当前位置:文档之家› 因式分解的16种方法凑因式 方法

因式分解的16种方法凑因式 方法

因式分解的16种方法凑因式 方法
因式分解的16种方法凑因式 方法

因式分解的16种方法

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项与添减项法,分组分解法与十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则

1 分解要彻底

2 最后结果只有小括号

3 最后结果中多项式首项系数为正(例如:()1332--=+-x x x x )

分解因式技巧

1、分解因式与整式乘法就是互为逆变形。

2、分解因式技巧掌握:

①等式左边必须就是多项式;②分解因式的结果必须就是以乘积的形式表示;

③每个因式必须就是整式,且每个因式的次数都必须低于原来多项式的次数;

④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数与因式两个方面考虑。 基本方法

⑴提公因式法

各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都就是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项就是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

提公因式法基本步骤:

(1)找出公因式;

(2)提公因式并确定另一个因式:

①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;

②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即就是提公因式后剩下的

一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形瞧奇偶。 例如:-am+bm+cm=-m(a-b-c);

a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

注意:把22a +21变成2(2a +4

1)不叫提公因式 ⑵公式法

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

平方差公式:2a 2b -=(a+b)(a-b); 完全平方公式:2a ±2ab +2b =()2

b a ± 注意:能运用完全平方公式分解因式的多项式必须就是三项式,其中有两项能写成两个数(或式)的

平方与的形式,另一项就是这两个数(或式)的积的2倍。

立方与公式: 33b a +=(a+b)( 2a -ab+2b );

立方差公式:33b a - =(a--b)( 2a +ab+2b );

完全立方公式:3a ±32a b +3a 2b ±3b =(a ±b)2.

公式:3a +3b +3c -3abc=(a+b+c)( 2a +2b +2c -ab-bc-ca)

例如:2a +4ab+42b =(a+2b) 2。

⑶分组分解法

分组分解就是解方程的一种简洁的方法,我们来学习这个知识。

能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y)

我们把ax 与ay 分一组,bx 与by 分一组,利用乘法分配律,两两相配,立即解除了困难。

同样,这道题也可以这样做。

ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y)

几道例题:

1、 5ax+5bx+3ay+3by

解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b)

说明:系数不一样一样可以做分组分解,与上面一样,把5ax 与5bx 瞧成整体,把3ay 与3by 瞧成一个整体,利用乘法分配律轻松解出。

2、 x 3-2x +x-1

解法:=( x 3-2x )+(x-1) =2x (x-1)+ (x-1) =(x-1)( 2x +1)

利用二二分法,提公因式法提出x2,然后相合轻松解决。

3、 2x -x-y 2-y

解法:=(2x -y 2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1)

利用二二分法,再利用公式法a 2-b 2=(a+b)(a-b),然后相合解决。

⑷十字相乘法

这种方法有两种情况。

①2x +(p+q)x+pq 型的式子的因式分解

这类二次三项式的特点就是:二次项的系数就是1;常数项就是两个数的积;一次项系数就是常数项的两个因数的与。因此,可以直接将某些二次项的系数就是1的二次三项式因式分解:2x +(p+q)x+pq=(x+p)(x+q) .

②k 2x +mx+n 型的式子的因式分解

如果有k=ac,n=bd,且有ad+bc=m 时,那么kx 2+mx+n=(ax+b)(cx+d).

图示如下:

a d 例如:因为1 -3

× ×

c d 7 2 -3×7=-21,1×2=2,且2-21=-19,

所以72x -19x-6=(7x+2)(x-3).

十字相乘法口诀:首尾分解,交叉相乘,求与凑中

⑸裂项法

这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。这钟方法的实质就是分组分解法。要注意,必须在与原多项式相等的原则下进行变形。

例如:bc(b+c)+ca(c-a)-ab(a+b)

=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).

⑹配方法

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。

例如:2x +3x-40 =2x +3x+2、25-42、25 =()()2

25.65.1-+x =(x+8)(x-5). ⑺应用因式定理

对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.

