当前位置:文档之家› 微积分练习题(含答案)

微积分练习题(含答案)

微积分练习题(含答案)
微积分练习题(含答案)

练习题

第六章 定积分

1. 1

1()(2)(0)x

F x dt x t

=

-

>?

的单调增加区间为_____. 1

(,)4+∞

2. 函数0

()x

t F x te dt -=?

在点x =____处有极值. 0

3.设sin 2

01()sin ,()sin 2

x f x t dt g x x x =

=-?,则当0x →时有( A ). (A) ()~()f x g x (B) ()f x 与()g x 同阶,但()f x 不等价于()g x (C) ()(())f x o g x = (D) ()(())g x o f x =

4.计算35

2322

0sin sin 2sin cos . []3515x x x xdx π

π?-=?

5.计算

2

1

1ln e dx

x x

+?

. 2(31)-

6.求函数dt t t x x I )ln 1(1

)(-=

?

在],1[e 上的最大值与最小值. 最大值()

341

2-e ,最小值0

7.设函数???

??≥=<<-+01 2cos 110 )(2x x

x xe x f x ,计算

?

-4

1

)2(dx x f .

()

11tan 2

1

4-+e 8.

2

sin (

)x

t dt t

π'=?( C ) (其中2x π

>).

(A)

sin x x (B)

sin x

C x

+ (C)

sin 2x x π- (D) sin 2x C x π

-+ 9. 设()f x 是连续函数,且

3

()x f t dt x =?

,则(8)f =_____.

1

12

10. x

dt t x x cos 1)sin 1ln(lim

-+?→=___1__ ;

)

1ln(cos lim

20

2x tdt

x x +?→=__1__ .

11. 设()()()b

a

d d I f x dx f x dx f x dx dx dx '=+-???存在,则(C ). (A) ()I f x = (B) ()I f x C =+ (C) I C = (D) 0I =

12. 已知1

(2),(2)02

f f '==,及20()1f x dx =?,则120(2)x f x dx ''? = 0__ .

13. 若sin 0

()cos x

f t dt x x =+?

(0)2

x π

<<

,则()f x =__

2

11x x

--___.

第五章 不定积分

1. 若()()F u f u '=,则(sin )cos f x xdx =?__ _. (sin )F x C +

2. 若

()sin 2,f x dx x C =+?则()f x =__ _. 2cos 2x

3.

2()1x

f x dx C x =

+-?

,则sin (cos )xf x dx =?_ __. 2cos sin x C x

-+ 4. 若

()()f u du F u C =+?

.则211

()f dx x x

?=?__ _. 1()F C x -+

5.求

sin cos sin cos x x

dx x x -=+?_____. ln sin cos x x C -++

6. 求

ln(ln )

x dx x ?. ln (ln ln 1)x x C -+

7. 已知()f x 的一个原函数为x

e -,求(2)x

f x dx '?

. 211()22x e x C

--++

8.计算?

+dx x

x

2cos 12. tan ln cos x x x C ++

9.求

dx e

x

?-11

. ln 1x

x e C --+

10.计算?

+dx x xe x

2

)1(. 1

x

x xe e C x -+++ 11.计算 ?++dx x x

x )

1(2122

2

. 1

arctan x C x

-

++ 12.求?dx x x 2sin 2cos 2. 1

2sin 2C

x -+

13.求

2

arctan 1x x dx x

+?

.

221arctan ln(1)x x x x C +-+++

第四章 导数应用

1.计算极限 (1)0

ln lim ln sin x x

x

+

→=___1___. (2) cot

2

0lim(1)x

x x →+ =___2e ___

(3) 01lim(ln )x

x x +→=___1___ (4) sin 0lim(cot)x x +→ =__1__

(5) +1

ln(1)lim arccot x x x →∞+

=___1___

2. 函数()(1)(2)(3)(4)f x x x x x x =----的二阶导函数有_____个零点. 3

3. 下列极限计算中,不能使用罗必塔法则的是( B ). (A) 1

11

lim x

x x

-→ (B)20

1

sin

lim

sin x x x x

(C) 3ln lim

x x x →+∞ (D) lim ln x x a

x x a

→+∞-+

4. 设()y f x =满足方程sin 0x

y y e

'''+-=,且0()0f x '=,则()f x 在( A ).

