当前位置:文档之家› 层状双氢氧化物的插层反应

层状双氢氧化物的插层反应

层状双氢氧化物的插层反应
层状双氢氧化物的插层反应

镁铝双金属氢氧化物改性硬硅钙石对铅离子的吸附研究

镁铝双金属氢氧化物改性硬硅钙石对铅离子的吸 附研究 摘要:采用水热合成法制备硬硅钙石,再采用水热共沉淀法将Mg(II)、Al(Ⅲ)金属盐在碱性条件下对硬硅钙石进行改性,合成镁铝双金属氢氧化物改性硬硅钙石。将镁铝双金属氢氧化物改性硬硅钙石放置在含Pb2+的模拟废水中进行吸附研究,同时将材料用FT-IR和SEM进行结构表征。结果表明,镁铝双金属氢氧化物改性硬硅钙石对Pb2+溶液初始浓度为300 mg/L、吸附剂用量0.04 g、40 min吸附时间、pH=6.4、T=313.15 K条件下,吸附容量727.55 mg/g,去除率97.01 %。镁铝双金属氢氧化物改性硬硅钙石对铅离子的吸附更符合Freundlish等吸附等温曲线,相关系数都在0.97以上。动力学分析发现,镁铝双金属氢氧化物改性硬硅钙石对铅离子的吸附,既符合准一级动力学方程,又符合准二级动力学方程,相关系数均大于0.99。 关键词:镁铝双金属氢氧化物改性硬硅钙石;铅(Ⅱ);吸附;等温吸附;动力学模型

Adsorption of Pb(Ⅱ) in Wastewater by Magnesium Aluminum Double Metal Hydroxide Modified Xonotlite College of Chemistry and Materials Science Applied Chemistry 15130207 LiangHaoFeng Supervisor: WenQing Tang Abstract: Xonotlite were preparationed by hydrothermal synthesis method. Hydrothermal-coprecipitation method was used to combine different bivalent and trivalent metal compounds, such as Al(NO)3·9H2O, Mg(NO)3·6H2O, xonotlite, to form Magnesium Aluminum Double Metal Hydroxide Modified Xonotlite(Mg-Al-LDHs-CSH) in alkaline conditions.The study combined FT-IR and SEM to analysze the crystal structure and function group before and after adsorption lead ion on the Mg-Al-LDHs-CSH. This material is used to adsorb lead ions in wastewater and the adsorption mechanism of magnesium-aluminum double-metal hydroxide modified xonotlite as adsorbent for lead ions was discussed. The experiment investigated the effects of pH, adsorbent dosage, adsorption time, initial concentration of lead ions and reaction temperature on adsorption. Optimum adsorption conditions were found to be initial pH of 6.4, Mg-Al-LDHs-CSH dosage of 0.04 g, initial Pb(II) ion concentration of 300 mg/l at 313.15 K and contact time of 40 min. The adsorption capacity and removal rate of Mg-Al-LDHs-CSH for Pb(II) ions was found to be 727.55 mg/g and 97.01% at optimum conditions. The adsorption data from Mg-Al-LDHs-CSH experiments could be well described by the pseudo-second-order kinetic model and the first--order kinetic model. The adjusted R squared for the second-order kinetic model and the first--order kinetic model were more than 0.99. The Langmuir and Freundlich isotherms were also studied and data were better fitted with the Freundlich isotherm. Keywords: Mg-Al-LDHs-CSH; Adsorption; Pb(Ⅱ); Adsorption isothermal; Adsorption kinetics