例如:f(x)=2x +5x+6,f(-2)=0,则可确定x+2就是2x +5x+6的一个因式。(事实上,2x +5x+6=(x+2)(x+3).)

注意:1、对于系数全部就是整数的多项式,若X=q/p(p,q 为互质整数时)该多项式值为零,则q 为常数项约数,p 最高次项系数约数;

2、对于多项式f(a)=0,b 为最高次项系数,c 为常数项,则有a 为c/b 约数

⑻换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。

注意:换元后勿忘还元、

例如在分解(2x +x+1)( 2x +x+2)-12时,可以令y=2x +x ,则

原式=(y+1)(y+2)-12 =y 2+3y+2-12=y 2+3y-10 =(y+5)(y-2)

=(2x +x+5)( 2x +x-2) =(2x +x+5)(x+2)(x-1).

⑼求根法

令多项式f(x)=0,求出其根为x1,x,x3,……xn,

则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .

例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x 2-13x+6=0,

则通过综合除法可知,该方程的根为0、5 ,-3,-2,1.

所以2x^4+7x^3-22x -13x+6=(2x-1)(x+3)(x+2)(x-1).

⑽图象法

令y=f(x),做出函数y=f(x)的图象,找到函数图像与X 轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).

与方法⑼相比,能避开解方程的繁琐,但就是不够准确。

例如在分解x^3 +22x -5x-6时,可以令y=x^3; +22x -5x-6、

作出其图像,与x 轴交点为-3,-1,2

则x^3+22x -5x-6=(x+1)(x+3)(x-2).

⑾主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

⑿特殊值法

将2或10代入x,求出数p,将数p 分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的与与差的形式,将2或10还原成x,即得因式分解式。

例如在分解x^3+92x +23x+15时,令x=2,则

初中数学因式分解的常用方法(精华例题详解)

初中阶段因式分解的常用方法(例题详解) 因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。 1.因式分解的对象是多项式; 2.因式分解的结果一定是整式乘积的形式; 3.分解因式,必须进行到每一个因式都不能再分解为止; 4.公式中的字母可以表示单项式,也可以表示多项式; 5.结果如有相同因式,应写成幂的形式; 6.题目中没有指定数的范围,一般指在有理数范围内分解; 7.因式分解的一般步骤是: (1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解; (2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法. 因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法. 如多项式am+bm+cm=m(a+b+c), 其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式. 二、运用公式法. 运用公式法,即用 a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2, a3±b3=(a±b)(a2ab+b2) 写出结果. 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:am+an+bm+bn 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑 两组之间的联系。 解:原式=(am+an)+(bm+bn) =a(m+n)+b(m+n)每组之间还有公因式! =(m+n)(a+b) 思考:此题还可以怎样分组? 此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。 例2、分解因式:2ax-10ay+5by-bx 解法一:第一、二项为一组;解法二:第一、四项为一组; 第三、四项为一组。第二、三项为一组。 解:原式=(2ax-10ay)+(5by-bx)原式=(2ax-bx)+(-10ay+5by) =2a(x-5y)-b(x-5y)=x(2a-b)-5y(2a-b) =(x-5y)(2a-b)=(2a-b)(x-5y) 练习:分解因式1、a2-ab+ac-bc2、xy-x-y+1

因式分解16种方法

因式分解的16种方法 因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又 有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1分解要彻底2最后结果只有小括号 3最后结果中多项式首项系数为正(例如:—3x2? x=-x3x —1) 分解因式技巧 1?分解因式与整式乘法是互为逆变形。 2. 分解因式技巧掌握: ①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“ ”号时,多项式的各项都要变号。 提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的 一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 1 1 注意:把2a2+ —变成2(a2+-)不叫提公因式 2 4 ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a2「b2 =(a+b)(a-b);完全平方公式:a2± 2ab+ b2= a-b2 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的

因式分解常用的六种方法详解

因式分解常用的六种方法详解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

因式分解的几种方法

因式分解的几种方法 因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用。是解决许多数学问题的有力工具。把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。 因式分解的几种方法 1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x3-2x2-x x3-2x2-x=x(x2-2x-1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a2+4ab+4b2 解:a2+4ab+4b2=(a+2b)2 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m2+5n-mn-5m 解:m2+5n-mn-5m=m2-5m-mn+5n

