了许多传统的观念,例如,运动粒子的质量不再是不变的,速度均以光速为上限等。 法国数学家、物理学家、哲学家彭加勒(185—1912)是相对论的重要先驱。1895年,在《谈谈拉摩

对物理学的认识

对物理学的认识 物理学的主要研究对象就是力、光、电等。物理学可以分为力学、光学、热学、量子力学、核物理学等。物理学所研究的内容与人类的生活息息相关。在人类社会的发展历程中,物理学起着非常重要的作用。物理学的发展推动了社会的进步,可以说:物理学不就是一切,但就是一切都离不开物理学。物理学的终极目标就就是来量化解释世界。(法国皮埃尔·迪昂在她的《物理理论的目的与结构》中提出的观点) 牛顿建立了经典力学以后带来了第一次工业革命,因此人类进入了近代化。而蒸汽机的发明与应用就是第一次工业革命的标志,可以瞧出物理学的作用就是巨大的。随着物理学的发展,电学得到了应用,带来了第二次工业革命,电学的应用拉近了人们之间的距离,电力、汽车工业蓬勃发展。在第二次世界大战的刺激下,原子能技术、计算机技术与航天技术发展迅速,并成为第三次技术革命兴起的标志.随着 量子力学相对论等理论的建立,在20世纪,以核能、电子计算机等的应用为标志,人类社会开始进入现代化。20世纪前半期科学技术的重大突破又引起社会经济、产业结构、生活方式等方面的重大变化,并为战后第三次技术革命的深入发展奠定了基础。 从原始社会到现代社会,物理学始终不停地演进。过去大家相信太阳绕着地球转,十六世纪时哥白尼提出地球绕着太阳转,十七世纪 时布鲁诺发扬此学说,便被罗马教廷处死了。这可以说就是物理学上的一次革命。后来牛顿继承地动说,发展出她的运动定律。大家本以为此定律无懈可击。可就是到了二十世纪,又被爱因斯坦的相对论将

它涵盖过去。由此可知,一切理论都就是人为创造来解释自然的现象,充满了各种可能性。但就是必须要能够解释已经发生的事实,并且要能够预测未发生的事件,才算就是一个经得起考验的理论。科学便就是在不断的探索中,寻找最圆满的答案。过去的物理学偏重于对观察物的研究,把观察者忽略。但自从“测不准原理”提出后,观察者对被观察物的影响便受到重视,未来对于“人”与“物”关系的研究将引起另一场科学的革命。 物理学就是实验的科学,就是透过种种的仪器来研究宇宙万象。物理学上的实验结果具备一致性,但就是在解释上就是可以提出各式理论模型的。然而各种理论模型就是由物理学家建立起来的,也就就是依靠人的心智创造出来的,也因此受限于人的心智。 物理学就是古老而前沿的学科。在天体物理学当中有两个非常重要的概念,一个就是新星,一个就是超新星,新星的亮度大概就是太阳 亮度的几万倍,超新星的亮度就是太阳亮度的百万万倍。这两个都就是在中国发现的。对宇宙的探索,未知多于已知,我们已知的物质大约只占5%,还有95%就是暗物质与暗能量。从引力场我们知道暗物质的存在,从宇宙膨胀的加速度我们判断有暗能量、李政道认为,之所以有暗能量就是因为天外有天,我们的宇宙之外可能还有宇宙!暗物质暗能量的研究就是物理学研究最大的挑战。 物理学就是理论与实验紧密联系的科学,就是一门应用学科。物理学就是严密严谨的科学。物理学追求真理、造福人类、引领未来、支撑发展。物理学就是认识世界的先锋,物理学引领世界!

浅谈物理学与现代科学技术的关系

题目:浅谈物理学与科学技术的关系姓名:李焘 专业:物理学类 学号:20112200207

浅谈物理学与现代科学技术的关系 摘要:科学技术的发展对我们的生活水平、生活方式、文化教育等方面的影响是极为深刻的.从日常的衣食住行中,处处可以感受到科学技术给我们生活带来的变化。各种合成纤维大大丰富了人们的衣着面料;农业的增产提供了丰富的食品,改善了人民的食品结构;至于汽车、飞机的发明和普及带给人们交通的方便、快捷;医学的进步提高了人民的健康水平,延长了平均寿命;教育的普及提高了人民的文化水平;电灯、电话、家用电器的普及大大方便了我们的生活……这样的例子不胜枚举。而这些发展却离不开物理学…… 关键词:物理学科学技术关系 一、物理学在现代科学技术发展中的作用与地位 现代科学技术正以惊人的速度发展。而在物理学中每一项科学的发现都成为了新技术发明或生产 方法改进的基础。 在18世纪以蒸汽机为动力的生产时 代,蒸汽机的不断提高改进,物理 学中的热力学与机械力学是起着相 当重要的作用的。 19世纪中期开始,电力在生产技术 中日益发展起来了,这是与物理中 电磁学理论建立与应用分不开的。 20世纪初相对论和量子力学的建立,诞生了近代物理,开创

