当前位置:文档之家› 1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理
1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理

1.1 原子荧光光谱法原理

原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂

KBH

4

反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。1.2 原子荧光的类型

原子荧光是一种辐射的去活化(decactivation)过程。当有原子吸收由一合适的激发光源发射出的特征波长辐射后被激发,接着辐射区活化而发射出荧光。基本上,荧光线的波长和激发线的波长相同,也有可能比激发线的波长长,但比激发线波长短的情况也有,但不多。原子荧光有5中基本类型:①共振荧光。即激发波长与产生的荧光波长相同时,这种荧光称为共振荧光,是原子荧光分析中最常用的一种荧光;②直跃线荧光。即激发波长大于产生的荧光波长相同时,这种荧光称为直跃线荧光;③阶跃线荧光。即激发波长小于产生的荧光波长相同

时,这种荧光称为阶跃线荧光;④热助阶跃线荧光.既原子吸收能量由基态E

激发

至E

2能级时,由于受到热能的进一步激发,电子可能跃迁至于E

2

相近的较高能级

E 3,当其由E

3

跃迁到较低能级E

1

时所发射的荧光,称为热助阶跃线荧光;⑤热助

反Stokes荧光。即电子从基态E

0邻近的E

能级激发至E

能级时,其荧光辐射

过程可能是由E

3回到E

所发出的荧光成为热助反Stokes荧光。

1.3 汞的检测方法

汞及其化合物属于剧毒物质,是国际国内进出口商品中一项重要理化指标。汞在体内达到一定量时,将对人的神经系统、肾、肝脏产生严重的损害。汞测定方法有冷原子吸收光谱法、二硫腙比色法、原子荧光光谱分析法、电热原子吸收

光谱法、电感耦合等离子体质谱法(ICP-MS)、X射线荧光分析、HPLC-ICP/MS和ICP-AES等。

1.4 汞的检测方法对比

在上述各种测定方法中,原子吸收法灵敏度高,但精密度较差;经典分光光度法所需设备简单,但灵敏度较低;X射线荧光分析灵敏度高、且不损伤试样,但所需设备昂贵;HPLC-ICP/MS原子吸收法灵敏度高,但精密度较差,成本非常高;ICP-AES检出限高,耗气量非常大,成本高。

而原子荧光光谱法(AFS)相对于以上其它方法,具有以下优点:①谱线简单,仅需分光本领一般的分光光度计,甚至可以用滤光片或用日盲光电倍增管直接测量;②灵敏度高,检出限低;③适用于多元素同时分析;④线性范围宽,可达3个数量级:⑤分析速度快、操作简便。而原子荧光光谱法比其它方法准确度好、灵敏度高、检出限低等优点,特别是HG-AFS测定汞具有极低的检出限,基体干扰少。

正是因为原子荧光法具有以上的优势,所以在本文中作者使用了氢原子荧光光谱法测定化妆品中的汞,通过加标回收率的实验,保证了测定结果的准确度和精密度。在实际工作中有很大的推广价值,具有社会效益和经济效益,很重要的一点是维护了广大消费者的健康。

2.0 本文章存在的不足

本文样品前处理采用的方法是电热板加热消解,相对于微波消解来说,不仅需要酸的量比较大,消解时间久,而且是开口瓶装,还需要加入其它成分(五氧化二钒),因此容易造成样品污染和损失;文章的摘要不能让读者很清楚的了解到这篇文章具体做了什么东西,存在书写不规范,没有能够很好的总结文章涉及到的内容;没有利用国家一级生物标准物质进行准确度的验证,所以整个实验方法及实验结果缺乏足够的验证;虽然本文中汞的标准曲线线性很好,但实际汞的测定中标准曲线线性范围不能太高,最好高标浓度在1.0μg/L以下,因为汞的测定中汞的记忆性残留非常严重,而且荧光值非常高,所以会造成严重的基线漂移。

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

————————————————————————————————作者:————————————————————————————————日期:

第十章原子吸收光谱分析法 1.共振线与元素的特征谱线 基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。 激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。 元素的特征谱线: (1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。 (2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。特征谱线。 (3)利用特征谱线可以进行定量分析。 2.吸收峰形状 原子结构较分子结构简单,理论上应产生线状光谱吸收线。实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。 由 I t =I e-Kvb 透射光强度I t 和吸收系数及辐射频率有关。以K v 与v作图得图10一1所示 的具有一定宽度的吸收峰。

3.表征吸收线轮廓(峰)的参数 (峰值频率):最大吸收系数对应的频率或波长; 中心频率v 中心波长:最大吸收系数对应的频率或波长λ(单位为nm); 半宽度:△v 0B 4.吸收峰变宽原因 (1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。 多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v 如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。 (3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v 由于原子相互碰撞使能 L 量发生稍微变化。 劳伦兹变宽:待测原子和其他原子碰撞。 赫鲁兹马克变宽:同种原子碰撞。 (4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。 (5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。 为主。 在一般分析条件下△V 5.积分吸收与峰值吸收 光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。 若用一般光源照射时,吸收光的强度变化仅为0.5%。灵敏度极差。

