当前位置:文档之家› 管网水质综合评价理论与方法研究

管网水质综合评价理论与方法研究

管网水质综合评价理论与方法研究
管网水质综合评价理论与方法研究

管网水质综合评价理论与方法研究

随着城市供水厂生产工艺的改进,出厂水水质标准也在逐步提高,为满足用户对水质需求,不仅要求提高水处理技术,同时要保证水在管网中输送时候尽量避免二次污染。就管网水质而言,能否保持管网水质与同出厂水质,实时的将优质水供应到城市千家万户,则是一项十分浩大的系统工程,围绕管网水质如何提高这一尤为重要的课题。要提升管网水质,首先要确定管网水质污染产生的原因,同时要有明确的水质分析和评估方法,最后确定解决方案。

1、城市管网污染产生的原因

1.1 城市供水运行管网由于受历史客观原因影响,其管道材质直接关系到管网的水质。过去几十年大量使用的铸铁管、钢管、镀锌管等,管道内壁易腐蚀、结垢或因防腐实效较差,水若在管道中长时间停留或水力条件发生急剧变化时,一旦拧放水且易产生黄水和铁腥味臭水。再由于某些房地产开发商或业主,用低劣的黑铁管建于楼内给水管,其用水水质则更加难保。

1.2 新装管道施工的过程中,因措施不当脏(污)水进入浸泡(地处化工区域稍不注意则影响更大)。若管道未作冲洗并网,无切实冲洗方案和采取措施不力,因冲、排水管截面比率小以及冲洗强度、冲洗历时不足及检验不严格等,都易使管道在并网供水后产生污染,或影响连接支管引发堵、缠绕供水设施现象。

1.3 给水管道的下端浸没在用水器的污水液面下,一旦管网因失压或停水,污水就有可能被吸入,引起管内污染,此种情况多半来自于水厂或转压泵站的停产停泵现象。因管网阀门的快开快关的操作引起“水锤效应”,在检修过程中易吸入脏水形成污染。

1.4 对供水管网单一进行关阀实施分压(域)的供水调度措施,使环状供水管网中循环的活水,因长期关闭处于不流动状况,影响破坏产生局部区域的“污染水”以及在枝状管网末梢产生的“污染水”。

1.5 具备自备水水源的用户贮(用)水设备与供水管道相通,如无任何隔断措施,管网突因停水或管网水压低等原因引起回流人供水管内,引起污染。

1.6 管道因使用年限过长,管网中因锈蚀和沉积物的累积,为微生物的繁殖提供可条件,从而使水流经管道时被微生物污染。

1.7 自来水公司对管网特别是管网末稍部位冲洗、排污效果不理想影响管网水质。

1.8 水厂供水量不稳定或超负荷运行等使净化设施的混凝、沉淀、过滤效果受到影响

1)反应、混凝沉淀时间不够造成反应、混凝、沉淀不充分,矾花密实度不高,将大量细小矾花带入滤池,加重滤池运行负担,缩短滤池运行周期,甚至会造成在清水池或出帮管网内凝结矾花现象。

2)由于原水进水量的变化,则加矾、加氯量也应随之变化,目前我们还是靠人工加药量,因此很难将加矾、加氯量控制在最佳范围内,从而影响混凝、消毒效果。对管网水质产生影响。

1.9 屋顶水箱及自备水源等污染供水管网水质

1.9.1 目前,屋顶水箱仍是城区某些高层建筑、地形较高、低水压地段用户为保证用水而普遍采用的供水方式,特别是居民住宅楼使用最广。由于大部分屋顶水箱无专人管箱,未能做到定期清洗,加上水箱设置不科学等到会引起以下水质污染:

(1)水箱池体结构不合理,池内出现死水区。水箱池体面积过大而用户用水量少,使池内水体停留时间过长导致细菌繁殖,如滋生“红虫”等,引起池内水质恶化。

(2)水箱池体封口等处理不当,甚至有的水箱是敝开式的,或溢流管、放空管直接与下水管相连等,导致蚊子、蚂蚁或其它导物等进入水箱,发生腐烂、沉积底部。

1.9.2 自备水源,如井水、冷却水及其它水源和城市管网连接,中间虽有止回阀等隔开,但会发生阀门失灵或未及时关闭。当城市管网压力降低时,自备水会进入管网,引起污染。

1.9.3 其它污染。由用户生活用水设施质量差、器具安装不合理及某些人为因素等造成:如个别用户供水管道受到绿色水污染和用户发现自来水中存在活蚯蚓,均属于这一类。

1.10 管外废水通过管网漏、渗水部位、进入管网污染水质

管网因修理、降压供水等原因发生停水或管网产生负压时,管网周围、下水道的废水会通过管网的渗漏点渗透进供水管网,从而污染水质。

2、城市管网水质评价方法

针对管网中的水质污染情况,我们必须有一个评价其污染程度的标准和方法。目前常用的方法有单因子指数法、内梅罗指数法、灰色关联分析法、模糊综合评判法、主成分分析法以及综合水质标志指数法等。

2.1 单因子指数法,单因子指数评价法主要用在地标水质的评价分类中,我国目前实施的《地表水环境质量标准》(GB3838—2002) 对水质评价作出了具体规定:“地表水环境质

灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态历程分析。

灰色系统关联分析的具体计算步骤如下:

(1)确定反映系统行为特征的参考数列和影响系统行为的比较数列。反映系统行为特征的数据序列,称为参考数列;影响系统行为的因素组成的数据序列,称比较数列。

(2)对参考数列和比较数列进行无量纲化处理,由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。

(3)求参考数列与比较数列的灰色关联系数ξ(X i),所谓关联程度,实质上是曲线间几何形状的差别程度。因此曲线间差值大小,可作为关联程度的衡量尺度。对于一个参考数列X0有若干个比较数列X1,X2,…..,X n,各比较数列与参考数列在各个时刻(即曲线中的各点)的关联系数ξ(X i)可由下列公式算出:

其中ζ为分辨系数,0<ζ<1。

是第二级最小差,记为Δmin。是两级最大差,记为Δmax。为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。记为Δoi(k)。所以关联系数ξ(X i)也可简化如下列公式:

(4)求关联度ri ,因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值。

(5)排关联序,因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。灰色关联分析法的水质指标权重系数的确定较模糊综合评判法合理,结果也更接近于综合水质标志指数法。

灰色关联分析法体现了水环境系统的不确定性,在理论上是可行的。虽然分辨率低,但具有简单、可比的优点,而且由于影响水环境的变化因素不断增多、不断变化,水环境的不确定性逐渐增加,所以灰色评价法在水环境质量评价中应用日益广泛。