了微电子技术的时代。半导体芯片,电子计算机等随之应运而生。可以毫不夸张的说,没有量子力学也就没有现代科技。 20世纪80年代高温超导体的研究取得了重大突破,为超导体的实际应用开辟了道路。磁悬浮列车等。80年代,我国高温超导的研究走在世界的前列。 20世纪90年代发展起来的纳米技术,使人们可以按照自己的需要设计并重新排列原子或者原子团,使其具有人们希望的特性。纳米材料的应用现是一个新兴的又应用很广泛的前沿技术。秦始皇兵马俑的色彩防脱。 在牛顿力学和万有引力定律的基础上发展起来的空间物理,能把宇宙飞船送上太空,使人类实现了飞天的梦想。 激光物理的进展使激光在制造业、医疗技术和国防工业中的得到了广泛的应用。 生命科学的发展也离不开物理学。脱氧核糖核酸(DNA)是存在于细胞核中的一种重要物质,它是储存和传递生命信息的物质基础。1953年生物学家沃森和物理学家克里克利用X射线衍射的方法在卡文迪许(著名实验物理学家)的实验室成功地测定了DNA的双螺旋结构。 …… 物理学本身就是以实验为基础的科学,物理学实验既为物理学发展创造了条件,同时也为了现代工农业生产技术的研究打下了物质基础。

物理学发展简史

物理学发展简史 专业:物流工程111 学生:吴建平 学号:2011216031 老师:代群

摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展

引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 一古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致来,这一时期,力学、数学、天文学、化学得到了迅速发展。 二近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。 公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。 近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。他提出惯性原理,驳斥了亚里士多德外力是维持物体运动的说法,为惯性定律的科学逐渐从哲学中分裂出建立奠定了基础。伽利略的发现以及他所用的科学推理方法是人类思想史上

最新浅谈物理学与科学技术的关系

浅谈物理学与科学技术的关系 -----高一(13)班李倩 在目前的新世纪,科学技术的发展对我们的生活水平、生活方式、文化教育等方面的影响是极为深刻的。从日常的衣食住行中,处处可以感受到科学技术给我们生活带来的变化。各种合成纤维大大丰富了人们的衣着面料;农业的增产提供了丰富的食品,改善了人民的食品结构;至于汽车、飞机的发明和普及带给人们交通的方便、快捷;医学的进步提高了人民的健康水平,延长了平均寿命;教育的普及提高了人民的文化水平;电灯、电话、家用电器的普及大大方便了我们的生活……这样的例子不胜枚举。而这些发展却离不开物理学…… 物理学作为严格的、定量的自然科学带头学科,一直在科学技术的发展中发挥着极其重要的作用。过去如此,现在如此,展望将来亦是如此。现代科学技术正以惊人的速度发展。而在物理学中每一项科学的发现都成为了新技术发明或生产方法改进的基础。首先,物理学定律是揭示物质运动的规律的,使人们在技术上运用这些定律成为可能;第二,物理学有许多预言和结论,为开发新技术指明了方向;第三,新技术的发明,改进和传统技术的根本改造,无论是原理或工艺,也无论是试验或应用,都直接与物理学有着密切的关系。若没有物理基本定律与原理的指导,可以毫不夸大地说,就不可能有现代生产技术的大发展。 在18世纪以蒸汽机为动力的生产时代,蒸汽机的不断提高改进,物理学中的热力学与机械力学是起着相当重要的作用的。 1866年,西门子发明电机,1876年贝尔发明了电话,1879年爱迪生发明电灯,这三大发明照亮了人类实现电气化的道路,电力在生产技术中日益发展起来了。这样的成功与物理中电磁学理论的建立与应用是密不可分的。。 20世纪初相对论和量子力学的建立,诞生了近代物理,开创了微电子技术的时代。半导体芯片,电子计算机等随之应运而生。可以毫不夸张的说,没有量子力学也就没有现代科技。 20世纪60年代初,激光器诞生。激光物理的进展为激光在制造业、医疗科技和国防工业中的应用打开了大门。 20世纪80年代高温超导体的研究取得了重大突破,为超导体的实际应用开辟了道路。磁悬浮列车等。80年代,我国高温超导的研究走在世界的前列。 20世纪90年代发展起来的纳米技术,使人们可以按照自己的需要设计并重新排列原子或者原子团,使其具有人们希望的特性。纳米材料的应用现是一个新兴的又应用很广泛的前沿技术。秦始皇兵马俑的色彩防脱。 在牛顿力学和万有引力定律的基础上发展起来的空间物理,能把宇宙飞船送上太空,使人类实现了飞天的梦想。 激光物理的进展使激光在制造业、医疗技术和国防工业等多个领域中得到了广泛的应用。 生命科学的发展也离不开物理学。脱氧核糖核酸(DNA)是存在于细胞核中的一种重要物质,它是储存和传递生命信息的物质基础。1953年生物学家沃森和物理学家克里克利用X射线衍射的方法在卡文迪许(著名实验物理学家)的实验室成功地测定了DNA的双螺旋结构。 ……