= (m2-5m)+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、十字相乘法 对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且 ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x2-19x-6 分析:1×7=7,2×(-3)=-6 1×2+7×(-3)=-19 解:7x2-19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x2+6x-40 解x2+6x-40=x2+6x+(9) -(9 ) -40 =(x+ 3)2-(7 )2 =[(x+3)+7]*[(x+3) – 7] =(x+10)(x-4) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)

初一数学因式分解的常用方法(最新整理)

因式分解的常用方法 第一部分:方法介绍 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多 数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b); (2) (a±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a±b)2; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充两个常用的公式:  (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;  (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca); 例.已知是的三边,且, 则的形状是( )a b c ,,ABC ?2 2 2 a b c ab bc ca ++=++ABC ?A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:2 2 2 2 2 2 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?==三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。 解:原式=) ()(bn bm an am +++ = 每组之间还有公因式! )()(n m b n m a +++ = ))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。 第二、三项为一组。 解:原式= 原式=)5()102(bx by ay ax -+-) 510()2(by ay bx ax +-+- = =)5()5(2y x b y x a ---)2(5)2(b a y b a x --- = =)2)(5(b a y x --) 5)(2(y x b a --练习:分解因式1、 2、bc ac ab a -+-2 1 +--y x xy

因式分解的方法与技巧

因式分解应具有四种意识 一、优先意识 按因式分解的一般步骤和思考程序,要树立优先提多项式公因式的意识 例1.分解因式:21222 x y xy y -+ 解: 二、换元意识 通过换元,可以达到化繁为简、化难为易的目的 例2.分解因式:2 5()7()6x y x y ---- 解: 三、完整意识 依分解因式的步骤,因式分解必须分解到每个因式都不能再分解为止 例3.分解因式:22222()4+-a b a b 解: 四、应用意识 例4.生产一批高为200 mm 的圆柱形容器,底面半径的合格尺寸为(501±)mm ,任取两个这样的产品,它们的容积最多相差多少(π取3.14)? 解: 因式分解中的数学思想 众所周知,数学思想是我们数学解题的灵魂,因式分解也不例外,在因式分解过程中也蕴含着许多的数学思想,如果能灵活的加以运用,往往能更好地解决因式分解问题,下面就因式分解中的常见的思想方法举例说明: 一、整体思想 所谓用整体思想来分解因式,就是将要分解的多项式中的某些项看成一个整体而加以分解. 例1 把多项式(x 2-1)2+6(1-x 2)+9分解因式. 分析 把(x 2-1)看成一个整体利用完全平方公式进行分解,最后再利用平方差公式达到 分解彻底的目的 解 二、类比思想 类比思想地因式分解中的运用很广泛,具体地表现在:一是因式分解与整式乘法的对比;二是因式分解与乘法的分配律的对比;三是因式分解与乘法公式的对比. 例2 分解因式:(1)x 3y -xy 3;(2)abx 2-2abxy +aby 2. 分析(1)对比平方差公式可先提取xy 后,(2)对比完全平方公式可先提取ab ,.

初中常用因式分解公式

初中常用因式分解公式 2013.6.6 一.因式分解概念:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。 二.因式分解方法: 1、提公因法 如果一个多项式的各项都含有相同因式,那么就可以把这个相 同因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x2-2x 解:x2-2x =x(x -2) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a2 +4ab+4b 解:a2 +4ab+4b =(a+2b)(a+2b)完全平方公式 最常用的公式: (1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b); (2) (a±b)2 = a2±2ab+b2——— a2±2ab+b2=(a±b)2; (3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2); (4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2). (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 注意该方法的核心是分组后能提取公因式! 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x2 -19x-6 分析: 1 -3 7 2 交差相乘再相加2-21=-19 解:7x2 -19x-6=(7x+2)(x-3) 5、配凑法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个我们已经会的分式分解方法,然后就能将其因式分解。

因式分解的常用方法(目前最牛最全的教案)

因式分解的常方法 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学 之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 用方法 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2 =(a+b)(a -b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2 ; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2 ); (4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2 ). 下面再补充两个常用的公式: (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2 ; (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2 -ab -bc -ca); 例.已知a b c ,,是ABC ?的三边,且222 a b c ab bc ca ++=++, 则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:2 2 2 2 2 2 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?== 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++ 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。 解:原式=)()(bn bm an am +++ =)()(n m b n m a +++ 每组之间还有公因式!

