当前位置:文档之家› 信号参考电源层的仿真分析

信号参考电源层的仿真分析

信号参考电源层的仿真分析
信号参考电源层的仿真分析

大多数layout工程师以及SI/硬件工程师都知道, 信号除了不能跨分割层布线之外,一般还不容许参考电源层布线的(当然,这里指的高速高频信号),为什么不能参考电源层?究竟会带来多大影响?如果叠层空间限制的情况下可以容许哪

些信号参考电源?针对这些问题,本篇将结合ANSYS/Ansoft仿真软件进行理论及仿真方法介绍。

1 参考电源层的回流路径

首先,从信号回流路径的角度开始基本理论的回顾。一个简单四层PCB信

号通过过孔换层参考电源,其信号的回流路径如图1 示意:

图1 信号回流路径

由上图可见,当高速信号在信号线上传播时,在信号电流向前传播的过程当中,由于与参考平面之间存在容性耦合,所以当发生dV/dt时,就会有电流经耦合电容流向参考平面的现象,传输线正下方位置都会有瞬态电流流回到源端电路。如果信号的参考为电源平面,那么信号回流将首先流向电源层,然后再通过电源与地网络之间的Cpg流向地网络,最后再经地层流向源端电路,最终形成一个

完整的电流回路。我们都知道,控制好高速信号的回路阻抗非常关键,因为它直接影响到信号传输特性。

当信号参考电源层布线时,回流路径当中对信号影响最大的就是Cpg电源与地网络之间的容性通道。它可以是电源地网络上分布复杂的退耦电容,也可能包含电源地层平面之间的平板电容,构成非常复杂,在各个频点所表现的阻抗特性都不一样,难以量化与控制。所以不建议高速信号参考电源。

那么究竟有多大影响,下面通过仿真软件来帮忙我们看看具体信号传输差异的情况。

2,参考电源层的仿真分析

2.1 基础研究模型的建立

有了以上理论了解之后,接下来通过仿真技术协助研究,到底参考电源层会跟信号传输带来怎样的影响?

为了说明问题,把模型简单化,这里利用板级仿真工具SIwave的自行建模功能(也可通过版图工具画一个类似PCB走线再导入)建立一个简单的10X10四层PCB, 叠层分布为SIG/GND/PWR/SIG,第二层全部为地,第三层电源平面为一小块不规则平面,如下图,并布置两根传输线,一根为表层走线,此案例中,它属于完全参考地层平面的微带线,一根为表层走线经过孔到底层走线的微带线,属于部分参考地层又部分参考电源层的走线。即建立了我们需要研究的参考电源的信号模型。如图2所示:

图2 简单的四层PCB模型

2.2 回流仿真分析

通过SIwave2014以上版本的AC CURRENTS 功能可以进行信号回流路径的仿真分析,只需要在两条传输线两端分别添加相应频率的信号源和负载,即可仿真得到信号源传输时,各个平面层上的电流分别情况。如图3所示,显示为地层的电流分布,跟前面理论分析结论非常一致。完全参考地层的传输线,回流路径主要集中在走线正下方,而参考电源层的信号回流会经电源地耦合到地层上,所以在电源与地层重叠的地方分布,不同频点的回流分布也不尽相同,这势必会影响信号传送质量,同时也可能对外界电路造成干扰。

图 3 信号回流分布图

2.3 频域S参数分析

通过对两条传输线建立端口,然后利用SIwave的HFSS 3D Layout(超高频段,还是HFSS精度更让人放心,并且3D layout在模型编辑便捷性及求解效率方面提升很多,不用再在HFSS里面纠结波端口/集总端口的建立)进行SYZ 参数分析之后观察两者之间的插入损耗S21的差异,如图5:

图4 HFSS 3d layout自动建立的三维模型

图5 两条传输线的S21曲线

通过观察S21 曲线,可知在1GHz以下两种走线的传输差异并不太大(这里的频率是指单频点正余炫波,而非方波/时钟频率)。频率越高,S21 差异相对越大,尤其是在突点尖峰频率。为什么会有这些尖峰?实际上是来源于电源地平面之间在尖峰频点的谐振,当回流流经这些谐振频点时,自然会有较大的能量损耗。通过SIwave的谐振分析功能也可进一步验证这一论点,如下图6,SIwave 分析得到的谐振频点,尖峰频点基本都在其中。

图6 SIwave的谐振分析结果

实际上,观察频域曲线差异并不是很直观,因为它们比较的是单频点的传送差异,而通常我们传输的是宽频带的类方波信号,所以在时域上进行波形的对比验证才是最关键的,也是最直观的。下面通过designer软件导入两条传输线的S参数模型,然后分别施加同样的理想信号源以及50ohm的负载端接,进行时域上的眼图分析,如图7建立仿真电路,观察不同传输频率情况下的差异

图7 Designer建立的时域仿真电路

完成仿真之后,观察10Gbps信号传输眼图,如图8,可以发现参考电源层的传输线,接收眼图的眼睛张开程度已经变得更小,并且眼皮也更粗,抖动加大,如果添加信号源抖动,或信号线再长一些,再经过连接器或过孔或封装这些阻抗不连续互连结构,那么很有可能就会出现信号完整性问题。随着频率的下降,两者传输信号的质量差异也在逐渐减小,如下面5Gbps和1Gbps信号眼图。

图8 传输10Gbps信号的眼图差异

图9 传输5Gbps信号的眼图差异

图10 传输1Gbps信号的眼图差异

综上所述,信号参考电源层会跟信号质量带来影响,电源地层之间的阻抗会是影响的主要因素,信号频率越高,带来的影响会越明显。当然也不是所有信号都不能参考电源,具体多少频率什么信号可以参考电源,要看实际layout 以及PDN网络的实际情况,最好能利用仿真软件进行分析验证。出于理论分析方便,此篇建立的案例模型比较简单,仿真结果主要作对比分析之用,不可作为实际工程的判定参考。

Ansoft zhangwei 2016

电源完整性仿真让电路板更完美

电源完整性仿真让电路板更完美 为PCB(印刷电路板)上的芯片提供电能不再是一种简单的工作。过去,通过细走线将IC连接到电源和地就行了,这些走线占不了多少空间。当芯片速度升高时,就要用低阻抗电源为它们供电,如用PCB上的一个电源层。有时候,只需要用四层电路板 上的一个电源层和一个地层,就可以解决大多数电源完整性问题。除了电源层以外,还可以为每只IC去耦,以解决设计中繁琐的电源问题。 不过,现在的PCB空间(还有成本与你的日程)都很紧张,这些问题也带来了对电源的影响。Mentor Graphics公司的仿真 与模拟系列产品高级总监Dave Kohlmeier称:“消费设备与便携设备都在为节省成本而使用更少的PCB层,但它们上面的IC却 需要更多的电压等级。”这些问题不仅影响着便携产品,工业产品也有空间约束(图1)。一个现代蜂窝基站的电路要装在天线上的一个小盒子里,而天线通常位于建筑内的19英寸机架中。 在大批量的消费产品与汽车产品中,成本是关键因素。在PCB上放一堆可能不需要的电容,肯定是不可接受的。为获得成功,设计周期会缩短到以周以月计,而不是年。现在,不可能只为了修补和优化电源层和地层而花时间去重做一遍PCB板。 为现代电子产品设计电源系统是一个令人畏惧的挑战。DDR存储器工作在1600Mbps,并很快就会运行到四重模式的2200Mbps。更糟糕的是,它是一种单端输出,意味着你的电源系统必须应对电源电流的突发性挑战。器件中的数字门可能同时都在开关,电 源完整性工程师将这种特性描述为同步开关噪声。串行通信有着困难的电源需求。802.3ba以太网标准要求的数据速率为40Gbps 和100Gbps(参考文献1)。 现代数字芯片的运行电压低于1V,这意味着,即使毫伏级的噪声也会造成与数据相关的问题。多只芯片会从统计上增加和造成电源下降或过压问题。你的系统可能数周甚至数月都运行正常,而某个时刻所有数字电路的同时开关却造成系统的重启。这 些电源完整性问题都难于查出。系统中单只芯片的电源完整性问题可能影响系统的其它芯片,从而导致重启。美国国家半导体公 司的模拟应用工程师Paul Grohe指出:“即使纳秒级的电力损失也会使系统不可靠。”Ansys公司信号完整性产品经理Steve Patel 称,设计可靠性的关键在于尽可能减小电源噪声,意味着数字系统工程师必须懂得模拟甚至RF的设计概念。 电源系统工程师知道,电源系统必须有低的阻抗(图2),而模拟工程师的概念是,模拟IC电源脚上的噪声越小越好。与数字芯片不同,模拟芯片不存在噪声阈值。PSRR(电源抑制比)规格说明了有多少电源噪声会渗入到器件的输出脚。数字系统工程师 现在也必须应付相同的电源噪声问题(见附文“请换个人跟我谈”)。