镍钴铝三元素复合氧化物

《镍钴铝三元素复合氧化物》 编制说明(讨论稿) 一、工作简况 1.1 任务来源与协作单位 根据《工业和信息化部办公厅关于印发2017年第三批行业标准制修订计划的通知》(工信厅科[2017]40号)及全国有色金属标准化技术委员会《关于召开“铝及铝合金预拉伸板”等87项有色金属标准工作会议的通知》有色标委[2018]7号的文件精神,由中伟新材料有限公司负责起草《镍钴铝三元素复合氧化物》行业标准,项目计划编号2017-0215T-YS,计划完成年限2018年。 1.2 产品简介 众所周知,锂电池用电池正极材料镍钴铝酸锂具有比其他电池正极材料更优秀的循环性能和能量密度,为更好的发挥镍钴铝酸锂优异的性能,必须先制备镍元素,钴元素,铝元素均匀混合的镍钴铝三元素复合氢氧化物(Ni x Co y Al1-x-y(OH)2),然后通过预烧热处理镍钴铝三元素复合氢氧化物而实现减少产品杂质含量、改善材料电性能及提高生产镍钴铝酸锂正极材料的生产效率即为镍钴铝三元素复合氧化物(Ni x Co y Al1-x-y O)的制备 用镍钴铝三元素复合氧化物来制备镍钴铝酸锂的方法比起目前市面上传统的直接使用镍钴铝三元素复合氢氧化物制备镍钴铝酸锂的方法,能有效减少前驱体产物中硫酸根等阴离子杂质含量,改善前驱体材料的加工性能和安全性能。高温热处理后前驱体颗粒内部孔隙结构分布均匀、颗粒比表面积更大,前驱体锂化过程中更容易渗透进入颗粒内部,能显著提高材料电化学活性,并且由于前驱体材料预烧热处理后水分的脱出,前驱体金属含量提高,有效减少了物流成本及提高生产镍钴铝酸锂正极材料的生产效率。 镍钴铝三元素复合氧化物为黑色球形或类球形粉末,大小为0-100μm,每粒粉末均由无数颗小于1μm的一次颗粒团聚形成,一次颗粒的形状有纺锤形,长条形,针形等许多形状。镍钴铝三元素复合氧化物的SEM图片如图1所示: 镍钴铝三元素复合氧化物的制备方法是先通过络合共沉淀法制备镍钴铝三元素复合氢氧化物,然后再将镍钴铝三元素复合氢氧化物通过加热设备(回转窑、推板窑、轨道窑等)进行高温干燥的预烧热处理,从而形成镍钴铝三元素复合氧化物产品。镍钴铝酸锂生产商和镍钴铝三元素复合氧化物生产商是客

微晶玻璃的耐磨性研究

(申请工学硕士学位论文) 钙铝硅系微晶玻璃结构 与耐磨性的研究 培养单位:材料学院 专业名称:材料学 研 究 生:钮 锋 指导老师:何 峰 教 授 2005年5月 钙 铝 硅系 微晶 玻 璃结 构 与耐 磨性 的研究 钮 锋 武 汉理 工 大 学

分类号密级 UDC 学校代码 10497 学 位 论 文 题 目 钙铝硅系微晶玻璃结构与耐磨性的研究 英 文 Research of Microstructure and Wear-Resistance 题 目on the CaO-Al2O3-SiO2 Glass-ceramics 研究生姓名 钮 锋 姓名 何峰 职称 教授 学位 硕士 指导教师 单位名称 武汉理工大学材料学院 邮编 430070 申请学位级别 硕士 学科专业名称 材料学 论文提交日期 论文答辩日期 学位授予单位 武汉理工大学 学位授予日期 答辩委员会主席 评阅人 刘继翔 汤李缨 2005年 6 月

摘 要 近年来,随着CaO-Al2O3-SiO2系统微晶玻璃产业的发展,以及装饰装修的兴起,已经有大量建筑物应用了建筑装饰微晶玻璃。但是使用后发现,微晶玻璃装饰板材表面会出现的“划伤”现象,失去其原有的装饰效果,使其应用范围受到限制。 本课题就以β-硅灰石为主要晶相的微晶玻璃(CaO-Al2O3-SiO2系统)为研究对象,利用烧结法制备微晶玻璃,采用调整基础玻璃配方组成CaO和Al2O3,来调节析出晶体的种类大小及其含量,研究不同晶相含量与微晶玻璃耐磨性能的关系,并分析其对其微观结构、硬度等力学性能的影响。此外,还采用直接加入增韧剂ZrO2的方法,研究加入ZrO2对微晶玻璃结构、耐磨性能的影响。同时还研究了ZrO2对微晶玻璃烧结析晶的影响。 实验中采用磨料磨损的方式。以60目和130目的锆英砂和100目的SiC作为磨料,在道瑞式耐磨性试验机上测试微晶玻璃的耐磨性能,并通过观察试样磨损后的表面微观形貌,来分析其磨损的机理。 实验结果表明:CaO的引入有利于微晶玻璃的析晶,从而提高了材料的耐磨性能;Al2O3的引入虽然降低玻璃的结晶倾向,但是可以使玻璃体更加致密,并提高了玻璃相的力学性能,综合两种作用,微晶玻璃整体的耐磨性得到了一定程度的提高;ZrO2的引入会提高玻璃的粘度,使其烧结收缩率下降,不利于微晶玻璃的烧结。然而ZrO2对微晶玻璃的析晶有一定的促进作用,并且其具有的增韧效果,可以提高微晶玻璃的耐磨性能。 在磨损试验中,对于锆英砂磨料,颗粒越大,磨损量越高;对于不同的磨料,锆英砂和SiC,锆英砂硬度高于SiC,其磨损量也远大于SiC。在小颗粒松散磨料的低磨损区,磨损机理主要是微观切削磨损机理,表面有明显的犁沟或者印痕。在大颗粒的高磨损区,磨损行为包含多种机理,表面的磨损形貌也很复杂。 关键词:微晶玻璃耐磨性能增韧磨损机理

