当前位置:文档之家› 东北大学数学分析2007答案

东北大学数学分析2007答案

东北大学数学分析2007答案

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

2006年浙江大学427数学分析考研真题【圣才出品】

1 / 3 2006年浙江大学427数学分析考研真题 浙江大学2006年攻读硕士学位研究生入学试题 考试科目:数学分析(427) 考生注意: 1.本试卷满分为150 分,全部考试时间总计180 分钟; 2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。 一、(20分) ()i 证明:数列 1111ln (1,2,3,)23n x n n n =++++-=收敛; ()ii 计算:1111lim()1232n n n n n →∞ +++++++. 二、(15分) 设()f x 是闭区间 [],a b 上的连续函数,对任一点(),x a b ∈,存在趋于零的数列,使得 2()()2()lim 0k k k k f x r f x r f x r →∞++--=. 证明:函数()f x 为一线性函数. 三、(15分) 设()h x 是 (),-∞+∞上的无处可导的连续函数,试以此构造连续函数()f x ,在 (),-∞+∞上仅在两点可导,并且说明理由.

2 / 3 四、(15分) 设22222221()sin ,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=?. ()i 求(,)f x y x ??以及(,)f x y y ??; ()ii 问(,),(,)f f x y x y x y ????在原点是否连续?(,)f x y 在原点是否可微?试说明理由. 五、(20分) 设()f x 在()0,+∞的任何闭子区间[],αβ上黎曼可积,且0()f x dx +∞ ?收敛, 证明:对于常数 1a >,成立 000lim ()()xy y a f x dx f x dx ++∞+∞-→=??. 六、(15分) 计算曲面积分 32222()S xdydz ydzdx zdxdy I ax by cz ++=++?? 其中 {}2222(,,)S x y z x y z r =++=,常数0,0,0,0a b c r >>>>. 七、(15分) 设V 为单位球: 2221x y z ++≤,又设,,a b c 为不全为零的常数,计算: cos()V I ax by cz dxdydz =++???. 八、(20分) 设函数21()12f x x x =--,证明级数 ()0!(0)n n n f ∞=∑收敛. 九、(15分) 设()f x 在)0,+∞??上可微,(0)0f =.若有常数0A >,使得对任意 ) 0,x ∈+∞??,有

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

东北大学数值分析实验报告

数值分析设计实验实验报告

课题一 迭代格式的比较 一、问题提出 设方程f 3 - 3x –1=0 有三个实根 x * 1 =1.8793 , x *2=-0.34727 ,x *3=-1.53209现采用下面三种不同计算格式,求 f(x)=0的根 x * 1 或x *2 1、 x = 21 3x x + 2、 x = 3 1 3-x 3、 x = 313+x 二、要求 1、编制一个程序进行运算,最后打印出每种迭代格式的敛散情况; 2、用事后误差估计k k x x -+1? ε来 3、初始值的选取对迭代收敛有何影响; 4、分析迭代收敛和发散的原因。 三、目的和意义 1、通过实验进一步了解方程求根的算法; 2、认识选择计算格式的重要性; 3、掌握迭代算法和精度控制; 4、明确迭代收敛性与初值选取的关系。 四、程序设计流程图

五、源程序代码 #include #include void main() { float x1,x2,x3,q,a,z,p,e=0.00001; x1=-1.0000;x2=-1.0000;x3=1.0000; int i,y=3; printf("0 %f %f %f\n",x1,x2,x3); q=x1-p;a=x2-p;z=x3-p; for(i=1;i<=60;i++) { if(q(0-e)) goto a; else { p=x1; x1=(3*x1+1)/(x1*x1); printf("%d 1 %f\t",i,x1); q=x1-p; }

a: if(a(0-e)) goto z; else { p=x2; x2=(x2*x2*x2-1)/3; printf("%d 2 %f\t",i,x2); a=x2-p; } z: if(z(0-e)) goto end; else { p=x3; x3=pow((3*x3+1),1.0/y); printf("%d 3 %f\n",i,x3); z=x3-p; } end:; } } 六。程序运行结果 七.程序运行结果讨论和分析: 对于迭代格式一、二、三对于初值为-1.0000,-1.0000,1.0000分别迭代了37次,8次,10次,由此可知,简单迭代法的收敛性取决于迭代函数,以及初值x 的选取,并且对初值的选取要求较高,需谨慎选取。