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

信号参考电源层的仿真分析

大多数layout工程师以及SI/硬件工程师都知道, 信号除了不能跨分割层布线之外,一般还不容许参考电源层布线的(当然,这里指的高速高频信号),为什么不能参考电源层?究竟会带来多大影响?如果叠层空间限制的情况下可以容许哪 些信号参考电源?针对这些问题,本篇将结合ANSYS/Ansoft仿真软件进行理论及仿真方法介绍。 1 参考电源层的回流路径 首先,从信号回流路径的角度开始基本理论的回顾。一个简单四层PCB信 号通过过孔换层参考电源,其信号的回流路径如图1 示意: 图1 信号回流路径 由上图可见,当高速信号在信号线上传播时,在信号电流向前传播的过程当中,由于与参考平面之间存在容性耦合,所以当发生dV/dt时,就会有电流经耦合电容流向参考平面的现象,传输线正下方位置都会有瞬态电流流回到源端电路。如果信号的参考为电源平面,那么信号回流将首先流向电源层,然后再通过电源与地网络之间的Cpg流向地网络,最后再经地层流向源端电路,最终形成一个 完整的电流回路。我们都知道,控制好高速信号的回路阻抗非常关键,因为它直接影响到信号传输特性。 当信号参考电源层布线时,回流路径当中对信号影响最大的就是Cpg电源与地网络之间的容性通道。它可以是电源地网络上分布复杂的退耦电容,也可能包含电源地层平面之间的平板电容,构成非常复杂,在各个频点所表现的阻抗特性都不一样,难以量化与控制。所以不建议高速信号参考电源。 那么究竟有多大影响,下面通过仿真软件来帮忙我们看看具体信号传输差异的情况。

2,参考电源层的仿真分析 2.1 基础研究模型的建立 有了以上理论了解之后,接下来通过仿真技术协助研究,到底参考电源层会跟信号传输带来怎样的影响? 为了说明问题,把模型简单化,这里利用板级仿真工具SIwave的自行建模功能(也可通过版图工具画一个类似PCB走线再导入)建立一个简单的10X10四层PCB, 叠层分布为SIG/GND/PWR/SIG,第二层全部为地,第三层电源平面为一小块不规则平面,如下图,并布置两根传输线,一根为表层走线,此案例中,它属于完全参考地层平面的微带线,一根为表层走线经过孔到底层走线的微带线,属于部分参考地层又部分参考电源层的走线。即建立了我们需要研究的参考电源的信号模型。如图2所示: 图2 简单的四层PCB模型 2.2 回流仿真分析 通过SIwave2014以上版本的AC CURRENTS 功能可以进行信号回流路径的仿真分析,只需要在两条传输线两端分别添加相应频率的信号源和负载,即可仿真得到信号源传输时,各个平面层上的电流分别情况。如图3所示,显示为地层的电流分布,跟前面理论分析结论非常一致。完全参考地层的传输线,回流路径主要集中在走线正下方,而参考电源层的信号回流会经电源地耦合到地层上,所以在电源与地层重叠的地方分布,不同频点的回流分布也不尽相同,这势必会影响信号传送质量,同时也可能对外界电路造成干扰。