(A) 0x 处取得极小值 (B) 0x 处取得极大值 (C) 0x 的某个邻域内单调增加 (D) 0x 的某个邻域内单调减少 5. 若()f x 与()g x 可导,lim ()lim ()0x a

x a

f x

g x →→==,且()

lim

()

x a

f x A

g x →=,则( C ). (A)必有()

lim

()

x a

f x B

g x →'='存在,且A B = (B) 必有()

lim

()

x a

f x B

g x →'='存在,且A B ≠ (C) 如果()

lim

()

x a

f x B

g x →'='存在,则A B = (D) 如果()

lim

()

x a

f x B

g x →'='存在,不一定有A B = 6. 设偶函数()f x 具有连续的二阶导数,且()0f x ''≠,则0x =( B ). (A) 不是函数()f x 的驻点

(B) 一定是函数()f x 的极值点

(C) 一定不是函数()f x 的极值点 (D) 是否为函数()f x 的极值点还不能确定

7.求曲线22

12x y e

π

-

=

的单调区间、极值、拐点并研究图形的凹向.

x

(),1-∞-

1-

()1,0-

0 (0,1)

1

(1,)+∞

曲线y 单调增

上凹

拐点

1(1,

)

2e

π-

单调增 下凹

极大值

12π

单调减 下凹

拐点 1

(1,

)

2e

π

单调减 上凹

8.求函数32)1()4()(+?-=x x x f 的极值和拐点并讨论函数图形的单调性与凹向.

x

(,2)-∞-

2-

(2,1)--

1-

(1,1)-

1

(1,)+∞

)(x f '

+ + + 不存在 - 0 + ()f x ''

- 0 + 不存在 + + + )(x f

↑下凹

(2,6)-

↑上凹 极大值0

↓上凹

极小值33 4.-

↑上凹

9. 证明不等式:123(0)x x x

≥-

>

.

10. 证明方程5

510x x -+=在(0,1)内有且仅有一个实根. (提示:设5

()51f x x x =-+,

利用零点存在定理和罗尔中值定理.) 11. 证明不等式:

ln(1)1x

x x x

<+<+ (0x >). (提示:对()ln(1)f t t =+在[0,]x 上使用拉格朗日中值定理.)

第三章 导数

1.设函数()f x 依次是,,sin x n

e x x ,则()

()n f

x =____ ,!,sin()2

x n

e n x π+.

2.若直线1

2

y x b =

+是抛物线2y x =在某点处的法线,则b =_____.

32 3.设)(x f 是可导函数,则220()()

lim

x f x x f x x

?→+?-=?( D ).

(A) 0 (B) 2()f x (C) 2()f x ' (D) 2()()f x f x '

4.若0

()sin 20

ax e x f x b x x ?<=?+≥? 在0x = 处可导,则,a b 值应为( A ).

(A) 2,1a b == (B) 1,2a b == (C) 2,1a b =-= (D) 1,2a b ==- 5.设函数()y f x =有01

()3

f x '=,则0x ?→ 时,该函数在0x x =的微分dy 是( B ).

(A) 与x ?等价的无穷小

(B) 与x ?同价的无穷小,但不是等价无穷小 (C) 比x ?低阶的无穷小 (D) 比x ?高阶的无穷小

6.曲线2

1y ax =+在点1x =处的切线与直线1

12

y x =

+垂直,则a =__ _. -1 7.设()2x

f x =,则0

()(0)

lim

x f x f x

→''-=____. 2ln 2

8.)(x f =2

1sin

00

x x x

x ?≠???=? 在点x=0处 D .

A.连续且可导

B.连续,不可导

C.不连续

D .可导,但导函数不连续

9.设()f x ''存在,求函数()

f x y e

-=的二阶导数. ()

2[(())()]f x y e

f x f x -'''''=-

10.2

ln(1)x y e =+,求dy . 2

2

2

2ln(1)1x x

x e x dy e dx dx e

?'=+=

+.

11. 方程arctan

22

y

x

x y e +=确定y 是x 的函数,求导数x y '.