因式分解12种方法全攻略

因式分解的十二种方法全攻略 1.1提公因式法 【例1】 分解因式: 3222524261352xy z xy z x y z -++ 1.2公式法 平方差公式:22()()a b a b a b -=+- 完全平方公式:2222()a ab b a b ++=+ 2222()a ab b a b -+=- 三项完全平方公式: 立方和差公式: 【例2】 分解因式:66a b - 附加:分解因式:333333()()()a b b c c a a b c ++++++++ 1.3选主元 【例3】 分解因式:1a b c ab bc ca abc +++++++. 练习:分解因式:1、2222a b ab bc ac --++ 附加:222222()()(1)()()ab x y a b xy a b x y ---+-++

1.4分组分解法 【例4】 分解因式:1、ax ay bx cy cx by -++--; 【例5】 3254222x x x x x --++- 【例6】 分解因式2244243x xy y x y ++---. 1.5拆添项法 【例7】 分解因式432433x x x x ++++ 【例8】 因式分解343a a -+. 【例9】 分解因式:310x x ++ 【例10】 分解因式:421x x ++ 42231x x -+

附加题:1、51x x ++ 2、541a a ++ 1.6十字相乘法 【例11】 分解因式:()()()222221a a x a x a a ---++ 1.7 重组重解 【例12】 分解因式:(6114)(31)2a a b b b +++-- 【例13】 分解因式:2 2(1)(1)(221)y y x x y y +++++ 附加:()()222222ax by ay bx c x c y ++-++ 1.8双十字相乘法 【例14】 分解因式:222332x xy y x y +-+++

几种常见的因式分解方法

几种常见的因式分解方法 1. 提取公因式法 2. 分组分解法 3. 应用公式法,常用的公式有: (1)222)(2b a b ab a ±=+± (2)))((22b a b a b a -+=- (3)))((2233b ab a b a b a +±=± (4)33223)(33b a b ab b a a ±=±+± (5)2222)(222c b a ac bc ab c b a ++=+++++ (6)))((3222333ca bc ab c b a c b a abc c b a ---++++=-++ 公式(5)证明如下: ac bc ab c b a 222222+++++ 222)22()2(c bc ac b ab a +++++= 22)(2)(c c b a b a ++++= 2)(c b a ++= 公式(6)证明如下: abc c b a 3333-++ abc ab b a c b ab b a a 333332233223---++++= )333(])[(2233abc ab b a c b a ++-++= )(3])())[((22c b a ab c c b a b a c b a ++-++-+++= ]3)())[((22ab c c b a b a c b a -++-+++= ))((222ca bc ab c b a c b a ---++++= 在特殊情况下,当c b a ++=0时,就有abc c b a 3333-++=0,