钴锰层状双金属氢氧化物的制备及其电化学性能研究

钴锰层状双金属氢氧化物的制备及其电化学性能研究 超级电容器因储能丰富、绿色环保、充放电速度快、循环寿命长、功率密度大而受到了极大的关注。决定超级电容器性能的关键因素为电极材料。 在众多电极材料中,层状双金属氢氧化物(LDH)具有独特的层状结构,因此在催化剂、吸附剂、分子筛、超级电容器等众多领域都有很好的应用。本文对其作为电极材料进行研究,首先选取钴、锰两种过渡金属元素,采用共沉淀法制备钴锰层状双金属氢氧化物(CoMn-LDH)。 然后,利用撞击流-旋转填料床(IS-RPB)对CoMn-LDH制备过程进行强化。最后,引入聚吡咯(PPy)对CoMn-LDH性能进行改进。 主要研究内容如下:(1)共沉淀法制备CoMn-LDH基础研究。在磁力搅拌条件下,将硫酸锰和硫酸钴的混合溶液与氢氧化钠反应进行CoMn-LDH制备。 主要研究了钴锰摩尔比,氢氧化钠浓度,晶化时间等操作参数对样品形貌、结构以及电化学性能的影响规律。采用X射线衍射(XRD)、红外光谱(FT-IR)、扫描电镜(SEM)、透射电镜(TEM)和比表面积分析仪(BET)等测试手段对材料的物性进行表征,采用电化学工作站和蓝电电池测试系统等测试手段进行电化学性能测试。 结果表明:CoMn-LDH制备过程的适宜操作条件为钴锰摩尔比为2:1,氢氧化 钠浓度为2 mol/L,晶化时间为21 h。在该条件下制得CoMn-LDH的粒子大小为388.9 nm,比表面积为59.5 m~2/g,比容量为952 F/g,经过1000次恒流充放电测试以后,比容量保持率为92.7%。 (2)超重力强化CoMn-LDH制备过程及其电化学性能研究。通过IS-RPB对反应过程的混合进行强化。 首先通过高速摄像机对CoMn-LDH的成核时间进行粗测,结果表明:CoMn-LDH