第一、二章 函数极限与连续

1. )(x f 定义域是[2,3],则)9(2

x f -的定义域是___. ]5,5[-

2. 设x x g -=2)(,当1≠x 时,[]1

)(-=

x x

x g f ,则=)23(f _ _. -1

3. 设函数)(x f 和)(x g ,其中一个是偶函数,一个是奇函数,则必有( D ). (A))()()()(x g x f x g x f -=-+- (B) )()()()(x g x f x g x f +-=-+-

(C) )()()()(x g x f x g x f ?=-?- (D) )()()()(x g x f x g x f ?-=-?-

4.()()()

1020

15

21213lim

16x x x x →∞

+++. 5

3

()2

5.()()111

lim 13352121n n n →∞??+++ ? ???-+?

?L . 12 6. 2

31

sin 5

3lim

x

x x x -∞→. 3

7. 设????

?

??

??

>=<+=0

sin

01

)1()(1x e x x x x x x f x ,求)(lim 0

x f x →. e

8. 32sin 01tan 1tan lim 1x x x x

e →+---. 512

高中数学高考总复习定积分与微积分基本定理习题及详解

一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:?b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分?b a dx x f )(的几何意义是:y=f (x )与x=a ,x= b 及x 轴围成的曲边梯形面积,在一般情形下.?b a dx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x= b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=?,在图(2)中:0s dx )x (f b a <=?,在图(3)中:dx )x (f b a ?表示 函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于?b a dx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于?b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)??=b a b a dx x f k dx x kf )()(,(k 为常数) (3)???+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a , b ]上,?≥≥b a dx x f x f 0)(,0)(则 推论:(1)若在区间[a ,b ]上,??≤≤b a b a dx x g dx x f x g x f )()(),()(则 (2)??≤b a b a dx x f dx x f |)(||)(| (3)若f (x )是偶函数,则??=-a a a dx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=?-a a dx x f 4. 微积分基本定理: 一般地,若)()()(],[)(),()('a F b F dx x f b a x f x f x F b a -==?上可积,则在且 注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据

定积分与微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

高中数学~定积分和微积分基本原理

高中数学~~定积分和微积分基本原理 1、求曲线、直线、坐标轴围成的图形面积 ? [ 高三数学] ? 题型:单选题 由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A. 310 B. 4 C. 3 16 D. 6 问题症结:大概知道解题方向了,但没有解出来,请老师分析 考查知识点: ? 定积分在几何中的应用 ? 用微积分基本定理求定积分值 难度:难 解析过程: 联立方程组,2 ???-==x y x y 得到两曲线的交点坐标为(4,2), 因此曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为: 3 16)]2([4 = --? dx x x . 答案:C 规律方法: 首先求出曲线y=和直线y=x-2的交点,确定出积分区间和被积函数,然后利用导数和积分的关 系求解. 利用定积分知识求解该区域面积是解题的关键. 高二数学问题 ? [ 高一数学] ? 题型:简答题 曲线y=sinx (0≤x ≤π)与直线y=?围成的封闭图形面积是? 问题症结:找不到突破口,请老师帮我理一下思路 考查知识点: ? 用定义求定积分值 难度:中 解析过程:

规律方法: 利用定积分的知识求解。 知识点:定积分和微积分基本原理 概述 所属知识点: [导数及其应用] 包含次级知识点: 定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用 知识点总结 本节主要包括定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用等知识点。对于定积分和微积分基本原理的理解和掌握一定要通过数形结合理解,不能死记硬背。只有理解了定积分的概念,才能理解定积分的几何意义。

高中数学之定积分与微积分基本定理含答案

专题06 定积分与微积分基本定理 1.由曲线,直线轴所围成的图形的面积为() A.B.4C.D.6 【答案】A 【解析】 联立方程得到两曲线的交点(4,2), 因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为: S. 故选:A. 2.设f(x)=|x﹣1|,则=() A.5 B.6 C.7 D.8 【答案】A 【解析】 画出函数的图像如下图所示,根据定积分的几何意义可知,定积分等于阴影部分的面积,故定积分为 ,故选A.