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(m od ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10 N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)31 16 N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

cadence信号完整性仿真步骤

Introduction Consider the proverb, “It takes a village to raise a child.” Similarly, multiple design team members participate in assuring PCB power integrity (PI) as a design moves from the early concept phase to becoming a mature product. On the front end, there’s the electrical design engineer who is responsible for the schematic. On the back end, the layout designer handles physical implemen-tation. Typically, a PI analysis expert is responsible for overall PCB PI and steps in early on to guide the contributions of others. How quickly a team can assure PCB PI relates to the effectiveness of that team. In this paper, we will take a look at currently popular analysis approaches to PCB PI. We will also introduce a team-based approach to PCB PI that yields advantages in resource utilization and analysis results. Common Power Integrity Analysis Methods There are two distinct facets of PCB PI – DC and AC. DC PI guarantees that adequate DC voltage is delivered to all active devices mounted on a PCB (often using IR drop analysis). This helps to assure that constraints are met for current density in planar metals and total current of vias and also that temperature constraints are met for metals and substrate materials. AC PI concerns the delivery of AC current to mounted devices to support their switching activity while meeting constraints for transient noise voltage levels within the power delivery network (PDN). The PDN noise margin (variation from nominal voltage) is a sum of both DC IR drop and AC noise. DC PI is governed by resistance of the metals and the current pulled from the PDN by each mounted device. Engineers have, for many years, applied resistive network models for approximate DC PI analysis. Now that computer speeds are faster and larger addressable memory is available, the industry is seeing much more application of layout-driven detailed numerical analysis techniques for DC PI. Approximation occurs less, accuracy is higher, and automation of How a Team-Based Approach to PCB Power Integrity Analysis Yields Better Results By Brad Brim, Sr. Staff Product Engineer, Cadence Design Systems Assuring power integrity of a PCB requires the contributions of multiple design team members. Traditionally, such an effort has involved a time-consuming process for a back-end-focused expert at the front end of a design. This paper examines a collaborative team-based approach that makes more efficient use of resources and provides more impact at critical points in the design process. Contents Introduction (1) Common Power Integrity Analysis Methods (1) Applying a Team-Based Approach to Power Integrity Analysis (3) Summary (6) For Further Information (7)

信号分析与处理仿真实验

实验报告 实验名称MATLAB仿真实验 课程名称信号分析与处理 院系部: 专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:2015-11-29

实验一信号的产生与运算 1.单位阶跃信号 (1)源程序 t=-0.5:0.01:1.5; u=stepfun(t,0); u1=stepfun(t,0.5); figure(1) plot(t,u);axis([-0.5 1.5 -0.2 1.2]);title('单位阶跃信号波形'); figure(2) plot(t,u1);axis([-0.5 1.5 -0.2 1.2]);title('延迟单位阶跃信号波形'); (2)实验结果

2.单位冲激信号 (1)源程序 clear;clc; t=-1:0.001:1; for i=1:3 dt=1/(i^4); x=(1/dt)*((t>=-(1/2*dt))-(t>=(1/2*dt))); subplot(1,3,i); stairs(t,x); end (2)实验结果

3.抽样信号 (1)源程序 clear;clc; t=-20:0.01:20; x=sinc(t/pi); plot(t,x); title('抽样信号'); (2)实验结果

4.单位样值序列(1)源程序 clear;clc; n1=input('n1='); n2=('n2='); n=n1:n2; k=length(n); x1=zeros(1,k); x1(1,-n1+1)=1 subplot(1,2,1); stem(n,x1,'filled') (2)实验结果

SIwave电源完整性仿真教程

S I w a v e电源完整性仿真 教程 This model paper was revised by the Standardization Office on December 10, 2020