双金属氢氧化物的制备及其应用性能的研究进展

- 97 - 第5期2018年10月No.5 October,2018 具有层状结构的双金属氢氧化物缩写为LDHs ,并且是具有层状晶体结构的类水滑石化合物。 LDHs 的结构通式如下:[M Ⅰ(1-x)M Ⅱx (OH )2]x +(A n -)x/n ·dH 2O ,其中M Ⅰ=Mg 2+、Fe 2+、Co 2+ 等(为低价态阳离子), M Ⅱ=Al 3+、Fe 3+、Ti 4+等(为高价态阳离子),A n -是层间存在 的阴离子,d 代表每摩尔LDHs 结晶水的摩尔数,x 是摩尔比n (M Ⅱ)/[n (M Ⅰ)+n (M Ⅱ)]。 LDHs 的基本构造单元是由金属离子和氧组成的八面体,八面体的中心镶嵌有金属离子,6个顶角均为OH -,并且八面体通过公共边彼此连接以获得二维延伸的单位晶体层。在LDHs 中,M Ⅱ有时会用类似的半径代替M Ⅰ,从而产生永久的正电荷,处于层间的A n -再把永久正电荷平衡[1]。 随着现代双金属氢氧化物科学技术研究的深入,已经观察到LDHs 表现出非常特殊的层状结构以及LDHs 之间的阴离子嵌入和有机物的可插入性。这些性质被广泛地应用到催化方面、环境安全方面、医药健康等方面。1 LDHs的制备方法 关于LDHs 的制备目前有很多研究,基本分为两个方面:首先是由于存在于八面体层板上的阳离子可以进行同晶取代,根据这种性质而制备的;其次是由于存在于层间阴离子可以进行交换,根据这种性质而制备的[3]。LDHs 的常用制备方法包括液相共沉淀法、水热合成法、阴离子交换法和微波晶化法。1.1 共沉淀法制备LDHs 通过共沉淀法制备出的LDHs 材料有很完整的晶体结构,有比较均一的粒度。 在恒pH 的条件下用双滴定的方法制备Mg-Al-LDHs :使用 MgCl 2·5H 2O 和AlCl 3·6H 2O 作为原料,将二者配制成摩尔比为3∶1的混合盐溶液,再加入沉淀剂(特定浓度1 mol/L 的 NaOH 溶液),所以,Mg-Al-LDHs 是通过液相共沉淀的方法制备的。在恒定的pH 下搅拌,并以适当的滴加速率将1 mol/L NaOH 溶液与制备的混合盐溶液缓慢混合以形成沉淀物,老化一段时间后,将其过滤并洗涤。然后,将滤饼密封并在培养箱中加热以获得Mg-Al-LDHs 的固体样品,然后将样品研 磨成粉末以获得Mg-Al-LDHs [4] 。时效晶体对晶体生长和结 晶度具有一定的优势[5] 。 传统共沉淀反应需要等待较长的时间,这就导致了形成晶核的生成时间变长,结果使粒径的大小程度比较分散,并且LDHs 的粒径分布和它的大小对其在各方面的应用影响较 大,因此,Mg-Al-LDHs 纳米粒子可以通过T 形微反应器制备[6]。虽然也是共沉淀法,但该方法可以有效地分离开晶核的生成期和生长期,使得混合盐溶液与沉淀剂在短时间内就可以充分混合,然后使其老化,得到粒径分布较窄的LDHs 。1.2 水热合成法制备LDHs 水热合成法可以制得高纯度、完全晶体生长、分散性好、颗粒均匀的产品。 取特定质量的Ni(NO 3)2·6H 2O 、Fe(NO 3)3·9H 2O 和尿素完全溶解至去离子水中,使其浓度各为15 mmol 、5 mmol 、35 mmol 。再加入浓度为0.25 mmol 的柠檬酸三钠,均匀搅拌后,置于反应釜中,在150 ℃的条件下保温48 h 。保温完成后,将混合物冷却,离心,用水洗涤3次,用无水乙醇清洗1遍,并在室温下干燥,得到Ni-Fe-LDHs 产物[7]。 水热合成法制备的产品性能的影响因素有镍铁比、反应温度、柠檬酸三钠的浓度以及反应时间。镍铁比对于产品的形貌、结晶度、磁性能和吸附性能有很大影响,当镍铁比为2∶1时,产品具有优良的结晶度和磁性能;当镍铁比为3∶1时的产品具有良好的磁性,对某些物质如甲基橙具有良好的吸附性能。如果升高反应温度或者是延长反应时间会使LDHs 的粒径增大。 1.3 离子交换法制备LDHs 该方法是利用LDHs 的阴离子的可交换性与有机物质的可插层性,通过离子交换将阴离子或有机物质引入LDHs 层中以获得所需的LDHs 。离子交换法适用于合成特殊的阴离子LDHs 。 1.3.1 NO 3-LDHs 的制备 将Ni(NO 3)2·6H 2O 和Al(NO 3)3·9H 2O 制成摩尔比为3∶1的混合盐溶液。和特定浓度的1 mol/L 的NaOH 溶液同时滴入烧瓶中,溶液的pH 保持在约8.5。加完后,将混合物在40 ℃的恒温下搅拌24 h 。获得胶体硝酸根离子型双金属氢氧化物(NO 3-LDHs )样品,最后干燥,得到固体样品。1.3.2 Asp-LDHs 的制备 取16 g 制备的NO 3-LDHs 水滑石样品,并将其置于含有100 mL 去离子水的三颈烧瓶中。在40 ℃恒温条件下搅拌5 h 左右,使其溶胀,再取一定量的天冬氨酸(Asp ,Asp 与NO 3-LDHs 的摩尔比是2∶1)溶于100 mL 脱二氧化碳的去离子水中,并加入NaOH 使溶液呈弱碱性。将其缓慢加入NO 3-LDHs 溶液中,在恒温下搅拌24 h 。过滤洗涤后,将滤饼密封并置于 作者简介:钟硕(1998— ),女,河北沧州人,本科;研究方向:制药工程。 双金属氢氧化物的制备及其应用性能的研究进展 钟 硕,刘广涵,姜丽阳,范兰兰,杨 丹 (河北农业大学 理工学院,河北 黄骅 061100) 摘 要:双金属氢氧化物(LDHs )是一类具有双层结构的新型纳米固体材料,具有酸碱、层间阴离子可交换性和催化性能,它 在许多领域具有独特的优势,因此具有广泛的应用。本文研究了双金属氢氧化物的制备及其在医药、催化等领域的应用。关键词:双金属氢氧化物;制备方法;性能现代盐化工 Modern Salt and Chemical Industry