19世纪末期物理学的三大发现及其意义

19世纪末期物理学的三大发现及其意义 19世纪末,以牛顿力学、热力学、麦克维斯电磁学理论和原子论为基础的经典物理学理论体系已相当完善。正当物理学界陶醉于成功的喜悦中时,一些有远见的科学家却与意识到,在物理学晴朗的天空中出现了乌云。 1900年4月27日,一向以保守著称的英国皇家学会主席、著名物理学家达尔文发表长篇演说,指出:经典物理学本来十分晴朗的天空上出现了两朵“乌云”。一是“紫外灾难”——热辐射在位于短波的紫外线部分的实验结果与经典统计力学、电磁学理论相背;二是“以太危机”——当时的实验结果表明:麦克维斯电磁学理论中光、电、磁传播所需要的介质——“以太”可能根本就不存在。经典物理学正在发生危机,这预示着即将发生一场革命。 其实从1895年开始,连续三年的三大发现,x射线,放射性和电子的发现已经成为揭开物理学革命序幕的三声春雷。1895年伦琴发现了X射线,1896年法国的贝克勒尔发现了铀盐的放射性,1897年英国的J·J汤姆逊发现了电子。这些新发现猛烈的冲击着经典物理学理论,打破了物理学界沉闷的空气,被誉为“世纪之交的三大发现”,是现代物理学发轫的标志。 早在19世纪三四十年代,人们就发现,真空管内的金属电极在通电时其阴极会发出某种射线,这种射线受磁场影响,具有能量,被称为阴极射线。而对阴极射线性质的深入研究导致了X射线的发现。1895年德国物理学家伦琴在赫兹和勒纳德发表了论阴极射线的穿透力的论文后,准备对这一问题做进一步研究。他重复了勒纳德的实验,发现阴极射线确实能穿透铝箔在空气中行进几厘米,使涂有铂氰化钡的荧光屏上产生荧光。在多次实验后,他意外地发现了一种新的射线,但因为不了解其本性,伦琴且称它为X射线,又被人们称之为“伦琴射线”。 由于X射线可以穿透皮肉透视骨骼,所以在医疗上作用很大,如今我们到医院拍张X光片已是很平常的事情,然而在19世纪末X射线刚发现时,却被视为世界科技革命的一声号角。其后,随着研究的深入,X射线被广泛应用于晶体结构的分析以及医学和工业等领域。对于促进20世纪的物理学以至整个科学技术的发展产生了巨大而深远的影响。 而1896年法国物理学家贝克勒尔,受到伦琴发现X射线启发,着手研究X

第四章 物理学革命

第四章:物理学革命 第一节经典物理学的顶峰与危机 由于19世纪技术革命的巨大成功,使资本主义生产力得到空前提高,在当时的社会中洋溢着自信与陶醉。就自然科学而言,经典物理学是19世纪末发展得最完善的学科。牛顿力学是整个物理学的基础和典范,电磁现象也被看成是“以太”的机械运动,并利用力学原理来研究。声、光、热、电、磁等各种自然现象都通过牛顿力学而得到解释。经典物理学及其认识方法被视为科学发展所能达到的最完美形式,似乎物理学的天空已经是阳光普照,未来的工作只是在若干部位作些小小的修饰或者将测量精度再提高几个数量级。但是历史的发展毕竟是无情的,在物理学的万里晴空中出现了几朵乌云,这些用经典物理无法解决的问题,正是科学革命的引路者。 首先是迈克尔孙一莫雷实验的“零结果”。按照牛顿力学的观点,波的传播是需要媒介的,比如空气就是声音传播的媒介。测定声波的传播速度也是通过一个观察者和一个相应的参考系来完成的。然而光波似乎比较特殊,当我们说真空中的光速是2.997925X108m/s时,我们并不清楚这个速度是相对于哪个参考系的。但对于19世纪的人来说,要接受光的传播不需要媒介是很困难的,于是人们设想在地球和太阳之间