SIwave电源完整性仿真教程 目录

1软件介绍 功能概述 Ansoft SIwave主要用于解决电源完整性问题,采用全波有限元算法,只能进行无源的仿真分析。Ansoft SIwave虽然功能强大,但并非把PCB导入,就能算出整块板子的问题在哪里。还需要有经验的工程设计人员,以系统化的设计步骤导入此软件检查PCB设计。主要功能如下: 1.计算共振模式 在PDS电源地系统结构(层结构、材料、形状)的LAYOUT之前,我们可以计算出PDS 电源地系统的共有的、内在的共振模式。可以计算在目标阻抗要求的带宽或更高的带宽范围内共振频率点。 2. 查看共振模式下的电压分布图 避免把大电流的IC芯片放置于共振频率的电压的峰值点和电压谷点。原因是当把这些源放在共振频率的电压的峰值点和电压谷点的时候很容易引起共振。 3.侦测电压 利用电流源代替IC芯片放置于它们可能的LAYOUT placement位置的周围、同时放置电压探头于理想IC芯片的位置侦测该位置的电压频率相应。在电压的频率相应的曲线中,峰值电压所对应的频率点就是共振频率的发生点。 4.表面电压

基于电压峰值频率,查看这些频率点的表面电压的分布情况,把退耦电容放置于电压峰值和谷点的位置处。(这就是如何放置退耦电容的根据) 5.单端口的Z参数计算 计算单端口的(IC位置)的Z参数(通常使用log-log标尺,Hz)。通过Z参数的频率相应曲线,我们可以计算出我们需要的“电容大小、ESL大小、ESR大小”。(从中我们可以知道我们需要什么样规格的退耦电容)。 6.侦测实际退耦电容影响 使用内置的ANSOFT FULL-WAVE SPICE来侦测实际退耦电容影响(包括:共振、ESL、ESR、Parrallel skew等)。 7.选取电容 通过实际的AC扫描响应来选择需要的电容,包括电容的 R/L/C值。 8.侦测回路电感影响 在不同的位置放置电容来侦测路径的自感的影响。(这将决定退耦电容放置的位置)。 9.检测传输阻抗 使用多端口的Z参数来检测传输阻抗。 操作界面 SIwave 软件刚安装完的画面如错误!未找到引用源。所示,配置如下:

雷达系统中杂波信号的建模与仿真

1.雷达系统中杂波信号的建模与仿真目的 雷达的基本工作原理是利用目标对雷达波的散射特性探测和识别目标。然而目标存在于周围的自然环境中,环境对雷达电磁波也会产生散射,从而对目标信号的检测产生干扰,这些干扰就称为雷达杂波。对雷达杂波的研究并通过相应的信号处理技术可以最大限度的压制杂波干扰,发挥雷达的工作性能。 雷达研制阶段的外场测试不仅耗费大量的人力、物力和财力,而且容易受大气状况影响,延长了研制周期。随着现代数字电子技术和仿真技术的发展,计算机仿真技术被广泛应用于包括雷达系统设计在内的科研生产的各个领域,在一定程度上可以替代外场测试,降低雷达研制的成本和周期。 长期以来,由于对杂波建模与仿真的应用己发展了多种杂波类型和多种建模与仿真方法。然而却缺少一个集合了各种典型杂波产生的成熟的软件包,雷达系统的研究人员在需要用到某一种杂波时,不得不亲自动手,从建立模型到计算机仿真,重复劳动,造成了大量的时间和人力的浪费。因此,建立一个雷达杂波库,就可以使得科研人员在用到杂波时无需重新编制程序,而直接从库中调用杂波生成模块,用来产生杂波数据或是用来构成雷达系统仿真模型,在节省时间和提高仿真效率上的效益是十分可观的。 从七十年代至今已经公布了很多杂波模型,其中有几类是公认的比较合适的模型。而且,杂波建模与仿真技术的发展己有三十多年的历史,己经有了一些比较成熟的理论和行之有效的方法,这就使得建立雷达杂波库具有可行性。 为了能够反映雷达信号处理机的真实性能,同时为改进信号处理方案提供理论依据,雷达杂波仿真模块输出的杂波模拟信号应该能够逼真的反映对象环境的散射环境。模拟杂波的一些重要散射特性影响着雷达对目标的检测和踉踪性能,比如模拟杂波的功率谱特性与雷达的动目标显示滤波器性能有关;模拟杂波的幅度起伏特性与雷达的恒虚警率检测处理性能有关。因此,杂波模拟方案的设计是雷达仿真设计中极其重要的内容,杂波模型的精确性、通用性和灵活性是衡量杂波产生模块的重要指标。 2.Simulink简介 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和