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

2001年浙江大学436数学分析考研真题【圣才出品】

2001年浙江大学436数学分析考研真题 浙江大学2001年攻读硕士学位研究生入学试题 考试科目:数学分析(436) 一、(30分) ()i 用“εδ-语言”证明2211lim 3233n n n n n →∞-+=+-; ()ii 求极限tan 21lim(2)x x x π→-; ()iii 设101(ln )1x f x x x <≤?'=?>?,且(0)0f =,求()f x . 二、(10分) 设()y y x =是可微函数,求(0)y ',其中 2sin 7x y y ye e x x =-+-. 三、(10分) 在极坐标变换cos ,sin x r y r θθ==之下,变换方程2222(,)z z f x y x y ??+=??. 四、(20分) ()i 求由半径为a 的球面与顶点在球心,顶角为2α的圆锥面所围成区域的体积; ()ii 求曲面积分222()()()s I y x dydz z y dzdx x z dxdy =-+-+-??,其中S 是曲面 222(12)z x y z =--≤≤的上侧.

五、(15分) 设二元函数(,)f x y 在正方形区域 [][]0,10,1?上连续,记[]0,1J =. ()i 试比较inf sup (,)y J y J f x y ∈∈与supinf (,)y J y J f x y ∈∈的大小并证明之; ()ii 给出一个使等式inf sup (,)supinf (,)y J y J y J y J f x y f x y ∈∈∈∈=成立的充分条件并证明之. 六、(15分) 设()f x 是在 []1,1-上可积且在0x =处连续的函数,记 (1)01()10n n nx x x x e x ??-≤≤?=?-≤≤?? . 证明:11lim ()()(0)2n n n f x x dx f ?-→∞=?.

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

07数学分析(一)试题A及答案

2007 ~2008 学年第一学期 《数学分析(一)》课程考试试卷(A 卷) (闭卷) 院(系) _经济学院___专业班级__________学号_________ 姓名__________ 考试日期: 2008-1-17 考试时间: 19:00—21:30 一. 填空题(每小题3分,共30分) 1. =?dx x x 2sin C x x x ++-|sin |ln cot . 2. 曲线233x x y +-=的拐点是 (1,2). 3. ) 11(tan )cos 1(lim 4 2 2 20 -+-→x x x e x x =___2__. 4. 设x x y 44cos sin +=,则)(n y )(+∈N n =)2 4cos(4 1 πn x n + -. 5. 设1)(2++=x x x f ,在[0,2]上用Lagrange 中值定理,则中值ξ=_1__. 6. Riemann 函数在每个有理点都间断,在每个无理点都连续. 7. 设,021k b b b <<<< 则n n k n n n b b b +++∞ → 21lim =k b . 8. 设2 211x x x y -+=, 则=dy dx x x x y )121( 4 -+. 9. 函数x x x u sin 1tan 1)(--+=当0→x 时的无穷小主部是x .