微晶玻璃

微晶玻璃 摘要:本文介绍了微晶玻璃与普通玻璃和陶瓷的区别,通过分析组成将其分类。 同时描述了微晶玻璃的制备,性质,应用,浅析其发展趋势。 关键词:微晶玻璃组成制备性能应用 Abstract:This paper introduces the difference between microcrystalline glass and common glass and ceramics. Through the analysis of composition classified microcrystalline glass. At the same time, also describe microcrystalline glass’s preparation, property and application. Analysisthe trend of its development. Keywords: Microcrystalline glass preparation property application trend 1 前言 微晶玻璃又称微晶玉石或陶瓷玻璃,是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。但晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的[1]。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2分类及其组成 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等 晶玻璃的组成在很大程度上决定其结构和性能。按照化学组成微晶玻璃主要分为四类:硅酸盐微晶玻璃,铝硅酸盐微晶玻璃,氟硅酸盐微晶玻璃,磷酸盐微晶玻璃。 2.1 硅酸盐微晶玻璃 简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。研究最早的光敏微晶玻璃和矿渣微晶玻璃属于 这类微晶玻璃。光敏微晶玻璃中析出的主要晶相为二硅酸锂(Li 2Si 2 O 5 ),这种晶 体具有沿某些晶面或晶格方向生长而成的树枝状形貌,实质上是一种骨架结构。