充满着—一种特殊的物质——以太,它充当地球和太阳之间引力和光的传播媒介。按照常识以及经典物理学的推论,以太具有这样的性质:它的密度为0,因为人在以太中运动并没有感觉到阻力;它是完全透明的,光波可以不受阻拦地传播;它又有很强的刚性。以太的这种特殊性质,使寻找以太成为很重要的工作。假如以太存在,那么既有自转又有公转的地球在以太中运动时,地球上的观察者就应能感受到“以太风”,它相对于地球的速度约等于地球公转的速度u=30km/s。迈克尔孙(A.A.Michelson,1852—1 931)与莫雷(E.W.Morley,1836—1923)发明了一种于涉仪,能通过观察干涉条纹的移动来测量这个速度。 1887年迈克尔孙和莫雷开始他们的实验。他们将干涉仪安装在很重的石台上以维持稳定,并将石台悬浮在水银里,使它能平稳地绕中心轴转动。按照当时的设计精度,只要条纹有百分之一的移动就能被探测到。他们连续观察了一年,但是实验结果是:根本观察不到条纹的移动。迈克尔孙和莫雷当时失望地宣布他们的实验“失败”了。虽然以后不同的科学家(包括迈克尔孙本人)一再重复这个实验达50年之久,但结果依然没有改变。由于这与经典物理学的一些基本原理相抵触,所以引起了人们的广泛关注,有人已经开始怀疑经典物理学的适用范围了。 另一个问题是对黑体辐射实验的解释。物体因为它的温度而发出的

浅谈物理学与科学技术的关系

浅谈物理学与科学技术的关系 在目前的新世纪,科学技术的发展对我们的生活水平、生活方式、文化教育等方面的影响是极为深刻的。从日常的衣食住行中,处处可以感受到科学技术给我们生活带来的变化。各种合成纤维大大丰富了人们的衣着面料;农业的增产提供了丰富的食品,改善了人民的食品结构;至于汽车、飞机的发明和普及带给人们交通的方便、快捷;医学的进步提高了人民的健康水平,延长了平均寿命;教育的普及提高了人民的文化水平;电灯、电话、家用电器的普及大大方便了我们的生活……这样的例子不胜枚举。而这些发展却离不开物理学…… 物理学作为严格的、定量的自然科学带头学科,一直在科学技术的发展中发挥着极其重要的作用。过去如此,现在如此,展望将来亦是如此。现代科学技术正以惊人的速度发展。而在物理学中每一项科学的发现都成为了新技术发明或生产方法改进的基础。首先,物理学定律是揭示物质运动的规律的,使人们在技术上运用这些定律成为可能;第二,物理学有许多预言和结论,为开发新技术指明了方向;第三,新技术的发明,改进和传统技术的根本改造,无论是原理或工艺,也无论是试验或应用,都直接与物理学有着密切的关系。若没有物理基本定律与原理的指导,可以毫不夸大地说,就不可能有现代生产技术的大发展。 在18世纪以蒸汽机为动力的生产时代,蒸汽机的不断提高改进,物理学中的热力学与机械力学是起着相当重要的作用的。 1866年,西门子发明电机,1876年贝尔发明了电话,1879年爱迪生发明电灯,这三大发明照亮了人类实现电气化的道路,电力在生产技术中日益发展起来了。这样的成功与物理中电磁学理论的建立与应用是密不可分的。。 20世纪初相对论和量子力学的建立,诞生了近代物理,开创了微电子技术的时代。半导体芯片,电子计算机等随之应运而生。可以毫不夸张的说,没有量子力学也就没有现代科技。 20世纪60年代初,激光器诞生。激光物理的进展为激光在制造业、医疗科技和国防工业中的应用打开了大门。 20世纪80年代高温超导体的研究取得了重大突破,为超导体的实际应用开辟了道路。磁悬浮列车等。80年代,我国高温超导的研究走在世界的前列。 20世纪90年代发展起来的纳米技术,使人们可以按照自己的需要设计并重新排列原子或者原子团,使其具有人们希望的特性。纳米材料的应用现是一个新兴的又应用很广泛的前沿技术。秦始皇兵马俑的色彩防脱。 在牛顿力学和万有引力定律的基础上发展起来的空间物理,能把宇宙飞船送上太空,使人类实现了飞天的梦想。 激光物理的进展使激光在制造业、医疗技术和国防工业等多个领域中得到了广泛的应用。 生命科学的发展也离不开物理学。脱氧核糖核酸(DNA)是存在于细胞核中的一种重要物质,它是储存和传递生命信息的物质基础。1953年生物学家沃森和物理学家克里克利用X射线衍射的方法在卡文迪许(著名实验物理学家)的实验室成功地测定了DNA的双螺旋结构。 ……