火焰原子吸收光谱法

火焰原子吸收光谱法测定自来水中的钙.镁含量

实验目的 z1、了解原子吸收分光光度计的基本结构和原理。z2、掌握火焰原子吸收光谱分析的基本操作。 z3、熟悉用标准曲线法进行定量测定的方法。

实验原理 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I = -lgT= KCL 式中I为透射光强度,I 0为发射光强度,T为透射比, L为光通过原子化器光程由于L是不变值所以A=KC。 原子吸收分光光度分析具有快速.灵敏.准确.选择性好.干扰少和操作简便等优点。

操作要点 z标准溶液的配制 (1)钙标准溶液系列;准确吸取2.00.4.00.6.00.8.00.10.0ml钙的标准使用液(100ug/ml)分别置于5只25ml容量瓶中,用去离子水稀释至刻度。 (2)镁标准溶液系列;准确吸1.00.2.00.3.00.4.00.5.00ml镁的标准使用液(50ug/ml)分别置于5只25ml 容量瓶中,用去离子水稀释至刻度。 (3)配制自来水样溶液;准确吸取5ml自来水置于25ml容量瓶中,用去离子水稀释至刻度。 根据实验条件将原子吸收分光光度计按仪器操作步骤进行调节,待仪器电路和气路系统达到稳定时,即可进样。 分别测定各标准溶液系列溶液的吸光度和自来水样的吸光度。

实验数据及处理 z从计算机上列表记录钙.镁标准溶液系列溶液的吸光度,然后,分别以吸光度为纵坐标,标准溶液系列浓度为横坐标,用坐标纸绘制标准曲线。 z测定自来水样的吸光度,然后,在上述标准曲线上查得水样中钙.镁浓度(ug/ml),经稀释需乘上倍数,求得原始自来水中钙.镁含量。

1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理 1.1 原子荧光光谱法原理 原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂 KBH 4 反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。1.2 原子荧光的类型 原子荧光是一种辐射的去活化(decactivation)过程。当有原子吸收由一合适的激发光源发射出的特征波长辐射后被激发,接着辐射区活化而发射出荧光。基本上,荧光线的波长和激发线的波长相同,也有可能比激发线的波长长,但比激发线波长短的情况也有,但不多。原子荧光有5中基本类型:①共振荧光。即激发波长与产生的荧光波长相同时,这种荧光称为共振荧光,是原子荧光分析中最常用的一种荧光;②直跃线荧光。即激发波长大于产生的荧光波长相同时,这种荧光称为直跃线荧光;③阶跃线荧光。即激发波长小于产生的荧光波长相同 时,这种荧光称为阶跃线荧光;④热助阶跃线荧光.既原子吸收能量由基态E 激发 至E 2能级时,由于受到热能的进一步激发,电子可能跃迁至于E 2 相近的较高能级 E 3,当其由E 3 跃迁到较低能级E 1 时所发射的荧光,称为热助阶跃线荧光;⑤热助 反Stokes荧光。即电子从基态E 0邻近的E 2 能级激发至E 3 能级时,其荧光辐射 过程可能是由E 3回到E 所发出的荧光成为热助反Stokes荧光。 1.3 汞的检测方法 汞及其化合物属于剧毒物质,是国际国内进出口商品中一项重要理化指标。汞在体内达到一定量时,将对人的神经系统、肾、肝脏产生严重的损害。汞测定方法有冷原子吸收光谱法、二硫腙比色法、原子荧光光谱分析法、电热原子吸收

(完整word版)原子吸收光谱定量分析方法

原子吸收定量分析方法 一、定量分析方法(P145) (1)标准曲线法: 配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。 (2) 标准加入法 当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。 取若干份体积相同的试液(cX),依次按比例加入 不同量的待测物的标准溶液(cO): 浓度依次为:cX ,cX+cO ,cX+2cO ,cX+3cO ,cX+4cO … 分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 … 直线外推法:以A对浓度c做图得一直线,图中c X点即待测溶液浓度。 (3)稀释法: (4)内标法: 在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。 内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量 二、灵敏度和检出限 (1)灵敏度 1、定义: 在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc 或Δm)的比值(即分析校正曲线的斜率) PS:习惯上用特征浓度和特征质量表征灵敏度 2、特征浓度 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度 3、特征质量 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。 (2)检出限 定义: 适当置信度下,能检测出的待测元素的最低浓度或最低质量。用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