3.曲线与直线围成的封闭图形的面积是() A.B.C.D. 【答案】D 【解析】 令,则,所以曲线围成的封闭图形面积为 ,故选D 4.为函数图象上一点,当直线与函数的图象围成区域的面积等于时,的值为 A.B.C.1D. 【答案】C 【解析】 直线与函数的图象围成区域的面积S dx =

∴ 故选:C 5.由直线与曲线所围成的封闭图形的面积为( ) A.B.1C.D. 【答案】B 【解析】 题目所求封闭图形的面积为定积分,故选B. 6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( ) A.B.C.D. 【答案】A 【解析】 依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A. 7.() A.B.-1C.D. 【答案】C 【解析】 解:

. 故选:C. 8.,则T的值为 A.B.C.D.1 【答案】A 【解析】 由题意得表示单位圆面积的四分之一,且圆的面积为π, ∴, ∴. 故选A. 9.下列计算错误 ..的是() A.B. C.D. 【答案】C 【解析】 在A中,, 在B中,根据定积分的几何意义,, 在C中,, 根据定积分的运算法则与几何意义,易知,故选C.

高等数学试题及答案

高等数学试题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《 高等数学 》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A)、必要条件 B)、充分条件 C)、充要条件 D)、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、2arctan 1dx dx x x =+? D )、211 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=????? ?'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、C bx bx x +-sin cos B )、C bx bx x +-cos cos

2020年全国高考数学·第15讲 定积分和微积分基本定理

2020年全国高考数学 第15讲 定积分和微积分基本定理 考纲解读 1.了解定积分的实际背景、基本思想及概念. 2.了解微积分基本定理的含义. 命题趋势探究 定积分的考查以计算为主,其应用主要是求一个曲边梯形的面积,题型主要为选择题和填空题. 知识点精讲 基本概念 1.定积分的极念 一般地,设函效()f x 在区间[a ,b]上连续.用分点0121i i a x x x x x -=<<<<

微积分试卷及答案

微积分试卷及答案Revised on November 25, 2020

2009 — 2010 学年第 2 学期 课程名称 微积分B 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟 命 题 人 2010 年 6 月10日 使用班级 教研室主任 年 月 日 教学院长 年 月 日 姓 名 班 级 学 号 一、填充题(共5小题,每题3分,共计15分) 1.2 ln()d x x x =? . 2.cos d d x x =? . 3. 31 2d x x --= ? . 4.函数2 2 x y z e +=的全微分d z = . 5.微分方程ln d ln d 0y x x x y y +=的通解为 . 二、选择题(共5小题,每题3分,共计15分) 1.设()1x f e x '=+,则()f x = ( ). (A) 1ln x C ++ (B) ln x x C + (C) 2 2x x C ++ (D) ln x x x C -+

2.设 2 d 11x k x +∞=+? ,则k = ( ). (A) 2π (B) 22π (C) 2 (D) 2 4π 3.设()z f ax by =+,其中f 可导,则( ). (A) z z a b x y ??=?? (B) z z x y ??= ?? (C) z z b a x y ??=?? (D) z z x y ??=- ?? 4.设点00(,)x y 使00(,)0x f x y '=且00(,)0 y f x y '=成立,则( ) (A) 00(,)x y 是(,)f x y 的极值点 (B) 00(,)x y 是(,)f x y 的最小值点 (C) 00(,)x y 是(,)f x y 的最大值点 (D) 00(,)x y 可能是(,)f x y 的极值点 5.下列各级数绝对收敛的是( ). (A) 211(1)n n n ∞ =-∑ (B) 1 (1)n n ∞ =-∑ (C) 1 3(1)2n n n n ∞ =-∑ (D) 11(1)n n n ∞=-∑ 三、计算(共2小题,每题5分,共计10分) 1.2d x x e x ? 2.4 ? 四、计算(共3小题,每题6分,共计18分)

高中数学高考总复习定积分与微积分基本定理习题及详解教学内容

定积分与微积分基本定理习题 一、选择题 1. a =??02x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是( ) A .a