20世纪物理学革命的启示

20世纪物理学革命的启示 回顾百年前发生的物理学革命是令人激动不已的,那一段时期发生的故事可以说是百听不厌,给我们的启示则是既深刻又发人深省的. 19世纪末,人类完全掌握自然规律来造福人类的梦想、似乎已经到了实现的边缘.1894年美著名科学家迈克尔逊兴高采烈的宣称:“尽管谁也不会轻率断言,未来物理科学再也不会提出什么使人惊奇的东西来,未来物理学的真理将在小数点后第六位寻找.” 然而物理学大厦却已经山雨欲来风满楼.1900年4月27日,开尔文勋爵在英国皇家学会上以“19世纪热和光的动力理论上空的乌云”为题的长篇演讲中指出:“动力学理论的优美性和明晰性被两朵乌云遮蔽得黯然失色.第一朵是地球如何通过本质上是光的以太这样的弹性固体而运动的,第二朵是麦克斯韦一玻耳兹曼关于能量均分的学说.”经典物理出现的这些灾难性的后果使被某些人认为已经完美无缺的经典物理大厦摇摇欲坠.1900年10月19日,普朗克凭他的丰富经验得出了一个与实验结果符合得天衣无缝的公式.随后的两个月工作,普朗克描述为:“经过一生中最紧张的几个星期的工作之后,我从黑暗中见到了光明,一个以前完全意想不到的崭新景象展现在我的眼前.”终于在12月14日,普朗克在“关于正常光谱能量分布定律的理论”为题的演讲中提出了能量只能以“能量子”.为最小单元作不连续变化.物理理论发生了一个巨大的跃变.过了5年,科学巨匠爱因斯坦闪亮登场,立即震惊世人.在1905年,他所完成的题为“论动体的电动力学”的论文发表在德国《物理学年鉴》的杂志上.成为物理学的一个里程碑.其中指出了“电动力学与光学定律也一定适用于对力学方程适用的坐标系.此外论文又列出了另一重要原理,即光速不变性.同年,爱因斯坦又在利用了两列反向传播的平面光波的假想实验作为开头,以严密的逻辑推理导出了著名的质能公式.由此狭义相对论成功地建立,以大学说被无情地抛到了历史尘埃之中. 同年,爱因斯坦在著名论文“关于光的产生和转化的一个试探性观点”中,发展了普朗克的量子假说,提出了光量子概念,成功解释了1887年赫兹就已经观察到的,经典物理无法理解的光电效应现象.进一步阐释了,不仅吸收或发射辐射时能量是一份份的,而且,辐射本身是量子化的.由于此项重大发现,爱因斯坦在1921年获得了诺贝尔物理学奖. 又过了8年,丹麦物理学家玻尔在(哲学杂志)上发表了著名的“三部曲”题名“原子构造和分子构造”——1、fi、Ill的3篇论文,取得了巨大的成功.完满地解释了30年之谜——氢光谱的巴耳末公式.并且成功地解释了元素周期表.把量子观念引人了原子.玻尔理论提出了一个动态原子结构轮廓,揭示了光谱线与原子结构的内在联系.在他发表论文3个月后的英国科学促进协会召开的年会上对玻尔的理论作出了肯定.称赞它为“对光谱线规津的一种最发人深思的……令人信眼的解释”.玻尔由于这一杰出的工作,获得了1922年诺贝尔物理学奖. 与此同时,爱因斯坦的思考并没有止步,他认为狭义相对论还有许多问题没有解决.刚刚经受住考验的狭义相对论,为什么一用到引力场中就遇到了矛盾?他感到极大的疑惑,他坚信自然界的和谐和统一.终于,有一天,他的脑子里突然闪出一个念头:如果一个人正自由下落,他决不会感到有重量.由此新的引力理论诞生了.又经过了几年,爱因斯坦又用柔性度规代替直线度规来度量时间,完成了广义相对论这一20世纪最伟大的创建.让我们再次回到玻尔.在玻尔获奖后一年,为庆祝玻尔的成就,世界物理学中心之一的德国哥丁根举行了玻尔节,玻尔应邀发表演讲,在听众中一位年仅20岁的大二学生海森伯怀着崇敬的心情来到演讲厅.一方面他体验到大师的演讲每个字都经过精推细敲,而且背后隐藏着深邃的思考.另一方面他初生牛犊不怕虎,面对物理大师,居然敢提出极具挑战性的问题.玻尔立刻感到问题击中要害,而且还包含一种不寻常的概念.会后他邀请海森伯外出散步,作颇为深入的讨论.后来,海森伯不止一次地说,这是他一生中最为重要的散步,决定他命运的散步.“我的科学生涯从此散步开始.”不久,玻尔邀请海森伯去哥本哈根工作一段时间,并让他住在哥本哈根大学理论物理研究所(1965年改名为玻尔研究所)的阁楼上.从此诞生了海森伯的名言:科学扎根与讨论.在海森伯与玻尔相遇10年后因创建量子力学而一人获得1932年诺贝尔物理奖.随后又经过了泡利.薛定谔、狄拉克、波恩等一批人的努力,终于发展成了一门20世纪最伟大的科学——量子力学. 爱因斯坦在相对论中抛弃了绝对的时空观.量子力学又否定了因果性和决定论.在物理学历史上堪称一场重大的革命.物理学不仅将人类对自然界的认识和领域不断推向更基本、更深层次,而且不断从中孕育新的科学思想和新技术,对于人类文明的昌明以巨大推动.