原子吸收光谱法的研究现状及展望

原子吸收光谱法的研究现状及展望 *** 天津科技大学化工与材料学院天津 300457 摘要:本文简要概述了原子吸收光谱法的发展历程,阐述了原子吸收光谱法的优缺点和基本原理,综述了原子吸收光谱法在现代分析检测技术中的最新进展并做了展望。 关键词:原子吸收;分析;现状 自美国Perkin-E1mer公司1961年推出了世界上第一台火焰原子吸收分光光度计到第一台商品石墨炉的推出,从横向交变磁场到纵向交变磁场塞曼背景校正,从纵向加热石墨炉到横向加热无温度梯度石墨炉,从光电倍增管到半导体固态检测器……原子吸收光谱仪的发展跨越了一个又一个的里程碑[1]。 近年来,随着科研水平的不断提升,对仪器分析的高效性、精密性和便捷性提出了更高的要求,仪器分析的水平也在不断提升。原子吸收光谱分析法凭借其诸多优势,已成为普及程度最高的仪器分析方法之一。 1.原子吸收光谱法的特点 原子吸收光谱法以其高效精密的分析方法,成为普及度最高的仪器分析方法之一,它具有以下诸多优点[2-3]: 1)高精密度。火焰原子吸收法的精密度可达1%-2%,石墨炉原子化法的灵敏度高达 10-12g。 2)高灵敏度。火焰原子吸收可测质量浓度mg/L~μg/L级的金属,是目前最灵敏的 分析方法之一。 3)测定元素广泛。采用空气-乙炔火焰可测定近70种元素。 4)谱线简单。干扰少,选择性好,多数情况下可不经分离除去共存成分而直接测定。 5)操作简便快捷。自动进样每小时可测数百个样品,即使手工操作每小时也可测数十 个样品。 原子吸收光谱也存在一定的缺陷。比如,它不能对多种元素同时分析,对难溶元素的测定灵敏度也不十分令人满意,对共振谱线处于真空紫外区的元素,如P、S等还无法测定。

第四章原子吸收光谱法与-原子荧光光谱法

第四章原子吸收光谱法与原子荧光光谱法 4-1 . Mg原子的核外层电子31S0→31P1跃迁时吸收共振线的波长为285.21nm,计算在2500K 时其激发态和基态原子数之比. 解: Mg原子的电子跃迁由31S0→31P1 ,则 g i/g0=3 跃迁时共振吸收波长λ=285.21nm ΔEi=h×c/λ =(6.63×10-34)×(3×108)÷(285.31×10-9) =6.97×10-19J 激发态和基态原子数之比: Ni/N0=(g i/g0)×e-ΔEi/kT 其中: g i/g0=3 ΔEi/kT=-6.97×10-19÷〔1.38×10-23×2500〕 代入上式得: Ni/N0=5.0×10-9 4-2 .子吸收分光光度计单色器的倒线色散率为1.6nm/mm,欲测定Si251.61nm的吸收值,为了消除多重线Si251.43nm和Si251.92nm的干扰,应采取什么措施? 答: 因为: S1 =W1/D = (251.61-251.43)/1.6 = 0.11mm S2 =W2/D =(251.92-251.61)/1.6 =0.19mm S1<S2 所以应采用0.11mm的狭缝. 4-3 .原子吸收光谱产生原理,并比较与原子发射光谱有何不同。 答: 原子吸收光谱的产生:处于基态原子核外层电子,如果外界所提供特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(ΔEi)时,核外层电子将吸收特征能量的光辐射有基态跃迁到相应激发态,从而产生原子吸收光谱。 原子吸收光谱与原子发射光谱的不同在于: 原子吸收光谱是处于基态原子核外层电子吸收特定的能量,而原子发射光谱是基态原子通过电、热或光致激光等激光光源作用获得能量;原子吸收光谱是电子从基态跃迁至激发态时所吸收的谱线,而原子发射光谱是电子从基态激发到激发态,再由激发态向基态跃迁所发射的谱线。

原子荧光光谱仪的操作步骤

原子荧光光谱仪的操作步骤及注意事项 原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。 原子荧光是原子蒸气受具有特征波长的光源照射后,其中一些自由原子被激发跃迁到较高能态,然后去活化回到某一较低能态(常常是基态)而发射出特征光谱的物理现象。各种元素都有其特定的原子荧光光谱,根据原子荧光强度的高低可测得试样中待测元素的含量。现将原子荧光光谱仪上机操作步骤和使用注意事项逐一介绍。 一、操作步骤: Ar气→电脑→主机→双泵→水封→As灯/Hg灯→调光→设置参数→点火→做标准曲线→测样→清洗管路→熄火→关主机→关电脑→关Ar气。 二、注意事项: 1.在开启仪器前,一定要注意先开启载气。 2.检查原子化器下部去水装置中水封是否合适。可用注射器或滴管添加蒸馏水。 3.一定注意各泵管无泄露,定期向泵管和压块间滴加硅油。 4.实验时注意在气液分离器中不要有积液,以防液体进入原子化器。 5.在测试结束后,一定在空白溶液杯和还原剂容器内加入蒸馏水,运行仪器清洗管路。关闭载气,并打开压块,放松泵管。 6.从自动进样器上取下样品盘,清洗样品管及样品盘,防止样品盘被腐蚀。 7.更换元素灯时,一定要在主机电源关闭的情况下,不得带电插拔灯。 8.当气温低及湿度大时,Hg灯不易起辉时,可在开机状态下,用绸布反复摩擦灯外壳表面,使其起辉或用随机配备的点火器,对灯的前半部放电,使其起辉。 9.调节光路时要使灯的光斑照射在原子化器的石英炉芯的中心的正上方;要使灯的光斑与光电倍增管的透镜的中心点在一个水平面上。 10.氩气:0.2~0.3 之间。 关机之前先熄火,换灯之前先熄火,退出程序时先熄火。