于是, (7)abc c b a 3333=++ 这就是说,如果三个整式的和为零,那么这三个整式的立方和等于这三个整式乘积的三倍. 4.十字相乘法 (1)有二次三项式q px x ++2,如果常数q 能分解成两个因数a 、b 的积,并使a +b =p ,则有 ))(()(22b x a x ab x b a x q px x ++=+++=++ (2)有二次三项式c bx ax ++2,如果二次项系数a 分解成两个因数a 1和a 2,常数项c 分解成两个因数b 1和b 2,并且使b b a b a =+2211,则有 c bx ax ++2211221221)(b b x b a b a x a a +++= ))((2211b x a b x a ++= (3)二元二次多项式f ey dx cy bxy ax +++++22的因式分解. 设f ey dx cy bxy ax F +++++=22 ))((222111c y b x a c y b x a ++++= 则])][()[(222111c y b x a c y b x a F ++++= 211122212211)()())([(c c y b x a c y b x a c y b x a y b x a +++++++= 可以看出,a 1、a 2、b 1、b 2是由22cy bxy ax ++确定的,这样可对22cy bxy ax ++先进行因式分解,再把f 分解成因数c 1和c 2.如果 ey dx y b x a c y b x a c +=+++)()(112221 则F 就可分解成两个一次因式111c y b x a ++和222c y b x a ++的积.这种分解方法可视为双十字相乘法. 对一个较复杂的多项式进行因式分解时,经常要综合运用以上方法,有时需要拆项和增减项,但在拆项和增减项时,要注意和原来的多项式保持相等.

因式分解公式大全

公式及方法大全 待定系数法(因式分解) 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 常用的因式分解公式:

例1 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是 x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn,

比较两边对应项的系数,则有 解之得m=3,n=1.所以 原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7. 分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为 (x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有 由bd=7,先考虑b=1,d=7有 所以 原式=(x2-7x+1)(x2+5x+7).

因式分解的9种方法

因式分解的多种方法——--知识延伸,向竞赛过度 1. 提取公因式:这种方法比较常规、简单,必须掌握.常用的公式:完全平方公式、平方差公式 例一:0322 =-x x 解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程. 总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x —a )因式,这对我们后面的学习有帮助。 2. 公式法 常用的公式:完全平方公式、平方差公式。注意:使用公式法前,部分题目先提取公因式。 例二:42-x 分解因式 分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a —b) 2解:原式=(x+2)(x —2) 3. 十字相乘法 是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。 这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1?a2,把常数项c 分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果 例三: 把3722+-x x 分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(—3). 用画十字交叉线方法表示下列四种情况: 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 原式=(x —3)(2x —1). 总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b,即a1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即

浅谈因式分解的几种方法

因式分解常用的几种方法 十字相乘法。 双十字相乘法运用很巧妙,可以将一个很复杂的数据简单地呈现,我们一起来学习一下吧!! 双十字相乘法属于因式分解的一类,类似于十字相乘法。 双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+f x、y为未知数,其余都是常数 用一道例题来说明如何使用。 例:分解因式:x^2+5xy+6y^2+8x+18y+12. 分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。 解:图如下,把所有的数字交叉相连即可 x 2y 2 ① ② ③ x 3y 6 ∴原式=(x+2y+2)(x+3y+6). 双十字相乘法其步骤为: ①先用十字相乘法分解2次项,如十字相乘图①中 x^2+5xy+6y^2=(x+2y)(x+3y);

②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y²+18y+12=(2y+2)(3y+6); ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。 纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。下面,就来看看因式分解的题目了,你们想必也会乐在其中。 1.△ABC的三边a、b、c有如下关系式: -c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:∵-c^2+a^2+2ab-2bc=0, ∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0. ∵a、b、c是△ABC的三条边, ∴a+2b+c>0. ∴a-c=0, 即a=c,△ABC为等腰三角形。 3证明:对于任何数x,y,下式的值都不会为33