19世纪末期物理学的三大发现及其意义

19世纪末期物理学的 三大发现及其意义 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

19世纪末期物理学的三大发现及其意义 19世纪末,以牛顿力学、热力学、麦克维斯电磁学理论和原子论为基础的经典物理学理论体系已相当完善。正当物理学界陶醉于成功的喜悦中时,一些有远见的科学家却与意识到,在物理学晴朗的天空中出现了乌云。 1900年4月27日,一向以保守著称的英国皇家学会主席、著名物理学家达尔文发表长篇演说,指出:经典物理学本来十分晴朗的天空上出现了两朵“乌云”。一是“紫外灾难”——热辐射在位于短波的紫外线部分的实验结果与经典统计力学、电磁学理论相背;二是“以太危机”——当时的实验结果表明:麦克维斯电磁学理论中光、电、磁传播所需要的介质——“以太”可能根本就不存在。经典物理学正在发生危机,这预示着即将发生一场革命。 其实从1895年开始,连续三年的三大发现,x射线,放射性和电子的发现已经成为揭开物理学革命序幕的三声春雷。1895年伦琴发现了X射线,1896年法国的贝克勒尔发现了铀盐的放射性,1897年英国的J·J汤姆逊发现了电子。这些新发现猛烈的冲击着经典物理学理论,打破了物理学界沉闷的空气,被誉为“世纪之交的三大发现”,是现代物理学发轫的标志。 早在19世纪三四十年代,人们就发现,真空管内的金属电极在通电时其阴极会发出某种射线,这种射线受磁场影响,具有能量,被称为阴极射线。而对阴极射线性质的深入研究导致了X射线的发现。1895年德国物理学家伦琴在赫兹和勒纳德发表了论阴极射线的穿透力的论文后,准备对这一问题做进一步研究。他重复了勒纳德的实验,发现阴极射线确实能穿透铝箔在空气中行进几厘米,使涂有铂氰化钡的荧光屏上产生荧光。在多次实验后,他意外地发现了一种新的射线,但因为不了解其本性,伦琴且称它为X射线,又被人们称之为“伦琴射线”。 由于X射线可以穿透皮肉透视骨骼,所以在医疗上作用很大,如今我们到医院拍张X光片已是很平常的事情,然而在19世纪末X射线刚发现时,却被视为世界科技革命的一声号角。其后,随着研究的深入,X射线被广泛应用于晶