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线范围 紫外光和可见光 出现时间 上世纪50年代

简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比: A=KC 式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础

由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素:

液相色谱原子荧光光谱联用方法通则

《液相色谱-原子荧光光谱联用方法通则》 (征求意见稿) 编制说明 中国广州分析测试中心 《液相色谱-原子荧光光谱联用方法通则》 广东省地方标准起草小组 2017年10月 《液相色谱-原子荧光光谱联用方法通则》 (征求意见稿)编制说明 一、任务来源和起草单位 本标准根据广东省质监局《关于批准下达2016年省地方标准制修订计划项目(第二批)的通知》(粤质监标函[2017] 106号)立项,要求中国广州分析测试中心承担广东省地方标准《液相色谱-原子荧光光谱联用方法通则》的制定任务。 《液相色谱-原子荧光光谱联用方法通则》标准由广东省分析测试标准化技术委员会(GD/TC22)归口管理,中国广州分析测试中心负责组织制定。 二、标准制订的目的和意义 目前国内重金属污染情况较为严重,受能源及冶金工业影响,进入环境中的砷、汞等重金属已成为全球性的污染物质。其中1956年日本发生甲基汞中毒引起“水俣病”震惊全球,不同形态的砷其毒性也大不同。在各个领域内对重金属污染物以及其形态的分析检

测技术应用迫在眉睫。 同时,液相色谱-原子荧光光谱联用仪(简称:LC-AFS)具备对能形成氢化物或原子蒸气如砷、硒、锑、汞等元素的不同形态进行定性定量分析的能力。 本标准拟研究制订液相色谱-原子荧光光谱联用方法的使用通则,为各应用液相色谱-原子荧光光谱联用仪器进行分析的方法提供依据,以此规范液相色谱-原子荧光光谱联用仪器 三、标准的制定过程 (1)成立《液相色谱-原子荧光光谱联用方法通则》标准制定工作组。 依据项目计划和标准化工作程序,工作组于2017年2月成立,工作组成员中国广州分析测试中心的有关技术人员。 (2)调研和资料收集。 根据粤质监标函[2017] 106号下达的广东省地方标准制修订计划(第二批)任务的通知,中国广州分析测试中心组织标准编制工作小组,查询、收集和认真研究国内外标准及相关资料,并结合实验室的自身条件、仪器特性和方法技术特点,初步设计编制方案。 (3)形成标准草案。 在标准的制定过程中,中国广州分析测试中心结合我国的实际情况,邀请中心和行业内相关专家进行探讨,吸取专业意见建议,并结合液相色谱-原子荧光光谱联用方面相对成熟的检测方法及其相关文献资料,修编形成标准的草案。

原子荧光复习题

原子荧光法复习题 一、填空: 1.原子荧光分析中,荧光类型有、、、热助线荧光和敏化原子荧光等。 答案:共振荧光、直跃线荧光、阶跃线荧光 2.原子荧光光谱仪中,目前有和两类仪器。 答案:色散系统、非色散系统 3.七十年代末,由于、及各种高效原子化器的使用,AFS技术得到了较大发展。 答案:高强度空心阴极灯、激光器 4.荧光猝灭的程度与及有关。 答案:被测元素、猝灭剂的种类 5.在原子荧光分析中,原子浓度较高时容易发生,它可使荧光信号变化和荧光谱线,从而峰值强度。 答案:自吸、变宽、减少 6.在原子荧光分析中,无论是连续光源或者线光源,光源强度越高,其测量线性工作范围。答案:越宽 7.原子荧光光谱仪的检测部分主要包括、以及放大系统和输出装置。 答案:分光系统、光电转换装置 8.在原子荧光分析中,石英原子化器炉温过高会使降低、增高,但较高的炉温又有利于消除干扰,所以应根据实际情况确定原子化温度。 答案:灵敏度、噪声、气相 9.在原子荧光分析中,测定灵敏度随观测高度增加而,观测高度太低时,会增加,观测高度太高时,会使和下降。 答案:降低、噪声、灵敏度、精度 10.原子荧光光谱仪中,以供电的空心阴极灯,可以使增强几十至几百倍。 答案:脉冲、谱线 11.在原子荧光分析的实际工作中,会出现空白大于样品强度的情况,这是因为空白溶液中不存在的原因。 答案:荧光、干扰 12.在原子荧光分析中,样品分析时,标准溶液的应和样品完全一致,同时必须做。 答案:介质、空白 13.在原子荧光分析中,当光电倍增管的负高压增加时,和水平同时增加,当灵敏度可以满足要求时,应尽量采用的负高压。 答案:信号、噪声、较低 14. 原子荧光光谱仪一般由四部分组成:、、和。 答案:光源(激发光源)、原子化器、光学系统(单色仪)、检测器 15.石英原子化器的外屏蔽气是用以防止周围的进入,产生,以保证较高及稳定的。