双金属氢氧化物

Hexagonal nanosheets from the exfoliation of Ni 2+-Fe 3+LDHs:a route towards layered multifunctional materials ? Gonzalo Abell a n,a Eugenio Coronado,*a Carlos Mart ?-Gastaldo,a Elena Pinilla-Cienfuegos a and Antonio Ribera ab Received 13th May 2010,Accepted 20th June 2010DOI:10.1039/c0jm01447h Here we report the synthesis of a crystalline micrometric-sized hexagonal-shaped Ni 2+-Fe 3+LDH by following a modi?ed homogeneous precipitation method.The exfoliation of the material in formamide leads to stable suspensions of hexagonal nanometric sheets,which have been extensively characterized.Our data con?rm that the intrinsic properties of the bulk material are retained by these segregated nanosheets,thus opening the door for their use in the development of layered multifunctional materials.Exfoliation of layered hydroxides,de?ned as the segregation of these lamellar inorganic solids into single entities through soft chemistry methods,1can be regarded as a versatile synthetic route to prepare stable suspensions of sheets,typically exhibiting homogeneous micrometric lateral size and nanometric thickness.Concerning materials science,these 2D nanosheets offer very interesting features:(a)owing to the nanometric thickness of these layers,they may exhibit new physical properties different from the bulk;(b)compared to other low dimensional nano-materials (0D or 1D),their two-dimensional structure facilitates their processability.In fact,these layers can be re-assembled into highly oriented ?lms by employing Langmuir–Blodgett (LB)or Layer-by-Layer (LbL)techniques;2(c)they can lead to the design of new multifunctional materials combining sophisticated phys-ical properties through the rational choice of the constituting building blocks and the precise control of their arrangement in the solid state.3 Among these layered materials,we were particularly interested in the layered double hydroxides (LDHs)compounds.The struc-ture of these anionic clays is closely related to that of the brucite,Mg(OH)2,with partial substitution of some of the divalent posi-tions with M 3+cations.This fact generates an excess of positive charge in the layers which must be balanced by the presence of anions and water molecules interleaved between the layers according to the formula:[M II 1àx M III x (OH)2](A n à)x/n $yH 2O.In this way,their exfoliation in organic solvents produces steady colloidal suspensions of positively charged nanosheets,4which in the presence of anionic components,can be further re-assembled into sandwich-like layered materials as result of the presence of attractive Coulombic interactions.5In addition,LDHs offer a wide plethora of intrinsic magnetic,optical or catalytic proper-ties,6which ultimately will be retained by the segregated layers and transferred to these layered super-structures.Concerning magne-tism,we recently reported the presence of spontaneous magneti-zation below 15K in Ni 2+-Fe 3+LDHs prepared by the traditional coprecipitation method,as result of the combination of strong antiferromagnetic superexchange interactions between the in-plane ions mediated by the hydroxyl bridge and much weaker dipolar interactions between the layers.7Unfortunately,the synthesis of crystalline Fe 3+-based LDHs with hexagonal morphology in an extendable controlled manner has been elusive so far.More generally,the synthesis of non-Al 3+-based LDHs is very disfavoured mainly due to the speci?c amphoteric behaviour of Al(OH)3.Except for remarkable efforts,8the use of traditional coprecipitation methods,based on the direct combination of the constituting ions in a basic medium,has just led to the isolation of amorphous phases.Although these materials can indirectly enhance its crystallinity after an additional hydrothermal treat-ment,they cannot be effectively exfoliated.9 Here we report how,by following a modi?ed homogeneous precipitation method,whose novelty resides in the use of the chelating agent triethanolamine (TEA;C 6H 15NO 3)as auxiliary reagent,permits the synthesis of a highly crystalline micrometric-sized hexagonal-shaped [Ni 1-x Fe x (OH)2](CO 3)x/2(x ?0.25)LDH.Besides,this material can be readily ion-exchanged with nitrate anions through the so-called ‘‘acid-salt treatment’’,10permitting its quantitative exfoliation in formamide.Regarding the potential magnetic functionality of these Ni 2+Fe 3+-LDH nanosheets,7this work paves the way for their use in the design of advanced multifunctional materials. Experimental Synthesis All chemical reagents,Ni(NO 3)2$6H 2O,Fe(NO 3)3$9H 2O,Al(NO 3)3$9H 2O,NaNO 3,HNO 3,C 6H 15NO 3(triethanolamine,TEA)and CO(NH 2)2(urea)were used as received from commercial suppliers (Sigma-Aldrich and Fluka)without further puri?cation. Synthesis of NiFe-CO 3LDH (1):LDHs were synthesized following a modi?ed homogeneous precipitation method by using urea and TEA as ammonium releasing reagent (ARR)and chelating agent,respectively. a Universidad de Valencia (ICMol),Catedr a tico Jos e Beltr a n n 2,46980Paterna,Spain.E-mail:eugenio.coronado@uv.es;Fax:+34963543273;Tel:+34963544415b Fundaci o n General de la Universidad de Valencia (FGUV),Amadeu de Savoia n 4,46010Valencia,Spain ?Electronic Supplementary Information (ESI)available:Further details concerning the experimental procedure and physical characterization of the materials here reported including X-ray diffraction,SEM images,EDAX metallic analysis,FT-IR and TG/DTA studies.See DOI:10.1039/c0jm01447h/ PAPER https://www.doczj.com/doc/0c17644186.html,/materials |Journal of Materials Chemistry D o w n l o a d e d b y H e F e i U n i v e r s i t y o f T e c h n o l o g y o n 10 J a n u a r y 2012P u b l i s h e d o n 02 A u g u s t 2010 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 0J M 01447H View Online / Journal Homepage / Table of Contents for this issue

【CN109942194A】一种无氟高韧性钙镁铝硅微晶玻璃及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910336840.8 (22)申请日 2019.04.25 (71)申请人 济南大学 地址 250022 山东省济南市市中区南辛庄 西路336号 (72)发明人 康俊峰 陈志延 岳云龙 屈雅  丁帅凯  (74)专利代理机构 济南誉丰专利代理事务所 (普通合伙企业) 37240 代理人 李茜 (51)Int.Cl. C03C 10/00(2006.01) C03B 5/16(2006.01) C03B 13/00(2006.01) (54)发明名称 一种无氟高韧性钙镁铝硅微晶玻璃及其制 备方法 (57)摘要 本发明涉及一种具有高韧性的微晶玻璃及 其制备方法,所述微晶玻璃为无氟配方,配合料 组成按重量百分比计含有如下成分:CaO 18%- 30%,MgO 5%-10%,Al 2O 315%-30%,SiO 250%-65%, MoO 30.01%-0.1%,碳粉0.1%-1%,K 2O+Na 2O 0%-2%。 本发明采用压延法制备微晶玻璃,其特点在于, 所得微晶玻璃除了具有很高的强度和硬度意外, 同时具备很高的断裂韧性1.9-2.5 MPa m 1/2,从 而提高了微晶玻璃的可加工性能和抗冲击性能, 大大拓展了微晶玻璃的应用领域。权利要求书1页 说明书4页CN 109942194 A 2019.06.28 C N 109942194 A