2.4 模糊综合评判法,由于水体环境本身存在大量的不确定因素,各个项目的级别划分、标准确定都具有模糊性。因此,模糊数学在水质综合评价中得到广泛应用。具有代表性的方法有:模糊综合评判法、模糊概率法、模糊综合指数法等,其中应用较多的是模糊综合评判法。这种方法根据各污染物的超标情况进行加权,但污染物毒性与浓度不成简单的比例关系。

因此,这种加权不一定符合实际情况。从理论上讲,模糊评价法体现了水环境中客观存在的模糊性和不确定性,符合客观规律,具有一定的合理性。但从目前的研究情况来看,采用线性加权平均极型得到的评判集易出现失真、失效、跳跃等现象。存在水质类别判断不准或结果不可比的问题,可操作性较差。

模糊综合评价法的基本思路:由监测数据确立各因子指标对各级标准的隶属度集,形成隶属度矩阵,再把因子的权重集与隶属度矩阵相乘,得到综合评判集,表明评价水体水质对各级标准水质的隶属程度,其中值最大的元素对应的类别即为水体评价类别。具体步骤如下:

①建立水质评价因子集合及等级集合;

②建立单因子评价矩阵;

③确定各因素的权重;

④建立水质评价模型,,计算评价结果。

模糊综合评判法的核心内容是确定隶属函数,进而求得隶属度以确定水质类别。污染物浓度处于相邻的两个级别之问时才存在判断上的模糊性,其隶属函数的模糊区间定义为一级,在其它区间上,隶属度为常数0或1。

某一水质指标实测浓度较大时,对指标权重系数影响大,通常是浓度越大,权重系数越大,因而浓度大的水质指标对水质级别判定的影响较大,但相对于单因子指数法,其污染最大的因子对水质等级的决定程度要小得多。

2.5 主成分分析法,在进行水质分析时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的—即运用主成分分析法。

主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n个水质样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的水质数据矩阵。

用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。

如果记原来的变量指标为x1,x2,…,x p,它们的综合指标——新变量指标为x1,x2,…,zm(m≤p)。则

在(2)式中,系数l ij由下列原则来决定:

(1)z i与z j(i≠j;i,j=1,2,…,m)相互无关;

(2)z1是x1,x2,…,x p的一切线性组合中方差最大者;z2是与z1不相关的x1,x2,…,x p的所有线性组合中方差最大者;……;z m是与z1,z2,……z m-1都不相关的x1,x2,…,x p 的所有线性组合中方差最大者。

主成分分析的计算步骤

通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:(1)计算相关系数矩阵

在公式(3)中,r ij(i,j=1,2,…,p)为原来变量xi与xj的相关系数,其计算公式为

因为R是实对称矩阵(即rij=rji),所以只需计算其上三角元素或下三角元素即可。

(2)计算特征值与特征向量

首先解特征方程|λI-R|=0求出特征值λi(i=1,2,…,p),并使其按大小顺序排列,即λ1≥λ2≥…,≥λp≥0;然后分别求出对应于特征值λi的特征向量ei(i=1,2,…,p)。

(3)计算主成分贡献率及累计贡献率

一般取累计贡献率达85-95%的特征值λ1,λ2,…,λm所对应的第一,第二,……,第m(m≤p)个主成分。

(4)计算主成分载荷

由此可以进一步计算主成分得分:

借助主成分分析方法可以初步了解供水管网中的水质变化情况,并根据相关性强弱将水质指标分成3组,为建立综合水质评价模型奠定基础。在研究管网水质指标的相关性时,只需考虑组内各项水质指标的关系,避免了把相关性较弱的水质指标放在一起讨论而影响研究结果。根据第一主成分排序结果可以判断管网水质末端的位置,当管网的水质末端和管网水流末端不统一或管网水质变化与管网水流方向不相符时,其原因可能是:某些管段出现故障(破损渗漏);某些管段设计不合理,出现“死头”;某些管段敷设年代久远,管道内部腐蚀严重。

2.6 综合水质标志指数法,综合水质标志指数主要有整数位、小数点后三位或四位有效数字组成,可表示为式(1):

WQI=X1X2X3X4(1)

式(1)中,WQI为综合水质标志指数;X1为综合水质级别;X2为综合水质在该水质级别变化区间中所处的位置,根据公式按四舍五入的原则确定;X3为参与综合水质评价的单项水质指标中,劣于水环境功能区目标的指标个数;X4为综合水质类别与水体功能区类别的比较结果,视综合水质的污染程度,且X4为一位或两位有效数字。

综合水质标识指数总体上包括两部分:(1)综合水质指数,为综合水质标识指数中的和,通过计算得出;(2)标识码,为综合水质标识指数中的和以,在求得综合水质指数的基础上,通过判断得出。

3、总结

相对于其它水质评价法,综合水质标志指以单因子指数法为基础,评价结果较其它方法更为接近水质的真实情况。由四位有效数字组成能有效地反映水质等级、水质判断为该等级的隶属度、水质功能情况及超过水质功能的污染指标个数。

综合水质标志指数法将劣V类水进行细化,指数在(6,7)之间的确定为不黑臭的劣V 类水,将综合指数大于7.0的定义为有黑臭的劣V类水。综合水质标志指数法相对于模糊评价法、灰色评价法计算简单、易于操作,已有应用的范例,可推广性很强。所以,建议一般的水质分析采用该法。同时,主成分分析法与灰色关联分析法对水质分析也有明显的优缺点,对特定的水质,可以采用改进型的内梅罗指数法,总之,采用何种水质分析方法,要根据待分析水样的质量和水样的用途等各因素而定。

地下水质量标准(GB14848-93)

1 引言 为保护和合理开发地下水资源,防止和控制地下水污染,保障人民身体健康,促进经济建设,特制订本标准。 本标准是地下水勘查评价、开发利用和监督管理的依据。 2 主题内容与适用范围 2.1 本标准规定了地下水的质量分类,地下水质量监测、评价方法和地下水质量保护。 2.2 本标准适用于一般地下水,不适用于地下热水、矿水、盐卤水。 3 引用标准 GB 5750 生活饮用水标准检验方法 4 地下水质量分类及质量分类指标 4.1 地下水质量分类 依据我国地下水水质现状、人体健康基准值及地下水质量保护目标,并参照了生活饮用水、 工业、农业用水水质最高要求,将地下水质量划分为五类。 Ⅰ类主要反映地下水化学组分的天然低背景含量。适用于各种用途。 Ⅱ类主要反映地下水化学组分的天然背景含量。适用于各种用途。 Ⅲ类以人体健康基准值为依据。主要适用于集中式生活饮用水水源及工、农业用水。 Ⅳ类以农业和工业用水要求为依据。除适用于农业和部分工业用水外,适当处理后可作生活饮用水。 Ⅴ类不宜饮用,其他用水可根据使用目的选用。