PCB板级信号完整性的仿真及应用

作者简介:曹宇(1969-),男,上海人,硕士,工程师. 第6卷第 6期 2006年12月泰州职业技术学院学报 JournalofTaizhouPolytechnicalInstituteVol.6No.6 Dec.2006摘要:针对高速数字电路印刷电路板的板级信号完整性,分析了IBIS模型在板级信号完整 性分析中的作用。利用ADS仿真软件,采用电磁仿真建模和电路瞬态仿真测试了某个 实际电路版图,给出了实际分析结果。 关键词:信号完整性;IBIS;仿真;S参数 中图分类号:TP391.9文献标识码:A文章编号:1671-0142(2006)06-0030-03 信号完整性(SI,SignalIntegrity)的概念是针对高速数字信号提出来的。以往的数字产品,其时钟或数据频率在几十兆之内时,信号的上升时间大多在几个纳秒,甚至几十纳秒以上。数字化产品设计工程师关注最多的是“数字设计”保证逻辑正确。随着数字技术的飞速发展,原先只是在集成电路芯片设计中需要考虑的问题[1]在PCB板级设计中正在逐步显现出来,并由此提出了信号完整性的概念。 在众多的讲述信号完整性的论文和专著中[2,3],对信号完整性的描述都是从信号传输过程中可能出现的问题(比如串扰,阻抗匹配,电磁兼容,抖动等)本身来讨论信号完整性,对信号完整性没有一个统一的定义。事实上,信号完整性是指信号在通过一定距离的传输路径后在特定接收端口相对指定发送端口信号的还原程度,这个还原程度是指在指定的收发参考端口,发送芯片输出处及接收芯片输入处的波形需满足系统设计的要求[4]。 1、板级信号完整性分析 1.1信号完整性分析内容的确定 信号完整性分析工作是一项产品开发全流程工作,从产品设计阶段开始一直延续到产品定型。PCB板级设计同样如此。在系统设计阶段,产品还没有进入试制,需要建立相应的系统模型并得到仿真结果以验证设计思想和设计体系正确与否,这个阶段称前仿真;前仿真通过后,产品投入试制,样品出来后再进行相应的测试和仿真,这个阶段称后仿真。假如将每一块PCB板视为一个系统,影响这个系统正常工作的信号问题涉及到所有的硬件和软件,包括芯片、封装、PCB物理结构、电源及电源传输网络和协议。 对系统所有部分都进行仿真验证是不现实的。应根据系统设计的要求选定部分内容进行测试仿真。本文所提及的“板级信号完整性分析”仅针对芯片引脚和走线的互连状态分析。 当被传输的信号脉冲时间参量(如上升时间、传输时间等)已缩短至和互连线上电磁波传输时间处于同一个量级时,信号在互连线上呈现波动效应,应采用微波传输线或分布电路的模型来对待互连线,从而产生了时延、畸变、回波、相邻线之间的干扰噪声等所谓的“互连效应”[1]。 假设PCB板上芯片引脚的输入输出信号都是“干净”的,那么只要考虑互连线路本身的互连效应。事实上,每个芯片引脚在封装时都有其独特的线路特性,这些特性是由其内部的晶体管特性决定的,同样的信号在不同引脚上的传输效率差异很大。因此,在分析信号传输的互连效应时必须考虑芯片内部的电路特性以提取相对准确的电路模型,并在此基础上作进一步的分析。这个模型就是在业界被广泛使用的IBIS模型。 1.2IBIS标准模型的建立 PCB板级信号完整性的仿真及应用 曹宇,丁志刚,宗宇伟 (上海计算机软件技术开发中心,上海201112)