原子荧光光谱法

原子荧光光谱法 原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。 一、原子荧光光谱法原理 1.1原子荧光的类型以及荧光猝灭 (1)共振荧光 当原子受到波长为λA的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长λF的荧光。这一类荧光称为共振荧光。 (2)直跃线荧光 荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。 (3)阶跃线荧光 当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。 (4)热助阶跃线荧光 原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。小于光源波长称为反stoke效应。 (5)热助反stokes荧光 (略) 某一元素的荧光光谱可包括具有不同波长的数条谱线。一般来说,共振线是最灵敏的谱线。处于激发态的原子寿命是十分短暂的。当它从高能级阶跃到低能级时原子将发出荧光。 M*→M+hr 除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。荧光猝灭有下列几类型: 1)与自由原子碰撞 M*+X=M+X M*→激发原子X、M→中性原子 2)与分子碰撞 M*+AB=M+AB 这是形成荧光猝灭的主要原因。AB可能是火焰的燃烧产物; 3)与电子碰撞 M*+e-=M+E- 此反应主要发生在离子焰中 4)与自由原子碰撞后,形成不同激发态 M*+A=M×+A M*、M×为原子M的不同激发态 5)与分子碰撞后,形成不同的激发态 M*+AB= M×+AB 6)化学猝灭反应 M*+AB=M+A+B

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,就是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性与谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线范围 紫外光与可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)就是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都就是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比: A=KC 式中K为常数;C为试样浓度;K包含了所有的常数。此式就就是原子吸收光谱法进行定量分析的理论基础 由于原子能级就是量子化的,因此,在所有的情况下,原子对辐射的吸收都就是有选择性的。由于各元素的原子结构与外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。

原子荧光光谱

第4章原子荧光光谱分析 4.1 原子荧光光谱的产生和特性 4.2 原子荧光光谱分析的定量关系 4.3 原子荧光光谱仪器 4.4 蒸气发生样品导入技术 4.5 蒸气发生-原子荧光光谱分析技术4.6 蒸气发生-原子荧光光谱分析的干扰4.7 蒸气发生-原子荧光测量要点 4.8 非蒸气发生原子荧光光谱分析技术

4.1 原子荧光光谱的产生和特性 原子荧光光谱分析法是上世纪60年代中期发展起来的一种新的痕量分析方法。 原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。

气态自由原子处于基态,当吸收激发光源发出的一定频率的辐射能量后,原子由基态跃迁至高能态,即处于激发状态。处于激发态的原子很不稳定,在极短的时间(≈10-8s)内即会自发地释放能量返回到基态。若以辐射的形式释放能量,则所发射的特征光即为原子荧光。 原子荧光是光致发光,所以当激发光源停止照射之后,再发射过程立即停止。

4.1.2.1 共振荧光 共振荧光是指激发波长与发射波长相同的荧光。 由于原子的激发态和基态之间共振跃迁的概率一般比其他跃迁的概率大得多,所以共振跃迁产生的谱线是最有用的分析谱线。 当原子处于由热激发产生的较低的亚稳能级,则共振荧光也可从亚稳能级上产生:称为热助共振荧光。

4.1.2.2 非共振荧光 非共振荧光是指激发波长与发射波长不同的荧光。 (1)斯托克斯荧光 当发射荧光波长比激发光波长长时,即为斯托克斯荧光。 ①直跃线荧光 直跃线荧光是指激发谱线和荧光谱线的高能级相同的荧光。原子受到光辐射激发,从基态跃迁到较高的激发态,然后直接跃迁到能量高于基态的亚稳态能级,发射出波长比激发光波长要长的原子荧光。 类似的,当原子处于由热激发产生的较低亚稳能级,再通过吸收非共振线而激发的直跃线荧光称为热助直跃线荧光。 ②阶跃线荧光 阶跃线荧光是指当激发谱线和发射谱线的高能级不同时所产生的荧光,也分为正常阶跃线荧光和热助阶跃线荧光两类。

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100?l。固体直接进样石墨炉原子吸收法仅需0.05~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10?l 即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为