表1 地下水质量分类指标

根据地下水各指标含量特征,分为五类,它是地下水质量评价的基础。以地下水为水 源的各类专门用水,在地下水质量分类管理基础上,可按有关专门用水标准进行管理。 5 地下水水质监测 5.1 各地区应对地下水水质进行定期检测。检验方法,按国家标准GB 5750《生活饮用 水标准检验方法》执行。 5.2 各地地下水监测部门,应在不同质量类别的地下水域设立监测点进行水质监测,监 测频率不得少于每年二次(丰、枯水期)。 5.3 监测项目为:pH、氨氮、硝酸盐、亚硝酸盐、挥发性酚类、氰化物、砷、汞、铬(六价)、总硬度、铅、氟、镉、铁、锰、溶解性总固体、高锰酸盐指数、硫酸盐、氯化

综合评价理论

构成综合评价问题的五个要素分别为:被评价对象、评价指标、权重系数、综合评价模型和评价者。(评价目的、评价结果) 评价程序:熟悉评价对象、确立评价指标体系、确定指标权重、建立评价模型、分析评价结果 (1)被评价对象 被评价对象就是综合评价问题中所研究的对象,或称为系统。通常情况下,在一个问题中被评价对象是属于同一类的,且个数要大于1,不妨假设一个综合评价问题中有n个被评价对象(或系统),分别记为s1,s2,?,sn(n?1)。 (2)评价指标 评价指标是反映被评价对象(或系统)的运行(或发展)状况的基本要素。通常的问题都是有多项指标构成,每一项指标都是从不同的侧面刻画系统所具有某种特征大小的一个度量。 一个综合评价问题的评价指标一般可用一个向量表示,其中每一个分量就是从一个侧面反映系统的状态,即称为综合评价的指标体系。 (3)权重系数 每一综合评价的问题都有相应的评价目的,针对某种评价目的,各评价指标之间的相对重要性是不同的,评价指标之间的这种相对重要性的大小可以用权重系数来刻画。如果用wj 来表示评价指标xj(j?1,2,?,m)的权重系数,则应有m wj?0(j?1,2,?,m),且?wj?1。 j?1(4)综合评价模型 对于多指标(或多因素)的综合评价问题,就是要通过建立合适的综合评价数学模型将多个评价指标综合成为一个整体的综合评价指标,作为综合评价的依据,从而得到相应的评价结果。 (5)评价者 评价者是直接参与评价的人,可以是某一个人,也可以是一个团体。对于评价目的选择、评价指标体系确定、评价模型的建立和权重系数的确定都与评价者有关。 (6)评价目的 对某一事物开展综合评价,首先要明确为什么要综合评价,评价事物的哪一方面,评价的精确度要求如何,等等。 (7)评价结果 输出评价结果并解释其含义,依据评价结果进行决策。应该注意的是(转载于:综合评价理论),应正确认识综合评价方法,公正看待评价结果。综合评价结果只具有相对意义,即只能用于性质相同的对象之间的比较和排序。 综合评价的一般步骤: 明确评价目的;确定被评价对象;建立评价指标体系(包括评价指标的原始 值、评价指标的若干预处理等);确定与各项评价指标相对应的权重系数;选择或构造综合评价模型;计算各系统的综合评价值,并给出综合评价结果。 1. 评价指标类型的一致化 一般说来,在评价指标x1,x2,?,xm(m?1)中可能包含有“极大型”指标、“极小型”指标、“中间型”指标和“区间型”指标。 极大型指标:总是期望指标的取值越大越好; 极小型指标:总是期望指标的取值越小越好; 中间型指标:总是期望指标的取值既不要太大,也不要太小为好,即取适当的中间值为最好; 区间型指标:总是期望指标的取值最好是落在某一个确定的区间内为最好。

综合评价方法的发展与不足

综合评价方法的发展与不足 当前,随着我国社会经济的发展,各种各样的统计分析活动也空前活跃起来,这其中综合评价分析方法以其评价的全面性、客观性、整体性而被广泛应用于事物和某一观点的分析研究中。但从目前的应用来看,综合评价分析方法也被设计者赋予了过多的期望,而导致难以胜任其科学评价的重任。重设计而忽略解释、重结果而忽略起因和过程的现象亦不容小视。 一、综合评价方法的思想和作用 提到“评价”,自古就有“论功行赏、论资排辈、平心而论”之说,它是人类社会中一项经常性的、极为重要的认识活动。而在现实社会生活中,对一个事物的评价常常要涉及多个因素或方面。所谓综合评价分析,即“对评价对象的全体,根据所给的条件,采用一定的方法给每个评价对象赋予一个评价值,再据此择优或排序”。它不仅在宏观经济分析领域大显身手,如不同国家或地区间的经济实力、竞争力评价、现代化进程、社会发展监测、小康生活水平进程、环境质量监测、交通安全系统等领域的测评,其研究思想和方法也适用于微观分析,如企业的绩效评价、大学排名、居民购房购车选择、学生综合素质评价等。而目前,充斥于耳的各项指数,如天气指数、洗车指数、综合发展指数、CPI指数等也是综合评价结果的一种具体表现。 综合评价理论对于推进经济社会的建设、提升居民生活水平具有重要意义。具体表现为:一是通过定量分析评价方法,可以监测、揭示和分析经济社会发展过程中的问题及不足,从而采取相应对策;二是可以较为全面地掌握发展状态,防止以偏概全;三是便于进行动态发展的监测评价,为政府决策、宏观管理、居民个体消费提供参考依据。 二、综合评价方法的最新发展 随着科学的不断发展,不同领域知识的不断交叉、融合,综合评价理论因其自身的兼容并包性,使得综合评价模型可以吸收到运筹学、数据挖掘、模糊数学、管理科学等不同学科的多种方法之所长。系统的组成以“功能”为准则,只要是能用于综合评价的方法都可以看作为系统的成员。因此,综合评价作为一个多学科边缘交叉、相互渗透、多点支撑的新兴研究领域被专家和学者所推崇。 随着实际评价系统日益大型化、数字化、智能化和集成化,常规的综合评价方法,如线性规划法、专家评价法、综合指数法、层次分析法等已难以胜任复杂系统评价问题中所涉及的多层次、多因子的问题。目前,模糊综合评价、灰色综合评价、智能模型评价、组合评价成为解决实际评价的新的有效方法。 模糊综合评价(Fuzzy Comprehensive Evaluation)以模糊数学为基础,针对传统数学方法中“唯一解”的弊端,可以有效评价客观事物的差异在中介过渡时所呈现的“亦此亦比”性状态。有时,从一个等级到另一个等级间没有一个明确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫做中介过渡。而模糊数学理论的优势即在于解决“内涵明确,外延不明确”的“认知不确定”问题。比如,“年轻人”就是一个模糊概念,因为每一个人都十分清楚“年轻人”的内涵,但是要让你划定一个确切的范围,则很难办到。模糊综合评价则可应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,从多个因素对被评价事物隶属等级状况进行综合性评价。但不足之处是其本身并不能解决评价指标间相关造成的评价信息重复问题,隶属函数的确定还没有系统的方法。 灰色综合评价(Gray Comprehensive Evaluation)以灰色系统理论为基础,包括灰色关联度评价方法、灰色聚类分析方法等。灰色系统理论以“部分信息已知,部分信息未知”的“小样本”、“贫信息”不确定性系统为研究对象,其特点是“少数据建模”,主要通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行行为、演化规律的正确描述和有效监控。与模糊数学不同的是,灰色系统理论着重研究“外延明确,内涵不明确”的