10. 设)(x f 在+ R 内可微且4)]()(2[lim ='++∞ →x f x f x ,则=+∞ →)(lim x f x 2 二. 举例说明下列命题是错误的(每小题3分,共15分. 需要简单说明) 1.非常值周期函数必有最小正周期. Direchlet 函数. 因为任意正有理数都是它的周期. 2.设函数)(x f 在区间I 上有间断点,则)(x f 在I 上不存在原函数. ????? =≠-=0,00 ,1cos 21sin 2)(22x x x x x x x f ,在x=0处间断,但在任何区间)0(I I ∈上有原函数?? ???=≠=0,00,1sin )(22 x x x x x F . 3. 设函数)(x f 在),0[+∞上有定义,且在),0(+∞内有0)(>'x f ,则对一切的0>x ,有)0()(f x f >. 只要在x=0处不右连续的函数即可说明. 4. 若()f x 在(,)a b 内可导,且()()f a f b =,则必存在(,)a b ξ∈,使得 ()0f ξ'=. 函数)10(,)(<≤=x x x f ,0)1(=f . 5. 若数列}{n x 满足:,,0N ?>?ε 当N n >时有ε<-+||1n n x x ,则} {n x 为基本数列. 发散数列n x n 1 21 1+ ++= ,},1][,1max{,01-=>?-εεN 取 :N n >?则 ε<+= -+1 1 ||1n x x n n .

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

新版东北大学数学考研经验考研真题考研参考书

一年就这样过去了,内心思绪万千。 一年很短,备考的经历历历在目,一年很长,长到由此改变了一个人的轨迹,并且成就一个梦想。回忆着一年的历程,总想把它记录下来,希望可以给还在考研道路上奋斗的小伙伴们一点帮助。 考研是一个非常需要坚持的过程,需要你不断坚持和努力才能获得成功,所以你必须要想清楚自己为什么要考研,这一点非常重要,因为只有确认好坚定的动机,才能让你在最后冲刺阶段时能够坚持下来。 如果你只是看到自己周围的人都在考研而决定的考研,自己只是随波逐流没有坚定的信心,那么非常容易在中途就放弃掉了,而且现在考研非常火热,这就意味着竞争也会非常激烈,而且调剂的机会都会非常难得,所以备考时的压力也会比较大,所以大家一定要调整好心态,既不能压力太大,也不能懈怠。 既然选择了,就勇敢的走下去吧。 考研整个过程确实很煎熬,像是小火慢炖,但是坚持下来,你就会发现,原来世界真的是美好的。 文章整体字数较多,大家可视自己情况阅读,在文章末尾我也分享了自己备考过程中的资料和真题,大家可自行下载。 东北大学数学的初试科目为: (101)思想政治理论(201)英语一或(240)二外德语 (618)数学分析和(814)高等代数 参考书目为: 1.《数学分析》陈传璋,高等教育出版社,2004年 2.《实变函数与泛函分析》(1-3章),宋叔尼,科学出版社,2007年

3.《高等代数》(1-9章),北京大学数学系,高等教育出版社,2003年 4.《近世代数》(1-2章),杨子胥,高等教育出版社,2003年 跟大家先说一下英语的复习吧。 学英语免不了背单词这个难关,词汇量上不去,影响的不仅是考试成绩,更是整体英语能力的提升;背单词也是学习者最感到头痛的过程,不是背完了转身就忘,就是背的单词不会用,重点单词主要是在做阅读的时候总结的,我把不认识不熟悉的单词全都挑出来写到旁边,记下来反复背直至考前,总之单词这一块贵在坚持,背单词的日程一定要坚持到考研前一天。 因此,学会如何高效、科学地记忆词汇,养成良好的记单词习惯,才能达到事半功倍的学习效果,我用的是《木糖英语单词闪电版》,里面的高频词汇都给列出来了,真的挺方便的,并且刷真题我用的《木糖英语真题手译》这本书,我感觉对我帮助特别大,里面的知识点讲解的通俗易懂,而且给出的例子都很经典,不容易忘记。 前期,在这段时间最重要的是积累,也就是扩充自己的词汇量,基础相对差一些的同学可以背考研单词,而基础相对好一些的同学考研单词相对于你来说就会比较简单,这时就不必浪费时间,可以进行外刊阅读。由于考研英语阅读的文章全部都是从外刊中摘录的,所以进行外刊阅读就可以把其当作“真题”的泛读。 中期,在期末考试和小学期结束之后就要开始做真题了,我从最早的那年开始一路做下来,留了三套考前模拟,大概是有二十多套。我一般会第一天做一套然后后面花1~2天的时间对文章进行精读及分析错误原因。早些年的英语出题有相当难度,考察的有不少都是很复杂的句式及熟词僻义,这与近几年的考察角度是完全不同的,所以我建议时间不多的同学完全可以放弃早些年的真题,然后