1.一种高韧性微晶玻璃,其特征在于:所述微晶玻璃的配合料按重量百分比计含有如下组分: CaO 18%-30%; MgO 5%-10%; Al2O3 15%-30%; SiO2 50%-65%; MoO3 0.01%-0.1%; 碳粉0. 1%-1% 任意比例混合的Na2O和K2O 0%-2%。 2.根据权利要求1所述微晶玻璃,其特征在于:MoO3和碳粉的重量比为1:5 ~1:10,优选1: 8。 3.根据权利要求1所述微晶玻璃,其特征在于:CaO和Al2O3的重量比为3: 5 ~7:3,优选5: 4。 4.根据权利要求1-3所述微晶玻璃,其特征在于:SiO2由石英砂引入;Al2O3可由工业氢氧化铝或工业氧化铝引入;CaO可由石灰石或重钙粉引入;Na2O由钠长石引入;K2O由钾长石引入。 5.根据权利要求1-4所述微晶玻璃,其特征在于:其主晶相为CaAl2Si2O8,晶相含量为25-40%。 6.根据权利要求1-5所述微晶玻璃,其特征在于:其断裂韧性为1.9-2.5 MPa m1/2。 7.根据权利要求1-6任意一项所述的微晶玻璃的制备方法,其特征在于:其包括如下步骤: (1)配料:按照上述组成配比准备原料,将原料粉磨、混合均匀; (2)熔化成型:将均匀的的配合料加入池窑熔融,熔化温度为1450℃-1560℃;玻璃液经 料道降温,进入压延机温度为1050℃ ~1150℃,出压延辊温度约为850℃ ~ 950℃,形成玻璃 板; (3)退火:将上述玻璃板经过渡辊台送入退火窑,在800-850℃下冷却退火0.5-1 h,退火完成后,以40-60 ℃/h的降温速率至室温,得到基础玻璃板; (4)热处理:将基础玻璃板升温至1000-1100 ℃,升温速率为80-100℃/h,保温1.5-3h 晶化,然后进行退火,得到微晶玻璃板; (5)经切割和抛光后得到合格的微晶玻璃板材。 权 利 要 求 书1/1页 2 CN 109942194 A