地表水水质和地下水水质评价20 9

XX省水资源综合规划培训教材 地表水水质和地下水水质评价(《细则》第2.7-2.8节) XX省院 年月

目录 2.7 地表水水质 (2) 2.7.1 评价内容 (2) 2.7.2 水化学类型分析 (2) 2.7.3 现状水质评价 (2) 2.7.4 现状底质污染评价 (4) 2.7.5 水质变化趋势分析 (4) 2.7.6 水资源分区水质现状评价 (5) 2.7.7 水功能区水质达标分析 (5) 2.7.8 地表水供水水源地水质评价 (6) 2.8 地下水水质 (6) 2.8.1 基本技术要求 (6) 2.8.2 地下水化学分类 (7) 2.8.3 地下水水质现状评价 (7) 2.8.4 水质变化趋势分析 (9) 2.8.5 地下水污染分析 (10) 2.8.6 大型及特大型地下水水源地水质评价 (11) 附录Ⅱ-2 地表水化学类型阿廖金分类法 (12) 附录Ⅱ-3 地表水水质趋势回归分析日历年与十进位年折算方法 (14) 附录Ⅱ-3(增)趋势分析方法 (15) 附录Ⅱ-4 地表水水质综合指数评价方法 (21) 附录Ⅱ-5 地下水化学类型舒卡列夫分类法 (26)

2.7 地表水水质 2.7.1 评价内容 地表水水质是指地表水体的物理、化学和生物学的特征和性质。地表水水质评价内容包括各水资源分区地表水的水化学类型、现状水质(含污染状况)、水质变化趋势、地表水供水水源地水质以及水功能区水质达标情况等。要求广泛收集各有关部门的水质监测资料,并注意对其口径与标准的均一化。 2.7.2 水化学类型分析 (1)本次水化学类型分析要求在第一次全省水资源评价相关成果及其他有关工作成果的基础上进行必要的补充、分析。选用钾、钠、钙、镁、重碳酸根、氯根、硫酸根、碳酸根等项目,采用阿廖金分类法划分水化学类型,并调查分析总硬度及矿化度。将所选用水质监测站点的监测资料填入附表2-7-1中,并绘制总硬度分布图(附图2-7-1)、矿化度分布图(附图2-7-2)和地表水化学类型图(附图2-7-3)。 (2)总硬度等值线线值为:15mg/L、30mg/L、55mg/L、85mg/L、170mg/L、250mg/L。 (3)矿化度等值线线值为:50mg/L、100mg/L、200mg/L、300mg/L、500mg/L、1000mg/L。 (4)地表水化学类型着色图例为:重碳酸盐类为绿色,硫酸盐类为黄色,氯化物类为蓝色;阳离子分组,Ca组为空白,Na组为横线,Mg组为竖线;水型图例为,Ⅰ型为圆圈,Ⅱ型为圆点,Ⅲ型为十字。 (5)阿廖金分类法的具体操作步骤及方法见附录Ⅱ-2。 2002年下半年全省断面增加钾、钠、钙、镁、重碳酸根、碳酸根、矿化度7个项目。 2.7.3 现状水质评价 (1)地表水水质现状评价的基准年采用2000年,若2000年资料不全,可进行补测或以2000年前后1~2年的数据代替。 (2)评价范围应为进行了水功能区划的所有江、河、湖、库。 (3)按单站及河长或断面水质类别统计地表水水质现状评价成果,要求按河流、湖泊(水库)分别进行评价。 1)河流水质现状评价

用模糊数学综合评价法对水质进行评价

用模糊数学综合评价法对水质进行评价 付智娟 (中山市环境保护科学研究所,中山 542803) 摘 要:综合评价法作为模糊数学的一种具体应用方法,在很多领域中得到了广泛的运用。由于综 合评价法的数学模型简单、容易掌握,更适合于对多因素、多层次的复杂问题的评价。将其应用于对水质的评价能更客观、科学地反映水质情况。 关键词:模糊数学 ;综合评价法;水质评价法 Abstract:As the praxis of fuzzy mathematics,comprehensive evaluation is prevalent used in many fields ,Because it is a simple mathematical model and easy to use,comprehensive evaalution has advantage to solve the complex problem that have more different https://www.doczj.com/doc/0c16882336.html,ing it to evaluate the quality of water can get an objective and scientific result. Key words: fuzzy mathematics; comprehensive evaluation; evaluate the quality of water 模糊数学理论是近年来发展起来的科学,水质的好坏具有模糊的概念,因此也可以用它来评价水质,对水质进行综合评价,打破以往仅用一个确定性的指标来评价水质的方法,并可以弥补其中的不足,更客观、科学地对水质进行评价。现引用对某水质进行评价的例子来说明模糊数学综合评价在水质评价中的运用。 1. 基本概念 1. 1隶属度 以往的水质分级中多用一个简单的数学指标为界限,造成界限两边分为截然不同的等级.例如参数DO , I 级水的指标为7mg/L,则7.1mg/L 为I 级水,但DO 若为6.9mg/L 就的定为II 级水。事实上,由于水质的污染程度属于模糊概念,所以这里用隶属概念来描述模糊的水质分级界限。所谓隶属度系指某事物所属某种标准的程度:如:DO=7.1mg/L 时,隶属I 级水的程度为100%;6.9mg/L 时,隶属I 级水的程度达95%。 隶属度可用隶属函数表示。为方便起见,取线性函数: 10X X X X --或 11X X X X --,(X 0