东北大学 数值分析 07(研)数值分析

数值分析试题 2007.12 一、简答下列各题:(每题4分,共20分) 1.为了提高计算精度,求方程x 2-72x+1=0的根,应采用何种公式,为什么? 2.设??? ? ??=2112A ,求)(A ρ和2)(A Cond 。 3.设??? ? ? ??=131122321A ,求A 的LU 分解式。 4.问23221)2(x x x x ++=是不是3R 上的向量范数,为什么? 5.求数值积分公式?-≈b a a b a f dx x f ))(()(的截断误差R[?]。 二、解答下列各题:(每题8分,共56分) 1.已知线性方程组??? ??=-+=-+=-+3 53231 4321 321321x x x x x x x x x ,问能用哪些方法求解?为什么? 2.解线性方程组b Ax =的Gauss-Seidel 迭代法是否收敛?为什么?其中: ???? ? ??--=211111112A 3.设]2,0[)(4C x f y ∈=,且0)0(,0)2(,2)1(,1)0(='===f f f f ,试求)(x f 的三次插值多项式)(3x H ,并写出余项)()()(33x H x f x R -=。 4.给定离散数据 试求形如3bx a y +=的拟合曲线。 5.求区间[0,1]上权函数为x x =)(ρ的正交多项式)(0x p ,)(1x p 和)(2x p 。 6.确定求积系数321,,A A A ,使求积公式: ? +++- ≈3 1 321)5 32()2()532()(f A f A f A dx x f

具有尽可能高的代数精度,并问代数精度是多少? 7. 利用2=n 的复化Simpson 公式计算计算定积分 ,并估计误差][f R 。 三、(12分)已知方程0cos 2=-x x , 1.证明此方程有唯一正根α; 2.建立一个收敛的迭代格式,使对任意初值]1,0[0∈x 都收敛,说明收敛理由和收敛阶。 3.若取初值00=x ,用此迭代法求精度为510-=ε的近似根,需要迭代多少步? 四、(12分)已知求解常微分方程初值问题: ?? ?∈=='] ,[,)(),(b a x a y y x f y α 的差分公式: ?? ??????? =++==++=+α 0121211 ) 32 ,32() ,()3(4 y hk y h x f k y x f k k k h y y n n n n n n 1.证明:此差分公式是二阶方法; 2.用此差分公式求解初值问题1)0(,10=-='y y y 时,取步长h=0.25,所得数值解是否稳定,为什么? ?1 0sin xdx

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=, 得 2 21ln(1)4 x x x x ≤-+≤,(x 充分小),