现代科学技术革命的诞生

现代科学技术革命的诞生、特征和影响 一、现代科学技术革命的诞生 (一)20世纪的科学革命 1.现代科学革命产生的背景:到19世纪,机械决定论和还原论仍然影响着物理学、化学、生物学、医学、心理学。它已经根深蒂固地渗透到自然科学的各个研究领域,甚至人类的文化方面。人们在研究复杂事物的过程中,主要采取从实体上进行还原的方法,“试图在所有复杂的现象中找到共同具有的物质实体(如原子),将其作为差异性的共同基础。”爱因斯但指出:“从希腊哲学到现代物理的整个科学史中,不断有人力图把表面上极为复杂的自然现象归结为几个简单的基本观念和关系。”近代科学在诸如力的分解、元素的离解,生物的解剖等方面取得的成功,使人们坚信“机械分割”的思想是无往不胜的,并试图把这种方法推广到对生命现象和社会现象的研究上。机械还原论者坚信,任何复杂的运动形式,都可以最终分解为机械的或力学的运动形式。尽管19世纪的自然科学取得的某些成就已经部分地揭露了机械决定论和机械还原论的局限性,但是要动摇和突破这种规范是不容易的,因为它们是构成近代科学赖以产生和发展的基础。恩格斯说:“把自然界分解成各个部分,把自然界的各种过程和事物分成一定的门类,对有机体的内部按其多种多样性的解剖形态进行研究,这是最近400年来在认识自然界方面获得巨大进展的基本条件。” 19世纪末,许多科学家都认为,以力学为基础的经典物理学大厦已经峻工,人们在对这幢雄伟大厦表示赞叹之余,又多少流露出满足和无所作为的情绪。著名的德国科学家基尔霍夫(G.R.Kirchhoff)表示:“物理学将无所作为了,至多只能在已知规律的公式的小数点后加上几个数字罢了”。英国大物理学家W.汤姆逊在刚跨入20世纪的第一天的《元旦献辞》中也说:“在已经建成的科学大厦中,后辈物理学家只能做一些零碎的修补工作。” W?汤姆逊在对科学大厦赞叹的同时,又不得不承认在物理学晴朗的天空还有两朵小小的令人不安的乌云。这两朵乌云是什么?为什么它们会引起这位著名物理学家深深的忧虑呢?物理学进入19世纪80年代以来,人们在实验中发现了一系列令人困惑的现象,经典理论对此显得无能为力。其中现象之一,就是迈克尔逊——莫雷实验。 1880年,美国物理学家迈克尔逊和化学家莫雷利用光学干涉仪进行了一项搜索“以太风”的著名实验来测量所谓的“以太漂移”。“以太”是根据牛顿经典力学观点所设想的用来传播光的介质,经典力学认为以太充满整个宇宙空间,而且是静止不动的。在牛顿力学中,任何机械运动都是相对于一个参考系进行的。地球相对太阳运动,必然能测得所谓的“以太飘移速度”(即地球和以太之间的相对运动速度)。迈克尔逊和莫雷经过不懈努力,昼夜不停地观察了五天,试验的精密度达到四十亿分之一,也没有找到“以太风”或地球相对于“以太”漂移的运动迹象,于1887年12月宣布实验测得以太“漂移速度”为零的结果。这一否定性的实验结果说明地球和以太之间不存在相对运动。这就是物理学史上有名的“零结果”,人们曾试图从各个角度对此作出说明,但都难以自圆其说。看来,人们原先对光传播所构想的物理图象是不正确的,使许多持有光是以太波动观点的物理学家大失所望。这一现象被称之为19世纪末20世纪初飘浮在物理学上空的一朵乌云。另一朵乌云与绝对黑体辐射的实验有关。热辐射是普遍的自然现象,物体在任何温度下都会以电磁波的形式向外辐射能量,其量值可以通过实验测定出来。由于绝对黑体在受光照达到热平衡时将会把能量全部以热辐射的形式发送出去,黑体的热辐射要比相同温度下其他任何物体的热辐射强,所以黑体是研究热辐射的理想模型。通过研究黑体辐射来揭示热辐射现象的本质和规律,是19世纪末物理学的一个重要课题。德国物理学家维恩(w?wien)发现随着辐射体温度的升高,辐射的峰值会向短波方向移动,即所谓的“位移定律”。1896年,他依据热力学,用半经验半理论的方法找到了“维恩公式”,用以说明黑体辐射谱。发现这个公式在短波段(高频辐射部分)同实验吻合,但在长波段(低频辐射部分)却系统地低于实验值。以后,英国物理学家瑞利(Lord Rayleign)根据经典统计物理学推出另一公式,它在长波段(低频辐射部分)与实验相符合,但在短波段(高频辐射部分——紫外光区)完全不能适用。按公式计算的预测值,在紫外一端辐射应趋向无穷大,而实验数据的结果却趋于零。