综合评价与决策方法

正理想解 Z 是一个方案集 A 中并不存在的虚拟的最佳方案,它的每个属性值都是决策 矩阵中该属性的最好值;而负理想解 Z 则是虚拟的最差方案,它的每个属性值都是决策矩 阵中该属性的最差值。在 n 维空间中,将方案集 A 中的各备选方案 a i 与正理想解 Z 和负理 想解 Z 的距离进行比较,既靠近正理想解又远离负理想解的方案就是方案集 A 中的最佳方 ∑ x 设由决策人给定各属性的权重向量为 w = (w 1, w 2 , , w n ) ,则 步骤三,确定正理想解 Z 和负理想解 Z 。 设正理想解 Z 的第 j 个属性值为 z j ,负理想解 Z 第 j 个属性值为 z j ,则 ??max z ij , 正理想解 z j = ? 综合评价与决策方法及其计算机软件实现 评价方法大体上可分为两类,其主要区别在确定权重的方法上。一类是主观赋权法,多 数采取综合咨询评分确定权重,如综合指数法、模糊综合评判法、层次分析法、功效系数法 等。另一类是客观赋权,根据各指标间相关关系或各指标值变异程度来确定权数,如主成分 分析法、因子分析法、理想解法(也称 TOPSIS 法)等。目前国内外综合评价方法有数十种 之多,其中主要使用的评价方法有主成分分析法、因子分析、TOPSIS 、秩和比法、灰色关 联、熵权法、层次分析法、模糊评价法、灰色理论法、物元分析法、聚类分析法、价值工程 法、神经网络法等。 1.理想解法 目前已有许多解决多属性决策的排序法, 如理想点法、简单线性加权法、加权平方和 法、主成分分析法、功效系数法、可能满意度法、交叉增援矩阵法等。本节介绍多属性决策 问题的理想解法,理想解法亦称为 TOPSIS 法, 是一种有效的多指标评价方法。这种方法通 过构造评价问题的正理想解和负理想解, 即各指标的最优解和最劣解, 并用靠近正理想解 和远离负理想解的程度, 通过计算每个方案到理想方案的相对贴近度来对方案进行排序, 从而选出最优方案。 1.1 方法和原理 设 多 属 性 决 策 方 案 集 为 A = {a 1 , a 2 , , a m } , 衡 量 方 案 优 劣 的 属 性 向 量 为 X = {x 1, , x n },这时方案集 A 中的每个方案 a i ( i = 1, , m )的 n 个属性值构成的向量 是 X i = (x i 1, , x in ) ,它作为 n 维空间中的一个点,能唯一地表征方案 a i 。 * * 案;并可以据此排定方案集 A 中各备选方案的优先序。 用理想解法求解多属性决策问题的概念简单,只要在属性空间定义适当的距离测度就能 计算备选方案与理想解。TOPSIS 法所用的是欧氏距离。至于既用正理想解又用负理想解是 因为在仅仅使用正理想解时有时会出现某两个备选方案与正理想解的距离相同的情况,为了 区分这两个方案的优劣,引入负理想解并计算这两个方案与负理想解的距离,与正理想解的 距离相同的方案离负理想解远者为优。 1.2 TOPSIS 法的算法步骤 TOPSIS 法的具体算法如下。 步骤一,用向量规划化的方法求得规范决策矩阵。 设多属性决策问题的决策矩阵 X = (x ij )m ?n ,规范化决策矩阵 Y = ( y ij )m ?n ,则 y ij = x ij m i =1 2 ij , i = 1,2, , m , j = 1,2, , n (1) 步骤二,构成加权规范阵 Z = (z ij )m ?n 。 T z ij = w j ? x ij , i = 1,2, , m , j = 1,2, , n * 0 * * 0 0 (2) * i ??min z ij , j 为效益型属性 j 为成本型属性 , j = 1,2, , n (3)

综合评价方法综述与比较

综合评价方法综述与比较 综合评价的概念:所谓统计综合评价,通常就是指多指标综合评价技术,它是利用一定的统计指标体系,采用特定的评价模型和方法,对被评价对象多个方面的数量特征进行高度的抽象和综合,转化为综合评价值,进而确定现象的优劣、类型或对现象进行排序的一种统计方法。目前常用的方法有层次分析法、盗用函数法、多元统计综合评价技术法(包括主成分分析法、因子分析法、聚类分析法等)。此外像人工神经网络综合评价法、模糊综合评判法、灰色系统理论等新兴综合评价技术还在源源不断地涌现。 一简易的综合评价方法 (一),综合指数法 1,直接综合法概念:直接综合法是在确定一套合理的指标体系基础上,对各项指标个体指数进行相加,直接计算出综合评价指数。优点:公式简单易懂,指标数值计算简便。缺点:得到的数值比较粗糙,以此得到的数据进行评价结果精确度不高。 2,加权综合法概念:加权综合法是在确定一套合理的指标体系的基础上,对各项指标个体指数进行加权平均,计算出综合评价数值。优点:与直接综合法相比,加权综合法指标数值的计算考虑到了各指标的比重问题,将各指标赋予不同的权重,以体现不同指标的不同重要程度。缺点:各指标的重要程度的判断具有很大主观性。 (二) 功效系数法概念:功效系数综合评价法是指根据多目标规划的原理,把所要考核的各项指标按照多档次标准,通过功效函数转化为可以度量的评价分数,据以对被评价对象进行总体评价得分的一种方法。优点:方法简便和可操作性强是这种方法的优点所在。缺点:竞争力评价中,不同行业各指标的重要程度有所不同,而权数是由评判人员主观确定,因此科学性有所欠缺,往往评价结果与实际状况出入较大。 (三)综合积分法概念:综合积分法是对构成评价指标体系的每个指标评分,将所有得分相加算出总分,作为综合评价数值的一种评价方法。适用范围:适用于定量分析且变量指标可以用数字表达的评价分析。优点:此法操作简单,结果与、易于理解。缺点:对各指标变量的评分比较主观,没有客观精确地评分公式。 二运筹学中综合评分法 (一)层次分析法概念:AHP法(Analytic Hierarchy Process, AHP),即层次分析法,是美国著名运筹学家,匹兹堡大学萨蒂教授于本世纪七十年代创立的一种实用的多准则决策方法。它把一个复杂决策问题表示为一个有序的递阶层次结构,通过人们的比较判断,计算各种决策方案在不同准则及总准则之下的相对重要性量度,从而据之对决策方案的优劣进行排序。优点:1,系统性的分析方法;2,简洁实用的决策方法;3,所需定量数据信息较少;缺点:1,不能为决策提供新方案;2,定量数据较少,定性成分多,不易令人信服;3,指标过多时数据统计量大,且权重难以确定;4,特征值和特征向量的精确求法比较复杂; (二)模糊评价法概念:模糊评价法是根据模糊数学的隶属度理论把定性评价转化为定量评价的一种方法。优点:(1)为定性指标定量化提供了有效的方法,实现了定性和定量方法的集合。(2)在客观事物中,一些问题往往不是绝对的肯定或绝对的否定,涉及到模糊的因素,而且模糊综合判别评价法则很好的解决了判别的模糊和不确定的问题。(3)所得结果为一向量,即评语集在其论语上的子集,克服了传统数字学方法结果单一的缺陷,结果包含的信息丰富。缺点:(1)不能解决评价指标间相关造成的信息重复的问题。(2)各因素权重的确定带有一定的主观性。(3)在某些情况下,隶属函数的确定有一定困难,尤其是多目标评价模型,要对每一目标,每一个因素确定隶属函数,过于繁琐,实用性不强。应