DSB信号的仿真分析

《MATLAB课程设计》报告题目:基于MATLAB的DSB调制与解调分析专业班级: 通信1104班 学生姓名: 指导教师:

MATLAB课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的DSB调制与解调分析 设计内容和要求 DSB信号的仿真分析 调制信号:分别为300Hz正弦信号和矩形信号;载波频率:30kHz; 解调:同步解调; 要求:画出以下三种情况下调制信号、已调信号、解调信号的波形、频谱以及解调器输入输出信噪比的关系曲线; 1)调制信号幅度=×载波幅度;2)调制信号幅度=载波幅度; 3)调制信号幅度=×载波幅度; 时间安排 2013年12月25日:复习DSB的原理,初步构想设计的流程。 2013年12月26日至28日:程序编写及调试。 2013年12月29日:写报告。 指导教师签名:年月日

目录

摘要 调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。MATLAB软件广泛用于数字信号分析,系统识别,时序分析与建模,神经网络、动态仿真等方面有着广泛的应用。本课题利用MATLAB软件对DSB 调制解调系统进行模拟仿真,分别利用300HZ正弦波和矩形波,对30KHZ正弦波进行调制,观察调制信号、已调信号和解调信号的波形和频谱分布,并在解调时引入高斯白噪声,对解调前后信号进行信噪比的对比分析,估计DSB调制解调系统的性能。 Abstract Modulation in communication systems have an important role. Through the modulation, not only can move the spectrum, the modulated signal spectrum move to the desired position, which will convert into a modulated signal suitable for transmission of modulated signals, and that its transmission system, the effectiveness and reliability of transmission has a great impact, the modulation method is often decided on a communication system performance. MATLAB software is widely used in digital signal analysis, system identification, time series analysis and modeling, neural networks, dynamic simulation have a wide range of applications. This topic using MATLAB software DSB modulation and demodulation system simulation, use, respectively, 300HZ sine wave and rectangular wave, sine wave modulation of the 30KHZ observed modulated signal modulated signal and demodulate the signal waveform and spectrum distribution, and in the solution white Gaussian noise introduced when adjusted for demodulating the signal-noise ratio before and after the comparative analysis, it is estimated DSB modulation and demodulation performance of the system.

Cadence-PDN电源完整性分析

Cadence PDN电源平面完整性分析 ——孙海峰 随着超大规模集成电路工艺的发展,芯片工作电压越来越低,而工作速度越来越快,功耗越来越大,单板的密度也越来越高,因此对电源供应系统在整个工作频带内的稳定性提出了更高的要求。电源完整性设计的水平直接影响着系统的性能,如整机可靠性,信噪比与误码率,及EMI/EMC等重要指标。板级电源通道阻抗过高和同步开关噪声SSN过大会带来严重的电源完整性问题,这些会给器件及系统工作稳定性带来致命的影响。PI设计就是通过合理的平面电容、分立电容、平面分割应用确保板级电源通道阻抗满足要求,确保板级电源质量符合器件及产品要求,确保信号质量及器件、产品稳定工作。 Cadence PCB PDN analysis电源平面分析主要可以解决以下几个问题: 板级电源通道阻抗仿真分析,在充分利用平面电容的基础上,通过仿真分析确定旁路电容的数量、种类、位置等,以确保板级电源通道阻抗满足器件稳定工作要求。 板级直流压降仿真分析,确保板级电源通道满足器件的压降限制要求。 板级谐振分析,避免板级谐振对电源质量及EMI的致命影响等。 那么Cadence PCB PDN analysis如何对PCB进行电源平面完整性的分析?接下来,我将以一个3v3如下图所示的电源平面为例,来进行该平面的电源平面分析。