原子荧光光谱仪操作步骤及原理分析2012

氢化物(蒸气)发生 -原子荧光 原子荧光的发展史 ●原子荧光谱法(AFS)是原子光谱法中的一个重要分支。从其发光机理看属于一种原子发 射光谱(AES),而基态原子的受激过程又与原子吸收(AAS)相同。因此可以认为AFS是AES和AAS两项技术的综合和发展,它兼具AES和AAS的优点。 ●1859年Kirchhoof研究太阳光谱时就开始了原子荧光理论的研究,1902年Wood等首 先观测到了钠的原子荧光,到20世纪20年代,研究原子荧光的人日益增多,发现了许多元素的原子荧光。用锂火焰来激发锂原子的荧光由BOGROS作过介绍,1912年WOOD 年用汞弧灯辐照汞蒸气观测汞的原子荧光。Nichols和Howes用火焰原子化器测到了钠、锂、锶、钡和钙的微弱原子荧光信号,Terenin研究了镉、铊、铅、铋、砷的原子荧光。 1934年Mitchll和Zemansky对早期原子荧光研究进行了概括性总结。1962年在第10次国际光谱学会议上,阿克玛德(Alkemade)介绍了原子荧光量子效率的测量方法,并予言这一方法可能用于元素分析。1964年威博尼尔明确提出火焰原子荧光光谱法可以作为一种化学分析方法,并且导出了原子荧光的基本方程式,进行了汞、锌和镉的原子荧光分析。 ●美国佛罗里达州立大学Winefodner教授研究组和英国伦敦帝国学院West教授研究 小组致力于原子荧光光谱理论和实验研究,完成了许多重要工作。 ● 20世纪70年代,我国一批专家学者致力于原子荧光的理论和应用研究。西北大学杜 文虎、上海冶金研究所、西北有色地质研究院郭小等均作出了贡献。尤其郭小伟致力于氢化物发生(HG)与原子荧光(AFS)的联用技术研究,取得了杰出成就,成为我国原子荧光商品仪器的奠基人,为原子荧光光谱法首先在我国的普及和推广打下了基础。 幻灯片3 国外AFS仪器发展史 *1971年Larkins用空心阴极灯作光源,火焰原子化器,采用泸光片分光,光电倍增管检测。测定了A u、B i、Co、H g、M g、N i 等20多种元素; *1976年Technicon公司推出了世界上第一台原子荧光光谱仪AFS-6。该仪器采用空心阴极灯作光源,同时测定6个元素,短脉冲供电,计算机作控制和数据处理。由于仪器造价高,灯寿命短,且多数被测元素的灵敏度不如AAS和ICP-AES,该仪器未能成批投产,被称之为短命的AFS-6。 *20世纪80年代初,美国Baird公司推出了AFS-2000型ICP-AFS仪器。该仪器采用脉冲空心阴极灯作光源,电感耦合等离子体(ICP)作原子化器,光电倍增管检测,12道同时测量,计算机控制和数据处理。该产品由于没有突出的特点,多道同时测定的折衷条件根本无法满足,性能/价格比差,在激烈的市场竞争中遭到无情的淘汰。 *20世纪90年代,英国PSA公司开始生产HG-AFS。

原子荧光实验报告

原子荧光实验报告 篇一:实验三食品中硒的测定-原子荧光光谱法 光谱技术在食品分析中的应用 实验三食品中硒的测定-原子荧光光谱法 一、实验目的 1、了解原子荧光光度计仪器的基本结构和原理; 2、学会原子荧光光度计的操作技术; 3、了解食品中硒的测定意义; 4、学会湿法消化样品的操作。 二、基本原理 利用硼氢化钠作为还原剂,将四价硒在盐酸介质中还原为硒化氢(SeH2),由载气带入原子化器中进行原子化,在硒特制空心阴极灯照射下,基态硒原子被激发至高能态,再去活化回到基态时,发射出特征波长的荧光,其荧光强度与硒含量成正比,从而定量硒在食品中的含量。 三、仪器和试剂 1、仪器: AFS-230E型双道原子荧光光谱仪、硒特制空心阴极灯、可调式电热板 2、试剂 除非另有规定,本方法所使用试剂均为分析纯,水为

GB/T 6682 规定的三级水;所用玻璃仪器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,最后用纯水冲冼干净。 硝酸(优级纯)、盐酸(优级纯)、氢氧化钠(5g/L,优级纯)、硼氢化钠溶液(8g/L)、铁氰化钾溶液(100g/L)、硒标准储备液(100μg/mL,光谱纯)、盐酸(6 mol/L)、混合酸:将硝酸与高氯酸按9:1 体积混合等。 硒标准储备液制备(100μg/mL):称取0.100g高纯硒粉于1000mL容量瓶中,溶于少量硝酸中,加入2mL高氯酸,置沸水浴中加热3h~4h冷却后再加8.4mL盐酸,再置沸水浴中煮2min,用蒸馏水准确稀释至1000mL,摇匀。 硒标准应用液制备:取100μg/mL硒标准储备液1.0mL,定容100mL,摇匀备用。 硼氢化钠溶液(8g/L)制备:称取8.0g硼氢化钠(NaBH4),溶于氢氧化钠溶液(5g/L)中,然后定容至1000mL。 铁氰化钾溶液(100g/L)制备:称取10.0g铁氰化钾(K3Fe(CN)6),溶于100mL容量瓶中,摇匀。 载流溶液:5%盐酸水溶液。 四、实验步骤 1、试样制备 在采样和制备过程中,应注意不使试样污染。 ①粮食:试样用水洗三次,于60 ℃烘干,粉碎,储于