因式分解的方法与技巧

因式分解的方法与技巧Prepared on 21 November 2021

因式分解应具有四种意识 一、优先意识 按因式分解的一般步骤和思考程序,要树立优先提多项式公因式的意识 例1.分解因式:21222 x y xy y -+ 解: 二、换元意识 通过换元,可以达到化繁为简、化难为易的目的 例2.分解因式:25()7()6x y x y ---- 解: 三、完整意识 依分解因式的步骤,因式分解必须分解到每个因式都不能再分解为止 例3.分解因式:22222()4+-a b a b 解: 四、应用意识 例4.生产一批高为200mm 的圆柱形容器,底面半径的合格尺寸为(501±)mm ,任取两个这样的产品,它们的容积最多相差多少(π取3.14) 解: 因式分解中的数学思想 众所周知,数学思想是我们数学解题的灵魂,因式分解也不例外,在因式分解过程中也蕴含着许多的数学思想,如果能灵活的加以运用,往往能更好地解决因式分解问题,下面就因式分解中的常见的思想方法举例说明: 一、整体思想 所谓用整体思想来分解因式,就是将要分解的多项式中的某些项看成一个整体而加以分解. 例1 把多项式(x 2-1)2+6(1-x 2)+9分解因式. 分析 把(x 2-1)看成一个整体利用完全平方公式进行分解,最后再利用平方差公式达到分解彻底的目的 解 二、类比思想 类比思想地因式分解中的运用很广泛,具体地表现在:一是因式分解与整式乘法的对比;二是因式分解与乘法的分配律的对比;三是因式分解与乘法公式的对比. 例2 分解因式:(1)x 3y -xy 3;(2)abx 2-2abxy +aby 2.

因式分解的16种方法

因式分解の16種方法 因式分解沒有普遍の方法,初中數學教材中主要介紹了提公因式法、公式法。而在競賽上,又有拆項和添減項法,分組分解法和十字相乘法,待定係數法,雙十字相乘法,對稱多項式輪換對稱多項式法,餘數定理法,求根公式法,換元法,長除法,除法等。 注意三原則 1 分解要徹底 2 最後結果只有小括弧 3 最後結果中多項式首項係數為正(例如:()1332--=+-x x x x ) 分解因式技巧 1.分解因式與整式乘法是互為逆變形。 2.分解因式技巧掌握: ①等式左邊必須是多項式;②分解因式の結果必須是以乘積の形式表示; ③每個因式必須是整式,且每個因式の次數都必須低於原來多項式の次數; ④分解因式必須分解到每個多項式因式都不能再分解為止。 注:分解因式前先要找到公因式,在確定公因式前,應從係數和因式兩個方面考慮。 基本方法 ⑴提公因式法 各項都含有の公共の因式叫做這個多項式各項の公因式。 如果一個多項式の各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積の形式,這種分解因式の方法叫做提公因式法。 具體方法:當各項係數都是整數時,公因式の係數應取各項係數の最大公約數;字母取各項の相同の字母,而且各字母の指數取次數最低の;取相同の多項式,多項式の次數取最低の。 如果多項式の第一項是負の,一般要提出“-”號,使括弧內の第一項の係數成為正數。提出“-”號時,多項式の各項都要變號。 提公因式法基本步驟: (1)找出公因式; (2)提公因式並確定另一個因式: ①第一步找公因式可按照確定公因式の方法先確定係數在確定字母; ②第二步提公因式並確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得の商即是提公因式後剩下の 一個因式,也可用公因式分別除去原多項式の每一項,求の剩下の另一個因式; ③提完公因式後,另一因式の項數與原多項式の項數相同。 口訣:找准公因式,一次要提淨;全家都搬走,留1把家守;提負要變號,變形看奇偶。 例如:-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 注意:把22a +21變成2(2a +4 1)不叫提公因式 ⑵公式法 如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。 平方差公式:2a 2b -=(a+b)(a-b); 完全平方公式:2a ±2ab +2b =()2 b a ±

因式分解的四种方法(北师版)(含答案)

学生做题前请先回答以下问题 问题1:因式分解的定义是什么?里面有几个关键词,分别是什么? 问题2:因式分解有几种方法,分别是什么? 问题3:提公因式法需要注意哪些要点? 问题4:当利用公式法分解因式时:两项通常考虑_________,三项通常考虑___________;并且需要注意两点:①___________;②____________. 问题5:当多项式的项数比较多时常考虑__________法. 问题6:因式分解的口诀是什么?分别是什么意思? 问题7:是因式分解吗?为什么? 因式分解的四种方法(北师版) 一、单选题(共20道,每道5分) 1.下列选项中,从左到右的变形是分解因式的是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:分解因式的定义 2.将分解因式时,应提取的公因式是( ) A.a2 B.a