对图中3v3电源平面进行完整性分析,具体步骤将作详细解析。 在对该电源平面进行分析之前,我们需要首先确定PCB参数的精确,如:电源平面电平Identify DC Nets、PCB叠层参数Cross-Section等,这些参数都必须和PCB板厂沟通(板厂对叠层参数生产能力不同),在此基础上精确参数方能得到精确的分析结果。这些参数也可以在PDN Analysis分析界面上点击Identify DC Nets,Cross-Section来调整优化。

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

PCB设计与信号完整性仿真

本人技术屌丝一枚,从事PCB相关工作已达8年有余,现供职于世界闻名的首屈一指的芯片设计公司,从苦逼的板厂制板实习,到初入Pcblayout,再到各种仿真的实战,再到今天的销售工作,一步一步一路兢兢业业诚诚恳恳,有一些相关领悟和大家分享。买卖不成也可交流。 1.谈起硬件工作,是原理图,pcb,码农的结合体,如果你开始了苦逼的pcblayout工作,那么将是漫长的迷茫之路,日复一日年复一年,永远搞不完的布局,拉线。眼冒金星不是梦。最多你可以懂得各种模块的不同处理方式,各种高速信号的设计,但永远只能按照别人的意见进行,毫无乐趣。 2.谈起EDA相关软件,形象的说,就普通的PROTEL/AD来说你可能只有3-6K,对于pads 可能你有5-8K,对于ALLEGRO你可能6-10K,你会哀叹做的东西一样,却同工不同酬,没办法这就是市场,我们来不得无意义的抱怨。 3.众所周知,一个PCB从业者最好的后路就是仿真工作,为什么呢?一;你可以懂得各种模块的设计原则,可以优化不准确的部分,可以改善SI/PI可以做很多,这往往是至关重要的,你可以最大化节约成本,减少器件却功效相同;二;从一个pcblayout到仿真算是水到渠成,让路走的更远; 三:现实的说薪资可以到达11-15K or more,却更轻松,更有价值,发言权,你不愿意吗? 现在由于本人已技术转销售,现在就是生意人了哈哈,我也查询过各种仿真资料我发现很少,最多不过是Mentor Graphics 的HyperLynx ,candense的si工具,

但是他们真的太low了,精确度和完整性根本不能保证,最多是定性的能力,无法定量。真正的仿真是完整的die到die的仿真,是完整的系统的,是需要更高级的仿真软件,被收购的xxsigrity,xx ansys,hspicexx,adxx等等,这些软件才是真正的仿真。 本人提供各种软件及实战代码,例子,从基本入门到高级仿真,从电源仿真,到ddr仿真到高速串行仿真,应有尽有,,完全可以使用,想想以后的高薪,这点投入算什么呢?舍不得孩子套不住狼哦。 所有软件全兼容32位和64位系统。 切记本人还提供学习手册,你懂的,完全快速进入仿真领域。你懂的! 希望各位好好斟酌,自己的路是哪个方向,是否想更好的发展,舍得是哲学范畴,投资看得是利润的最大化,学会投资吧,因为他值得拥有,骚年! 注:本人也可提供培训服务,面面俱到,形象具体,包会! 有购买和学习培训兴趣的请联系 QQ:2941392162

五款信号完整性仿真分析工具

SI 五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB 设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,An soft公司的仿真工具能够从三维场求解的角度出发,对PCB 设计的信号完整性问题进行动态仿真。 Ansoft 的信号完整性工具采用一个仿真可解决全部设计问题: Slwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何 数量的过孔和信号引线条构成。仿真结果采用先进的3D 图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿 (二)SPECCTRAQuest Cade nee的工具采用Sun的电源层分析模块: Cade nee Design System 的SpeeetraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI 。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer 可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

相关主题
文本预览
相关文档 最新文档