原子荧光光谱仪的构造原理

原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相近,上篇文章我们介绍论了原子吸收分光光度计的构造原理,这篇我们主要介绍原子荧光分光度计。 原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种,但在实际分析中主要有: 共振荧光 处于基态或低能态的原子, 吸收光源中的共振辐射跃迁到高能态, 处于高能态的原子在返回基态或相同低能态的过程中, 发射出与激发光源辐射相同波长的荧光,这种荧光称为共振荧光。 直跃线荧光

当处于基态的价电子受激跃迁至高能态(E2),处于高能态的激发态电子在跃迁到低能态(E1)(但不是基态)所发射出的荧光被称为直跃线。 阶跃线荧光 当价电子从基态跃迁至高能态(E2)后, 由于受激碰撞损失部分能量而降至较低的能态(E1)。从较低能态(E1)回到基态(E0)时所发出的荧光称为阶跃线荧光。 热助阶跃线荧光

基态原子通过吸收光辐射跃迁至高能态(E2), 处于高能态的价电子在热能的作用下进一步激发, 电子跃迁至与能级E2相近的更高能态E3。当去激发至低能态(E1)(不是基态)时所发出的次级光被称为热助阶跃线荧光. 敏化荧光 当受激的第一种原子与第二种原子发生非弹性碰撞时, 可能把能量传给第二种原子, 从而使第二个原子被激发, 受激的第二种原子去激发过程中所产生的荧光叫敏化荧光.

原子吸收和原子荧光结构类似,也可以分成四部分:激发光源、原子化器、光学系统和检测器。

1、激发光源: 可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、激光等。连续光源稳定,操作简便,寿命长,能用于多元素同时分析,但检出限较差。锐线光源辐射强度高,稳定,可得到更好的检出限。 空心阴极灯-工作原理 空心阴极灯是一种特殊的低压放电现象,在阴阳两极之间加以300~500V的电压,这样两极之间形成一个电场,电子在电场中运动,并与周围充入的惰性气体分子发生碰撞, 使这些惰性气体电离。气体中的正离子高速移向阴极,阴极在高速离子碰撞的过程中溅射出阴极元素的基态原子,这些基态原子与周围的的离子发生碰撞被激发到激发态,这些被激发的高能态原子在返回基态的过程中会发射出该元素的特征谱线 . 空心阴极灯–特点 ?灯结构简单、空心阴极灯制作工艺成熟; ?工作性能稳定,寿命一般可以大于3000mA?h ,发光稳定性1小时漂移在±2%以内发射强度基本可以满足常规分析要求; ?对仪器的光源部分的电源无特别要求,也不需要其他辅助设施; ?价格便宜.

原子荧光形态分析仪技术参数

原子荧光形态分析仪技术参数 1、用途与要求 根据元素形态分析的特殊要求设计的一体化机,可实现对包括色谱泵、消解系统、蒸气发生和检测系统的统一协同自动控制。同时具备砷(As)、汞(Hg)、硒(Se)、锑(Sb)等元素形态分析功能和砷(As)、锑(Sb)、铋(Bi)、汞(Hg)、硒(Se)、碲(Te)锗(Ge)、锡(Sn)、铅(Pb)、锌(Zn)、镉(Cd)等元素的总量分析功能。 2、技术性能指标要求 2.1 内置式管内在线消解装置:全封闭一体化结构,管内在线消解,无需氧化剂,大大缩短管路,避免柱后峰形展宽,提高仪器分析性能。 2.2 气液分离装置:降低进入原子荧光检测器的水汽含量,提高分析灵敏度,降低噪声,降低检测限。 2.3 专用的液相色谱和氢化物发生原子荧光光谱仪接口:可以把柱后流出液和氢化物发生液体混合。 2.4 配接专用的液相色谱-原子荧光检测软件,可以实现连续的检测,实时采集数据,实现软件的统一协同自动控制。 2.5 数据处理也可以直接配接色谱工作站,具有谱图处理功能,操作简单方便。 2.6 可检测的砷形态 可定性定量检测: 砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙生Roxarsone) 可定性半定量检测: 一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物 可定性检测: 砷糖(AsS) 以上均须有使用该型号仪器实际分析样品图谱举例。 2.7 可检测的硒形态