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

最新2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

华中科技大学2004年《数学分析》试题

华中科技大学2004年《数学分析》试题 (试题由博士论坛之硕博之路版主hfg1964录入) 以下每题15分 1.设00x =,1 n n k k x a == ∑(1n ≥),n x b →(n →∞).求级数11 ()n n n n a x x ∞ -=+∑之和. 2.设(0)(1)f f =,''()2f x ≤(01x ≤≤).证明'()1f x ≤(01x <<).此估计式能否改进? 3.设(,)f x y 有处处连续的二阶偏导数,'(0,0)'(0,0)(0,0)0x y f f f ===.证明 (,)f x y 1 22 1112220 (1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt = -++? . 4.设(,)f x y 在,0x y ≥上连续,在,0x y >内可微,存在唯一点00(,)x y ,使得00,0x y >, 0000'(,)'(,)0x y f x y f x y ==.设00(,)0f x y >,(,0)(0,)0f x f y ==(,0x y ≥), 2 2 lim (,)0x y f x y +→∞ =,证明00(,)f x y 是(,)f x y 在,0x y ≥上的最大值. 5.设处处有''()0f x >.证明:曲线()y f x =位于任一切线之上方,且与切线有唯一公共点. 6.求22 49L xdy ydx I x y -= +? ,L 是取反时针方向的单位圆周. 7.设()f 是连续正值函数, 2 2 2 2 2 2 2 222 2222 ()()()()x y z t x y t f x y z dxdydz F t x y f x y dxdy ++≤+≤++= ++??? ?? . 证明()F t (0t >)是严格单调减函数. 8.设级数0 1 n n a n ∞ =+∑ 收敛,证明 1 1n n n n n a a x dx n ∞∞ === +∑ ∑?. 9.设()f x 在[0,)∞上连续,其零点为01:0n n x x x x =<<<< ,()n x n →∞→∞.证明:积分0 ()f x dx ∞ ? 收敛?级数10 ()n n x x n f x dx +∞ =∑ ? 收敛. 10.设a b <,()n f x 在[,]a b 上连续,()0b n a f x dx ≥?(1,2,n = ),当n →∞时,()n f x 在[,] a b 上一致收敛于()f x .证明:至少存在一点0[,]x a b ∈,使得0()0f x ≥.

数学分析期末考试题

数学分析期末考试题 一、叙述题:(每小题5分,共10分) 1、 叙述反常积分 a dx x f b a ,)(? 为奇点收敛的cauchy 收敛原理 2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)21 2111( lim n n n n +++++∞ →Λ 2、求摆线]2,0[)cos 1() sin (π∈? ??-=-=t t a y t t a x 与x 轴围成的面积 3、求?∞+∞-++dx x x cpv 211) ( 4、求幂级数∑∞ =-12 )1(n n n x 的收敛半径和收敛域 5、),(y x xy f u =, 求y x u ???2 三、讨论与验证题:(每小题10分,共30分) 1、y x y x y x f +-=2 ),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为 什么? 2、讨论反常积分 ? ∞ +0 arctan dx x x p 的敛散性。 3、讨论∑∞ =-+1 33))1(2(n n n n n 的敛散性。 四、证明题:(每小题10分,共20分) 1、 设f (x )在[a ,b ]连续,0)(≥x f 但不恒为0,证明0)(>? b a dx x f 2、 设函数u 和v 可微,证明grad (uv )=ugradv +vgradu

参考答案 一、1、,0.0>?>?δε使得δδδ<<?>?δε使得 D x x x x ∈<-?2,121,δ,成立ε<-)()(21x f x f 二、1、由于 x +11 在[0,1]可积,由定积分的定义知(2分) )21 2111( lim n n n n +++++∞ →Λ=2ln 11)11211111( 1lim 10=+=+++++?∞→dx x n n n n n n Λ(6分) 2、 、所求的面积为:220 23)cos 1(a dx x a ππ =-? (8分) 3、 解:π=++=++??-+∞→∞ +∞-A A A dx x x dx x x cpv 2 211lim 11) ( (3分) 4、解:11 lim 2=∞ →n n x ,r=1(4分) 由于x =0,x =2时,级数均收敛,所以收敛域为[0,2](4分) 5、解: y u ??=221y x f x f -(3分)3 22112212y x f xy f y f f y x u -++=???(5分) 三、1、解、 0lim lim lim ,1lim lim lim 2 02000200==+-==+-→→→→→→y y y x y x x x y x y x y x y x y x (5分)由于沿kx y =趋于(0,0)极限为k +11 所以重极限不存在(5分) 2、解:???∞+∞++=1100arctan arctan arctan dx x x dx x x dx x x p p p (2分),对?10arctan dx x x p ,由于 )0(1arctan 1+→→-x x x x p p 故p <2时?10arctan dx x x p 收敛(4分);?∞+1arctan dx x x p ,由于)(2arctan +∞→→x x x x p p π (4分)故p >1?∞+1arctan dx x x p 收敛,综上所述1

相关主题
文本预览
相关文档 最新文档