水质综合污染指数评价方法

水质综合污染指数 飞水质综合污染指数的计算 水质综合污染指数是在单项污染指数评价的基础上计算得到的。考虑到上海地表水污染特点,在计算水质综合污染指数时通常选择上海市具有代表性的污染物,包括高锰酸盐指数、五日生化需氧量、化学需氧量、氨氮、石油类、挥发酚、总磷和汞。也可以根据需要选择必要的污染物参与评价。 Ci Pi = Si

其中,O-污染物实测浓度; &-相应类别的标准 综合污染指数的计算方法: 应该注意到,水质综合污染指数的计算与水质类别标准密切相关,因此综合污染指数的比较只能在同一类别标准基础上进行。 1、水质污染程度的判别 根据水质综合污染指数来判别污染程度是相 对的,即对应于水体功能要求评判其污染程度。如 II类水体的水质要求明显高于III类、IV类、V类水体,假如不同类别水体的水质相同,则要求越高的水体,其对应的污染程度越严重。根据水质综合污染指数判别水质污染程度必须基于下列条件: (1)污染程度是对应于相应类别的水质要求的。 (2)污染程度的分级是为了定性反映水质的现状, 水体污染说明该水域原定的功能不能安全、全面地 发挥效应,其功能得不到保证。不同功能水体即使达到相同的污染程度,其危害和影响也是各不相同的。

(3)根据水质综合指数的大小可将水体分为合格、基本合格、污染和重污染四类。当采用上述八项污染物进行评价时,不同类型水体相对应的综合指数和水质现状阐述如下: 合格:P W0.8各项水质指标基本上能达到相应的功能标准,即使有个别指标超标,但超标倍数较小(1 倍以内),水体功能可以得到充分发挥,没有明显的制约因素。 基本合格:0.82.0,各项水体指标的总体均值已超过标准 1 倍

地下水水质分析标准

中华人民共和国国家标准GB/T 14848-9 1、引言 为保护和合理开发地下水资源、防止和控制地下水污染、保障人民身体健康、促进经济建设,特制订本标准。 本标准是地下水勘查评价、开发利用和监督管理的依据。 2、主题内容与适用范围 2.1、本标准规定了地下水的质量分类、地下水质量监测、评价方法和地下水质量保护 。 2.2、本标准适用于一般地下水,不适用于地下热水、矿水、盐卤水。 3、引用标准 GB 5750 生活饮用水标准检验方法 4、地下水质量分类及质量分类指标 4.1、地下水质量分类 依据我国地下水水质现状、人体健康基准值及地下水质量保护目标,并参照了生活饮用水、工业、农业用水水质最高要求,将地下水质量划分为五类: Ⅰ类:主要反映地下水化学组分的天然低背景含量,适用于各种用途 Ⅱ类:主要反映地下水化学组分的天然背景含量,适用于各种用途 Ⅲ类:以人体健康基准值为依据,主要适用于集中式生活饮用水水源及工、农业用水 Ⅳ类:以农业和工业用水要求为依据,除适用于农业和部分工业用水外,适当处理后可作生活饮用水 Ⅴ类:不宜饮用,其他用水可根据使用目的选用 4.2、地下水质量分类指标(见表一) 表一地下水质量分类指标 项目Ⅰ类Ⅱ类Ⅲ类Ⅳ类Ⅴ类 色(度)≤5 ≤5 ≤15 ≤25 >25 嗅和味无无无无有 浑浊度(度)≤3 ≤3 ≤3 ≤10 >10 肉眼可见物无无无无有 PH 06.5~8.5 5.5~6.5 8.5~9 <5.5,>9 总硬度(以CaCO3计)(mg/l)≤150 ≤300 ≤450 ≤550 >550 溶解性总固体(mg/l)≤300 ≤500 ≤1000 ≤2000 >2000 硫酸盐(mg/l)≤50 ≤150 ≤250 ≤350 >350 氯化物(mg/l)≤50 ≤150 ≤250 ≤350 >350 铁(Fe)(mg/l)≤0.1 ≤0.2 ≤0.3 ≤1.5 >1.5 锰(Mn)(mg/l)≤0.05 ≤0.05 ≤0.1 ≤1.0 >1.0 铜(Cu)(mg/l)≤0.01 ≤0.05 ≤1.0 ≤1.5 >1.5 锌(Zn)(mg/l)≤0.05 ≤0.5 ≤1.0 ≤5.0 >5.0 钼(Mo)(mg/l)≤0.001 ≤0.01 ≤0.1 ≤0.5 >0.5 钴(Co)(mg/l)≤0.005 ≤0.05 ≤0.05 ≤1.0 >1.0 挥发性酚类(以苯酚计)(mg/l)≤0.001 ≤0.001 ≤0.002 ≤0.01 >0.01 阴离子合成洗涤剂(mg/l)不得检出≤0.1 ≤0.3 ≤0.3 >0.3