可定性定量检测: 亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)、硒代蛋氨酸(SeMet) 以上均须有使用该型号仪器实际分析样品图谱举例。 2.8 可检测的汞形态 可定性定量检测: 无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg) 以上均须有使用该型号仪器实际分析样品图谱举例。 2.9可检测的锑形态 可定性定量检测: 锑酸盐[Sb(V)]、三价锑[Sb(III)] 以上均须有使用该型号仪器实际分析样品图谱举例。 2.10 技术指标 2.10.1、检出限: As(Ⅲ)<0.04ng、DMA<0.08 ng、MMA<0.08 ng、As(Ⅴ)<0.2 ng SeCys<0.3 ng、SeMeCys<1 ng、Se(IV) <0.1 ng、SeMet<2 ng Hg(II) <0.05 ng、MeHg<0.05 ng、EtHg<0.05 ng、PhHg<0.1 ng Sb(III) <0.1ng Sb(V) <0.5ng 2.10.2、精密度<5% 2.10.3、线性范围三个数量级 2.10.4、相关系数:>0.999 3. 液相泵技术参数 3.1输送模式: 具有主动和辅助活塞的双柱塞输送泵,具有突出的流速稳定性; 3.2柱塞反冲: 虹吸自动冲洗; 3.3可更换泵头式设计,10ml与50ml泵头两种可选; 3.4.溶剂接触材料:宝石、PEEK和不锈钢; 3.5.流速范围: 10 ml 泵头0.001 –9.999 ml/min; 3.6.流量精度: <0.1%(1ml/min,12 MPa);

原子吸收题解

习题 1 试述原子吸收光谱法分析的基本原理,并从原理、仪器基本结构和方法特点上比较原子发射光谱与原子吸收光谱的异同点。 2 试述原子吸收光谱法比原子发射光谱灵敏度高、准确度好的原因。 3 原子吸收光谱法中为什么要用锐线光源试从空心阴极灯的结构及工作原理方面,简要说明使用空心阴极灯可以得到强度较大、谱线很窄的待测元素共振线的道理。 4 阐述下列术语的含义:灵敏度,检出线,特征浓度和特征质量。它们之间有什么关系,影响它们的因素是什么 5 通常为何不用原子吸收光谱法进行定性分析应用原子吸收光谱法进行定量分析的依据是什么 6 简述光源调制的目的及其方法。 7 解释原子吸收光谱分析工作曲线弯曲的原因。并比较标准曲线法和标准加入法的特点。 8 解释下列名词: (1)原子吸收; (2)吸收线的半宽度; (3)自然宽度; (4)多普勒变宽; (5)压力变宽; (6)积分吸收; (7)峰值吸收; (8)光谱通带。 9 原子吸收光谱分析中存在哪些干扰如何消除干扰 10 比较火焰法与石墨炉原子化法的优缺点。 11 原子荧光产生的类型有哪些各自的特点是什么 12 比较原子荧光分析仪、原子发射光谱分析仪和原子吸收光谱分析仪三者之间的异同点。 13 已知钠的3p 和3s 间跃迁的两条发射线的平均波长为 nm, 计算在原子化温度为2500K 时,处于 3p 激发态的钠原子数与基态原子数之比。 提示:在3s 和3p 能级分别有2个和6个量子状态,故 32 60 == p p j 解:处于 3p 激发态的钠原子数与基态原子数之比,由玻耳兹曼方程计算: kT E j j e p p N N ?-= kT c h j e p p λ-= 2500 1038.11058921000.31063.623710 343 6??????- ---=e 41069.1-?= 14 原子吸收光谱法测定某元素的灵敏度为0.01?gmL -1/1%A ,为使测量误差最小,需要得到的吸收值,在此情况下待测溶液的浓度应为多少 解:灵敏度表达式为: %1/0044.01-= gmL A c S μ 100.10044 .0436 .001.00044.0-=?=?= gmL A S c μ 15 原子吸收分光光度计三档狭缝调节,以光谱通带, 和 nm 为标度,其所对应的狭缝宽度分别为, 和1.0 mm ,求该仪器色散元件的线色散率倒数;若单色仪焦面上的波长差为mm ,

仪器分析笔记 《原子吸收光谱法》

第四章 原子吸收光谱法 ——又称原子吸收分光光度法 § 原子吸收分光光度法(AAS )概述 概述 1、定义 原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。 2、特点 灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。检出限可达 10—9 g /mL (某些元素可更高 ) 几乎不受温度影响:由波兹曼分布公式0 q E q q KT N g e N g - = 知,激发态原子浓度与基态原子浓度的比 值 q N N 随T ↗而↗。在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的 1%q N N =。也就是说,q N 随温度而强烈变化,而0N 却式中保持不变,其浓度几乎完全等于原子的 总浓度。 较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。另试样处理简单。 RSD 1~2%,相对误差~%。 选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。分析不同元素时,选用不同元素灯,提高分析的选择性 应用范围广:可测定70多种元素(各种样品中)。 缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。 3、操作 ①将试液喷入成雾状,挥发成蒸汽; ②用镁空心阴极灯作光源,产生波长特征谱线; ③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱; ④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 确定待测元素。 选择该元素相应锐线光源,发射出特征谱线。

相关主题
文本预览
相关文档 最新文档