层状结构硅酸盐矿物---作业

矿物的分类 首先根据矿物化学组成的基本型,将矿物分为五大类。根据阴离子(包括络阴离子)的种类又分为类及亚类,再把类中化学组成类似和晶体结构类型相同的归为一族。矿物种是指具有相同的化学组成和内部结构的一种矿物。我们小组主要负责的是含氧盐大类中的硅酸盐类中的层状硅酸盐亚类。 硅酸盐矿物类概述 硅酸盐矿物种类很多且分布极广,约占矿物种总数的1/4,它构成地壳总质量的75%。它们是火成岩和变质岩的最主要的造岩矿物,在沉积岩中也起着显著的作用。同时,它们中有许多非常重要的非金属矿产,如云母、石棉、高岭石等,又是一系列稀有金属的重要矿物原料,如绿柱石(含铍)、锆石(含锆)等。 (一)化学成分和晶体化学特征 在硅酸盐矿物的晶体结构中,硅氧配位四面体[SiO4]4-是它们的基本构造单元。硅氧四面体在结构中可以孤立地存在,也可以以其角顶相互连接,即每一硅氧四面体可与一个、两个、三个甚至四个硅氧四面体相连,从而形成多种复杂的络阴离子。根据硅氧四面体在晶体结构中的连接方式,主要有下列5中类型的络阴离子: 1、岛状络阴离子 2、环状络阴离子 3、链状络阴离子 4、层状络阴离子 5、架状络阴离子 (二)物理性质 由于硅酸盐矿物的结构特点和组成特点各有不同,因而表现在形态上以及物理性质方面也各有不同的特性。岛状结构硅酸盐多属三向等长的粒状;环状结构硅酸盐矿物由于垂直方向上环与环之间的联结力一般较强,故呈柱状形态;链状结构硅酸盐都呈平行于链的方向的柱状形态,甚至可以成为纤维状;层状结构硅酸盐多呈片状,少数作纤维状;架状结构硅酸盐主要取决于[SiO4]和[AlO4]骨架内部的连接形式。 硅酸盐矿物的解理与结构类型大的关系,也可用结构特点加以说明。特别指出的是层状硅酸盐几乎无一例外地都具有完全的地面解理。 硅酸盐矿物的密度大小,主要决定因素有二:一是结构紧密程度;二是主要阳离子原子序数的大小。 硅酸盐矿物的光泽、颜色、条痕、透明度等光学性质也与其结构以及所含原子的种类有密切关系。 硅酸盐的硬度一般都较高,但层状结构硅酸盐例外。 值得指出的是水的作用:当架状结构硅酸盐晶格中存在水分子时,一般都表明其结构相当疏松,因而普遍地表现出硬度下降,密度变小。此外,由于联结力下降的影响,相应地会引起解理的发生。 (三)成因 除了陨石和月岩中形成的硅酸盐矿物以外,在地壳中无论是内生、表生,还是变质作用的几乎所有成岩、成矿过程中普遍地都有硅酸盐矿物的形成。在岩浆作用中,随着结晶分异作用的演化发展,硅酸盐矿物的结晶顺序有自岛状、链状、向层状、架状过渡的趋势。岩浆期后的接触交代作用和热液蚀变作用所产生的硅酸盐矿物与原始围岩的成分密切有关。变质作用(主要指区域变质作用)形成的硅酸盐矿

微晶玻璃 第一章

1 绪论 1.1 微晶玻璃的定义 1.1.1 定义及特性 微晶玻璃(glass-ceramic)又称玻璃陶瓷,是将特定组成的基础玻璃,在加热过程中通过控制晶化而制得的一类含有大量微晶相及玻璃相的多晶固体材料。 玻璃是一种非晶态固体,从热力学观点看,它是一种亚稳态,较之晶态具有较高的内能,在一定的条件下,可转变为结晶态。从动力学观点看,玻璃熔体在冷却过程中,黏度的快速增加抑制了晶核的形成和长大,使其难以转变为晶态。微晶玻璃就是人们充分利用玻璃在热力学上的有利条件而获得的新材料。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 尽管微晶玻璃的结构、性能及生产方法与玻璃和陶瓷都有一定的区别,但是微晶玻璃既有玻璃的基本性能,又具有陶瓷的多相特征,集中了玻璃和陶瓷的特点,成为一类独特的新型材料。 微晶玻璃具有很多优异的性能,其性能指标往往优于同类玻璃和陶瓷。如热膨胀系数可在很大范围内调整(甚至可以制得零膨胀甚至是负膨胀的微晶玻璃);机械强度高;硬度大,耐磨性能好;具有良好的化学稳定性和热稳定性,能适应恶劣的使用环境;软化温度高,即使在高温环境下也能保持较高的机械强度;电绝缘性能优良,介电损耗小、介电常数稳定;与相同力学性能的金属材料相比,其密度小但质地致密,不透水、不透气等。并且微晶玻璃还可以通过组成的设计来获取特殊的光学、电学、磁学、热学和生物等功能,从而可作为各种技术材料、结构材料或其他特殊材料而获得广泛的应用。 微晶玻璃的性能主要决定于微晶相的种类、晶粒尺寸和数量、残余玻璃相的性质和数量。以上诸因素,又取决于原始玻璃的组成及热处理制度。热处理制度不但决定微晶体的尺寸和数量,而且在某些系统中导致主晶相的变化,从而使材料性能发生显著变化。另外,晶核剂的使用是否适当,对玻璃的微晶化也起着关键作用。微晶玻璃的原始组成不同,其主晶相的种类不同,如硅灰石、β-石英、β-锂辉石、氟金云母、尖晶石等。因此通过调整基础玻璃成分和工艺制度,就可以制得各种符合性能要求的微晶玻璃。 1.1.2 微晶玻璃的种类 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等。表1-1列出了常用微晶玻璃的基础组成、主晶相及其主要特性。 表1-1常用微晶玻璃的组成、主晶相及主要特性

相关主题
文本预览
相关文档 最新文档