综合水质评价方法概述

综合水质评价方法概述 目前在综合水质评价中应用较多典型评价方法包括:单因子评价法、污染指数法、模糊数学评价法、灰色系统评价法、层次分析评价法、物源分析评价法、人工神经网络评价法,以及水质标识指数评价法。 单因子评价法 单因子评价法是分别将各个水质标准规定的水质指标进行对比分析,在所有参与综合水质评价的水质指标中,选择水质最差的单项指标所属类别来确定所属水域综合水质类别;单因子指数评价计算简单,且可清晰判断出主要污染因子及其主要污染区水域。我国在水质监测公报中,便采用了单因子评价水体综合水质。 单因子指数P由一位整数、小数点后二位或三位有效数字组成,表示为: X P i3 X X 1 2 式中:X1————第i项水质指标的水质类别; X2————监测数据在X1类水质变化区间中所处位置根据公式按四舍五入的原则计算确定。 X3————水质类别与功能区划设定类别的比较结果,视评价指标的污染程度,X3为一位或两位有效数字。 根据Pi的数值可以确定水质类别、水质数据、水环境功能区类别,可以比较水质的污染程度,Pi 越大,水质越差,污染越严重,如果Pi大于6.0,水质劣于V类水。 单因子评价法,优点:是简单、易操作。缺点:但单因子评价中污染因子占100%权重,其余因子权重为零,而随水质监测结果不断变化,浓度越大权重越大,随意性较大,不去考虑各因子对水环境影响的差异性,会忽略很多有用的信息,具有一定的局限性。 污染指数法 污染指数法的基本思想是:①针对单项水质指标,将其实测值与对应的水环境功能区类别与水质标准相比,形成单项污染指数;②对所有参与综合水质评价的单项水质指标,将各指标的单项污染指数通过算数平均、加权平均、连乘及指数等各种数学方法得到一个综合指数,来评价综合水质。 优点:指数法综合评价对水质描述是定量的,只要项目、标准、监测结果可靠,综合评价从总体上来讲是能基本反映污染的性质和程度的。并且对于全国流域尺度而言,污染指数法计算简便,便于进行不同水系之间或同一水系不同时问上的基本污染状况和变化的比较。缺点:选择不同的污染因子会使污染指数值出现波动,当水体的某些污染物评价标准值很低,而这些污染物未被检出时,依据数据的填报原则,就将其报为检出限的一半。此时进行污染指数计算就会夸大水污染程度。 模糊数学评价法 模糊数学理论是美国理论控制专家L.A.Zadeh于1965年提出的。在水环境质量综合评价中,涉及大量的复杂现象和多种因素的相互作用,也存在大量的模糊现象和模糊概念,因此水质评价也可以采用模糊数学的方法进行定量化处理。模糊数学评价法包括模糊综合评判法、模糊聚类法、模糊模式识别法等,其中最典型的方法是模糊综合评判法,其基本思想是:①构造水质指标对各类水质类别的隶属函数;②根据隶属度函数,计算水质指标实测值对各类水质类别的隶属度,构造模糊关系矩阵;③计算各类水质指标的权重,构造权重向量;④将权重向量和模糊关系矩阵相乘,得到综合水质对各类水质类别的隶属度,最终判断出评价样本的综合水质级别。 优点:当在水环境质量综合评价中,涉及到大量的复杂现象和多种因素的相互作用时,用模糊关系合成原理,可将一些边界不清、不易定量化的因素定量化。缺点:当水质评

水质综合评价的方法

水质综合评价的方法 水环境质量评价,就是通过一定的数理方法与手段,对某一水环境区域进行环境要素分析,对其作出定量描述通过水环境质量评价,摸清区域水环境质量发展趋势及其变化规律,为区域环境系统的污染控制规划及区域环境系统工程方案的制定提供依据。 1.指数评价法 指数评价法可分为单因子污染指数法和水质综合污染指数法,单因子污染指数表示单项污染物对水质污染影响的程度,水质综合污染指数表示多项污染物对水质综合污染的影响程度。 (1)单因子污染指数法 单因子污染指数法是将某种污染物实测浓度与该种污染物的评价标准进行比较以确定水质类别的方法。即将每个水质监测参数与《国家地面水环境质量标准》(GB3838—2002)进行比较,确定水质类别,最后选择其中最差级别作为该区域的水质状况类别。 (2)水质综合污染指数法 水质综合污染指数法是指在求出各个单一因子污染指数的基础上,再经过数学运算得到一个水质综合污染指数,据此评价水质,并对水质进行分类的方法。对分指数的处理不同,决定了指数法的不同形式,有诸如简单迭加型指数、算术平均型指数、加权平均型指数、罗斯水质指数、内梅罗指数、黄浦江污染指数、豪顿水质指数等。 单因子污染指数只能代表一种污染物对水质污染的程度,不能反映水质整体污染程度:综合污染指数法是对整体水质做出的定量描述,这样的评价结果只能定性地说明污染程度是轻、严重还是非常严重,不能确定其功能类别为几类。但是,只要项目、标准、监测结果可靠,综合评价在总体上是可以基本反映水体污染性质与程度的,而且便于同一水

体在时间上、空间上的基本污染状况和变化的比较,所以现在进行水质污染评价时常采用这种方法。 2.基于模糊理论的水环境评价法 由于水体环境本身存在大量的不确定因素,各个项目的级别划分、标准确定都具有模糊性。因此,模糊数学在水质综合评价中得到广泛应用。具有代表性的方法有:模糊综合评判法、模糊概率法、模糊综合指数法等,其中应用较多的是模糊综合评判法,这种方法根据各污染物的超标情况进行加权,但污染物毒性与浓度不成简单的比例关系,因此,这种加权不一定符合实际情况。从理论上讲,模糊评价法体现了水环境中客观存在的模糊性和不确定性,符合客观规律,具有一定的合理性。但从目前的研究情况来看,采用线性加权平均极型得到的评判集易出现失真、失效、跳跃等现象,存在水质类别判断不准或结果不可比的问题,可操作性较差。 3.基于灰色系统理论的水环境评价法 由于水环境质量数据都是在有限的时间和空间内监测得到的,信息是不完全的或不确切的,因此,可将水环境系统视为一个灰色系统,即部分信息已知、部分信息未知或不确知的系统,据此对水环境进行综合评价。基于灰色系统理论的水质评价法通过计算评价水质中各因子的实测浓度与各级水质标准的关联度大小确定评价水质的级别。根据同类水体与该类标准水体的关联度大小还可以进行优劣比较,水质综合评价的灰色系统方法有灰色聚类法、灰色贴近度分析法、灰色关联评价法等。 灰色评价法体现了水环境系统的不确定性,在理论上是可行的,虽然分辨率低,但具有简单、可比的优点,而且由于影响水环境的变化因素不断增多、不断变化,水环境的不确定性逐渐增加,所以灰色评价法在水环境质量评价中应用日益广泛。 4.基于人工神经网络的水环境评价法

水质综合污染指数评价方法(优推材料)

水质综合污染指数 一、水质综合污染指数的计算 水质综合污染指数是在单项污染指数评价的基础上计算得到的。考虑到上海地表水污染特点,在计算水质综合污染指数时通常选择上海市具有代表性的污染物,包括高锰酸盐指数、五日生化需氧量、化学需氧量、氨氮、石油类、挥发酚、总磷和汞。也可以根据需要选择必要的污染物参与评价。 应该注意到,水质综合污染指数的计算与水质类别标准密切相关,因此综合污染指数的比较只能在同一类别标准基础上进行。 二、水质污染程度的判别

根据水质综合污染指数来判别污染程度是相 对的,即对应于水体功能要求评判其污染程度。如II类水体的水质要求明显高于III类、IV类、V类水体,假如不同类别水体的水质相同,则要求越高的水体,其对应的污染程度越严重。根据水质综合污染指数判别水质污染程度必须基于下列条件: (1)污染程度是对应于相应类别的水质要求的。 (2)污染程度的分级是为了定性反映水质的现状,水体污染说明该水域原定的功能不能安全、全面地发挥效应,其功能得不到保证。不同功能水体即使达到相同的污染程度,其危害和影响也是各不相同的。 (3)根据水质综合指数的大小可将水体分为合格、基本合格、污染和重污染四类。当采用上述八项污染物进行评价时,不同类型水体相对应的综合指数