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

定积分和微积分基本定理

第三节定积分和微积分基本定理 考纲解读 1?了解定积分的实际背景、基本思想及概念 ? 2?了解微积分基本定理的含义 . 命题趋势探究 定积分的考查以计算为主, 其应用主要是求一个曲边梯形的面积, 题型主要为选择题和填空 题? 知识点精讲 一、基本概念 1.定积分的极念 一般地,设函效 f (x )在区间[a , b ]上连续.用分点a = x 0 < x 2< L < x — < x b - a < L < X n 二b 将区间[a,b ]等分成n 个小区间,每个小区间长度为 D x ( D x = ), n n 在每个小区间[X i -^X i ]上任取一点\ i =1,2J||,n ,作和式:S^v f(i)C x =: i 二 n b _a f ( i ),当D x 无限接近于0 (亦即n —; ? ?)时,上述和式S n 无限趋近于常数 S , i i n b 那么称该常数S 为函数f (x)在区间[a,b ]上的定积分?记为: S 二 f (x)dx , f (x)为 * a 被积函数,X 为积分变量, 需要注意以下几点: [a, b ]为积分区间,b 为积分上限,a 为积分下限. b (1) 定积分 f(x)dx 是一个常数,即S n 无限趋近的常数S (n 时),称为 a b f (x)dx ,而不是 S n . a (2) 用定义求定积分的一般方法 . b n ? b -^a a f(x)dx 二[imj f i -" a - i n b t 2 b (3)曲边图形面积:S = f x dx ;变速运动路程s 二 v(t)dt ;变力做功S = F(x) dx 2 ?定积分的几何意义 b 从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f(x)_0,那么定积分a f x dx 表 示由直线 X =a,x =b(a =b), y =0和曲线y = f (x )所围成的曲边梯形(如图3-13中的阴影 ①分割:n 等分区间[a ,b ];②近似代替:取点 n b — a i ?〔x 」,X i 丨;③求和:、? 口 f(i ); ◎ n ④取极限:

专题13 定积分与微积分基本定理知识点

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

()d b a f x x ? =1 lim ()n i n i b a f n ξ→∞ =-∑ . (2)在 ()d b a f x x ? 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被 积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d b b a a kf x x k f x x =??(k 为常数); (2)[()()]d ()d ()d b b b a a a f x g x x f x x g x x ±=±? ??; (3) ()d =()d +()d b c b a a c f x x f x x f x x ? ??(其中a

定积分与微积分含答案

定积分与微积分基本定理 基础热身 1.已知f (x )为偶函数,且 ??0 6f(x)d x =8,则? ?6-6f(x)d x =( ) A .0 B .4 C .8 D .16 2. 设f(x)=??? x 2,x ∈[0,1], 1 x ,x ∈1,e ] (其中e 为自然对数的底数),则??0 e f(x)d x 的值为( ) B .2 C .1 3.若a =??0 2x 2d x ,b =??0 2x 3d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关 系是( ) A .a

A .0 B .1 C .0或1 D .以上均不对 9.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为( ) A . J B . J C . J D . J 10.设函数y =f(x)的定义域为R +,若对于给定的正数K ,定义函 数f K (x )=????? K ,fx ≤K ,fx ,fx >K , 则当函数f (x )=1x ,K =1时,定积分??214f K (x)d x 的值为________. (x -x 2)d x =________. 12. ∫π 20(sin x +a cos x)d x =2,则实数a =________. 13.由抛物线y 2 =2x 与直线x =12及x 轴所围成的图形绕x 轴旋转一周所得旋转体的体积为________. 14.(10分)已知函数f(x)=x 3+ax 2+bx +c 的图象如图K 15-2所示,直线y =0在原点处与函数图象相切,且此切线与函数图象所围 成的区域(阴影)面积为27 4,求f(x)的解析式. 图K 15-2 15.(13分)如图K 15-3所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax(a>1)交于点O 、A ,直线x =t (00),

微积分期末测试题及答案

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0 ()(2) lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④ 1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②, 2 2π π? ? - ???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1() x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0 lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0 lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) 1.sin lim sin x x x x x →∞ -=+____________. 2.3 1lim (1) x x x +→∞ + =____________. 3.()f x = 那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.1 11lim ( )ln 1 x x x →- - 2.t t x e y te ?=?=?,求2 2d y d x 3.ln (y x =+,求dy 和 2 2 d y d x . 4.由方程0x y e x y +-=确定隐函数y = f (x ) ,求d y d x . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞ .

(完整版)高中数学高考总复习定积分与微积分基本定理习题及详解()

高中数学高考总复习定积分与微积分基本定理习题及详解 一、选择题 1.(2010·山东日照模考)a =??0 2x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是 ( ) A .a 2,c =? ?0 2sin x d x =-cos x |02=1 -cos2∈(1,2), ∴c

微积分定积分练习题(有答案)

1利用定积分的几何意义计算」''1 - x2dx. 2. 计算定积分"2(x+ 1)dx. J i 3. 定积分"bf(x)dx的大小() ?a A .与f(x)和积分区间[a, b]有关,与E的取法无关 B.与f(x)有关,与区间[a,b]以及&的取法无关 C .与f(x)以及8的取法有关,与区间[a, b]无关 D .与f(x)、区间[a,b]和8的取法都有关 4. 在求由x= a,x= b(a

8. 10 利用定积分的几何意义求 —9 — x — 3 2dx. (1)| 2(x 2+ 2x + 1)dx ; 广n (2) 1 (sinx — cosx)dx ; (3)| J* 2 / 、 1 x — X 2 +_ 1 丿。 1 < X 丿 (4) 0-?cosx + e x )dx. ⑹p (2x + 1)dx ; ⑺ 丿0 1 2x + 一 dx x 广1 ⑺f; x (8) 1x 3dx ; ■ 0 (9) 1e x dx. 11 求 y = — x 2与 y = x — 2围成图形的面积S. 15 A.— 4 17 B.— 4 1 C.—|n 2 2 D . 2ln2 已知"2 f(x)dx = 3,贝U 2 [f(x) + 6]d 1 1 12 .由直线x =2,x =2,曲线y =严x 轴所围图形的面积为 13.已知 f 1— 1(x 3 + ax + 3a — b)dx= 2a + 6 且 f(t) = f (x 3 + ax + 3a — b)dx 为偶函数, 求下列定积分: dx ; 2 1 x 2dx

微积分试卷及答案4套

微积分试题 (A 卷) 一. 填空题 (每空2分,共20分) 1. 已知,)(lim 1A x f x =+ →则对于0>?ε,总存在δ>0,使得当 时,恒有│?(x )─A│< ε。 2. 已知22 35 lim 2=-++∞→n bn an n ,则a = ,b = 。 3. 若当0x x →时,α与β 是等价无穷小量,则=-→β β α0 lim x x 。 4. 若f (x )在点x = a 处连续,则=→)(lim x f a x 。 5. )ln(arcsin )(x x f =的连续区间是 。 6. 设函数y =?(x )在x 0点可导,则=-+→h x f h x f h ) ()3(lim 000 ______________。 7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。 8. ='? ))((dx x f x d 。 9. 设总收益函数和总成本函数分别为2 224Q Q R -=,52 +=Q C ,则当利润最大时产 量Q 是 。 二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。 (A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a (C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设1 1 )(-=x arctg x f 则1=x 为函数)(x f 的( )。 (A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点

(D) 连续点 3. =+ -∞ →1 3)11(lim x x x ( ) 。 (A) 1 (B) ∞ (C) 2e (D) 3e 4. 对需求函数5 p e Q -=,需求价格弹性5 p E d - =。当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。 (A) 3 (B) 5 (C) 6 (D) 10 5. 假设)(),(0)(lim , 0)(lim 0 x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外) 存在,又a 是常数,则下列结论正确的是( )。 (A) 若a x g x f x x =→) ()(lim 或∞,则a x g x f x x =''→)() (lim 0或∞ (B) 若a x g x f x x =''→)()(lim 0或∞,则a x g x f x x =→) () (lim 0或∞ (C) 若) ()(lim x g x f x x ''→不存在,则)() (lim 0x g x f x x →不存在 (D) 以上都不对 6. 曲线2 2 3 )(a bx ax x x f +++=的拐点个数是( ) 。 (A) 0 (B)1 (C) 2 (D) 3 7. 曲线2 ) 2(1 4--= x x y ( )。 (A) 只有水平渐近线; (B) 只有垂直渐近线; (C) 没有渐近线; (D) 既有水平渐近线, 又有垂直渐近线 8. 假设)(x f 连续,其导函数图形如右图所示,则)(x f 具有 (A) 两个极大值一个极小值 (B) 两个极小值一个极大值 (C) 两个极大值两个极小值 (D) 三个极大值一个极小值 9. 若?(x )的导函数是2 -x ,则?(x )有一个原函数为 ( ) 。 x

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

相关主题
文本预览
相关文档 最新文档