这显然是荒谬的。经典物理学的理论在这里陷入困境和危机。这就是有名的“紫外灾难”。“紫外实验”成为飘浮在物理学上空的又一朵乌云。英国著名物理学家凯尔芬勋爵在1900年的讲演中把这两大疑难称之为经典物理学天空中的两朵乌云。他说:“动力学理论断言“热”和“光”都是运动的方式,现在这一理论的优美性和明晰性被两朵乌云遮蔽的黯然失色了。实际上,当时物理学天空并非只有两朵乌云,例如被称之为19 世纪末物理学的三大发现,即1895年德国物理学家“伦琴”发现X射线,1896年波兰物理学家居里对放射性元素的发现,以及1897年英国物理学家汤姆逊对电子的发现,都是对经典物理学理论的极大冲击:X射线可以穿透物体,说明“不可入性”不是物质的固有属性,而传统观念认为物质是不可入的;放射性辐射表明化学元素会蜕变为其他元素;发现比原子更小的电子,说明原子并非是不可再分的最小实体。原子不可再分的观念由此而发生了根本动摇,面对一系列无法纳入旧理论框架的新事实,一些物理学家感到惊恐万分,他们惊呼:“物理学的危机来临了”“科学破产了”。他们在牛顿力学体系与一些实验发生明显矛盾时,依然坚持牛顿力学必定正确的观点,从而在物理学界造成更大的思想混乱。然而在当时著名的科学家中,也不乏有远见卓识者,如法国科学家彭加勒(H.poincare),他认为,物理学理论与试验事实出现矛盾是好事而不是坏事,它预示着一种行将到来的变革,是物理学进入新阶段的前兆,他指出:要摆脱危机,就要在新实验事实基础上重新改造物理学。可惜的是,他没有跳出旧理论的框架,尽管他的电子动力学在数学形式和实验预言与以后爱因斯但的狭义相对论等价,但在物理解释上却大相径庭,他那富丽堂皇的理论,不过是经典物理学最后的宏伟建筑物而已。19世纪末的三大发现,使人类的认识第一次深入到了原子内部,彻底打破了原子不可分、元素不可变的传统物理学观念。以太漂移实验的零结果和黑体辐射研究中的“紫外灾难”,使经典物理学陷入不可克服的矛盾,成为推动这一时期科学发展的重要机制。 2.世纪之交物理学革命的产生 物理学危机是物理学革命的前夜,经典物理学天空上的乌云倾刻化为狂风暴雨,冲击和洗刷着经典物理学的基础。世纪之交,1900年量子理论的提出和1905年狭义相对论的建立,是现代物理学革命的重要标志。量子论的提出者是德国物理学家普朗克。1894年,他从研究黑体辐射问题开始,从维恩推出的有关黑体辐射能量密度的半经验公式得到启示,把电磁学方法和热力学中熵的概念结合起来,得到电磁熵的定义式。1900年10月,他经过不懈努力,应用娴熟的数学技巧,借助内插法,得到了一个与黑体辐射实验无论在短波段或长波段都吻合得非常好的新的辐射公式。在导出这个公式时,他大胆地提出了一个和“经典物理学关于能量过程必定是连续的”结论截然相反的假说,即能量的交换是不连续的,是一份一份进行的,能量的交换只能是hv的整倍数。h是普朗克常数,V是组成黑体的带电谐振子的频率,hv为能量交换的最小单位。称为“能量子”。1900年12月14比普朗克在德国物理学会年会上公布了他的这一工作。从能量子假说出发,普朗克成功地解释了他自己提出的辐射公式,解决了“紫外灾难”的问题。量子论的诞生,是对经典物理学理论的重大突破,它把经典物理学中一切因果关系都是在连续的基础上所建立的物理思想方法彻底地变革了。尽管在当时的物理学界对这一假说的反应冷淡,但在爱因斯坦、玻尔等科学家的推动下,量子理论获得了飞速发展,成为举世公认的科学理论。到20世纪30年代,经过德布罗意、薛定愕、海森伯、玻恩、狄拉克以及泡利等青年物理学家的努力,形成了量子力学的完整体系。量子力学的建立,是继相对论之后对古典物理学的又一次严重冲击。它使人们从根本上改变了只承认连续性和机械力学决定论的经典观念,揭示了连续与间断统一的自然观,揭示了自然规律的客观统一性,为各门科学的量子化奠定了理论基础。在普朗克提出能量子假说的第五年,即1905年的夏天,德国物理学家爱因斯坦完成了一篇名为《论运动物体的电动力学》的论文,这篇论文奠定了狭义相对论的基础。爱因斯坦在这篇论文中,针对经典物理学同新的实验事实之间的矛盾,批判了牛顿力学的超距作用观点,坚持电动力学中电磁场的近距作用观点

相关主题
文本预览
相关文档 最新文档