和水质现状阐述如下: 合格:P≤0.8,各项水质指标基本上能达到相应的功能标准,即使有个别指标超标,但超标倍数较小(1倍以内),水体功能可以得到充分发挥,没有明显的制约因素。 基本合格:0.82.0,各项水体指标的总体均值已超过标

水质评价国标

附件: 地表水环境质量评价办法 (试 行) 二○一一年三月 —3—

目 录 一、基本规定 (6) (一)评价指标 (6) 1.水质评价指标 (6) 2.营养状态评价指标 (6) (二)数据统计 (6) 1.周、旬、月评价 (6) 2.季度评价 (6) 3.年度评价 (6) 二、评价方法 (7) (一)河流水质评价方法 (7) 1.断面水质评价 (7) 2.河流、流域(水系)水质评价 (7) 3.主要污染指标的确定 (8) (二)湖泊、水库评价方法 (9) 1.水质评价 (9) 2.营养状态评价 (10) (三)全国及区域水质评价 (11) 三、水质变化趋势分析方法 (12) (一)基本要求 (12) (二)不同时段定量比较 (12) —4—

(三)水质变化趋势分析 (13) 1.不同时段水质变化趋势评价 (13) 2.多时段的变化趋势评价 (14) 附录一:污染变化趋势的定量分析方法 (15) 附录二:术语和定义 (17) —5—

为客观反映地表水环境质量状况及其变化趋势,依据《地表水环境质量标准》(GB3838-2002)和有关技术规范,制定本办法。本办法主要用于评价全国地表水环境质量状况,地表水环境功能区达标评价按功能区划分的有关要求进行。 一、基本规定 (一)评价指标 1.水质评价指标 地表水水质评价指标为:《地表水环境质量标准》(GB3838-2002)表1中除水温、总氮、粪大肠菌群以外的21项指标。水温、总氮、粪大肠菌群作为参考指标单独评价(河流总氮除外)。 2.营养状态评价指标 湖泊、水库营养状态评价指标为:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)和高锰酸盐指数(COD Mn)共5项。 (二)数据统计 1.周、旬、月评价 可采用一次监测数据评价;有多次监测数据时,应采用多次监测结果的算术平均值进行评价。 2.季度评价 一般应采用2次以上(含2次)监测数据的算术平均值进行评价。 3.年度评价 国控断面(点位)每月监测一次,全国地表水环境质量年度评—6—

地下水环境影响评价评价

6 地下水环境影响评价 6.1 地下水环境影响评价级别 6.1.1 建设项目分类 本项目生产及生活用水全部厂区由2口自备水井(供水能力80m3/h)供给;生产废水酸碱废水(脱硫用水、栈桥冲洗及煤场喷洒)、脱硫废水(中和处理后回用于灰渣加湿)、锅炉排污水(冷却后回用于脱硫工艺用水、灰渣加湿与煤场喷洒)、非经常性废水(锅炉酸洗废水、空气预热器冲洗水等,中和后用于煤场喷洒)不外排,循环冷却水排污水(950.4m3/a)和生活污水(480m3/a)满足《污水排入城镇下水道水质标准》(CJ343-2010)B级标准的进水水质标准要求后经市政管网排入鱼台绿都水质净化有限公司处理厂集中处理。因此,本项目建设、生产运行和服务期满后的各个过程中,可能引起地下水流场或地下水水位变化及导致环境水文地质问题,可能造成地下水水质污染,根据《环境影响评价技术导则地下水环境》(HJ 610-2011),本项目属Ⅲ类建设项目。 6.1.2 地下水环境影响评价级别 6.1.2.1、项目工作等级划分依据 本项目(Ⅲ类)工作等级划分依据见表6.1-1。 表6.1-1 本项目(Ⅲ类)工作等级划分依据表

6.1.2.2、项目评价工作等级 本项目(Ⅲ类)评价工作等级见表6.1-2。 表6.1-2 本项目(Ⅲ类)评价工作等级表 综上可知,根据《环境影响评价技术导则地下水环境》(HJ 610-2011),本

项目地下水评价工作等级为三级。 6.2 地下水环境现状监测与评价 6.2.1地下水环境现状监测 6.2.1.1监测布点 根据评价区内地下水流向,在项目区等处设置3个地下水监测点位。监测布点具体位置见表6.2-1及图6.2-1所示。 表6.2-1 监测布点具体位置表 6.2.1.2 监测项目 pH、总硬度、高锰酸盐指数、氟化物、硫酸盐、硝酸盐、亚硝酸盐、挥发酚、氨氮、氰化物、氯化物、溶解性总固体、砷、汞、六价铬、铅、铁、锰、铜、锌、镍21项。同时测量水温、井深和地下水埋深。 6.2.1.3 监测分析方法 表6.2-2 地下水监测方法一览表

某市地下水水质评价

摘要 本文在对本市地下水监测数据的基础上,采用水质综合评价法和水质开发利用功能法评价了地下水污染现状,并在此基础上探讨了地下水污染预防措施与对策,得出主要结论有:地下水评价结果为优良的有1眼井,占监测井数的10%;评价结果为较差的有1眼井,占监测井数的10%;评价结果为极差的共8眼井,占监测井数的80%。符合饮用水标准的井仅占10%,大部分井符合农田灌溉水质标准。地下水污染整体比 较严重,已经不适合作为饮用水水源。主要的污染因子为Hg、NO 3-、NO 2 -和Mn。针对 评价结果,提出来地下水污染防治措施建议,为遏制地下水污染趋势,改善地下水环境质量提供参考依据。 关键词:地下水污染水质评价地下水污染预警污染防治

Abstract Based on the groundwater monitoring data in the city, on the basis of the comprehensive evaluation method of water quality and water quality evaluation method for the development and utilization of function of the current situation of groundwater pollution, on the basis of groundwater pollution prevention measures and countermeasures are discussed, the main conclusions are: groundwater evaluation result for the fine well in 1 eye, accounting for 10% of the monitoring well number;The evaluation results for the poor have 1 Wells, accounting for 10% of the monitoring well number;The evaluation results for the poor, a total of 8 Wells, accounting for 80% of the monitoring well number.Up to the standard of drinking water well accounted for only 10%, most of the well irrigation water quality standards.Groundwater pollution is more serious whole, is not suitable for drinking water sources.The main pollution factor for Hg, NO3 - and NO2 - and Mn.According to the evaluation results, bring up groundwater pollution prevention and control measures suggested, to curb trend of groundwater pollution, improve the quality of groundwater environment, provide a reference basis. Keywords: water quality evaluation of the groundwater. pollution early warning .pollution prevention.control of groundwater pollution. 目录

相关主题
相关文档 最新文档