C.ax D.ay 答案:B 解题思路: 试题难度:三颗星知识点:分解因式——提公因式法 3.把分解因式,结果正确的是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:分解因式——提公因式法 4.把分解因式,结果正确的是( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:分解因式——提公因式法 5.下列选项中,能用完全平方公式分解因式的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:分解因式——公式法 6.下列选项中,能用公式法分解因式的是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:分解因式——公式法 7.把分解因式,结果正确的是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:分解因式——公式法 8.把分解因式,结果正确的是( ) A. B. C. D. 答案:C 解题思路:

因式分解方法与技巧

因式分解方法与技巧 因式分解是初二学生学习的一个难点,有些学生在学习时感到不知所措,究其原因是没有掌握因式分解的基本方法。故本人对因式分解的常用方法作了一个小结,希望能对同学们有所帮助。 专题一 分解因式的常用方法:一提二用三查 ,即先考虑各项有无公因式可提;再考虑能否运用公式来分解;最后检查每个因式是否还可以继续分解,以及分解的结果是否正确。 常见错误: 1、漏项,特别是漏掉 2、变错符号,特别是公因式有负号时,括号内的符号没变化 3、分解不彻底 首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底” [例题]把下列各式因式分解: 1.x(y-x)+y(y-x)-(x-y) 2 2.a a -5 3.3(x 2-4x)2-48 [解析]1中()()22x y y x -=-,可以直接提取公因式(y-x);2、3中先提取公因式,再用平方差公式分解 [答案]1 原式=x(y-x)+y(y-x)-(y-x)2 =(y-x)[x+y-(y-x)] =2y(y-x) 2 a 5-a=a(a 4-1)=a(a 2+1)(a 2-1)=a(a 2+1)(a+1)(a-1) 3原式=3[(x 2-4x)-16]=3(x 2-4x+4)(x 2-4x-4) [点拨]看出其中所含的公式是关键 专题二 二项式的因式分解:二项式若能分解,就一定要用到两种方法:1提公因式法 2平方差公式法。先观察二项式的两项是否有公因式,然后再构造平方差公式,运用平方差公式a 2-b 2=(a+b)(a-b)时,关键是正确确定公式中a,b 所代表的整式,将一个数或者一个整式化成整式,然后通过符号的转换找到负号,构成平方差公式,记住要分解彻底。 平方差公式运用时注意点: 根据平方差公式的特点:当一个多项式满足下列条件时便可用平方差公式分解因式: A 、 多项式为二项式或可以转化成二项式; B 、 两项的符号相反; C 、 每一项的绝对值均可以化为某个数的平方,及多项式可以转化成平方差的形式; D 、 首项系数是负数的二项式,先交换两项的位置,再用平方差公式; E 、 对于分解后的每个因式若还能分解应该继续分解;如有公因式的药先提取公因式 [例题]分解因式:3(x+y)2-27 [答案]3(x+y )2-27=3[(x+y)2-9]=3[(x+y)2-32 ]=3()()33-+++y x y x [点拨]先提取公因式,在利用平方差公式分解因式,一次不能分解彻底的,应继续分解 专题三

因式分解的多种方法(全)

因式分解的多种方法 1】提取公因式 这种方法比较常规、简单,必须掌握。 常用的公式有:完全平方公式、平方差公式等 例一:2x^2-3x=0 解:x(2x-3)=0 x1=0,x2=3/2 这是一类利用因式分解的方程。 总结:要发现一个规律就是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式这对我们后面的学习有帮助。 2】公式法 将式子利用公式来分解,也是比较简单的方法。 常用的公式有:完全平方公式、平方差公式等 注意:使用公式法前,建议先提取公因式。 例二:x^2-4分解因式 分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2 解:原式=(x+2)(x-2) 3】十字相乘法 是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。 这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1?a2,把常数项c分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果 例三:把2x^2-7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5

1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解原式=(x-3)(2x-1). 总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c 2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx +c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+ c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2). 这种方法要多实验,多做,多练。它可以包括前两者方法。 4】分组分解法 也是比较常规的方法。 一般是把式子里的各个部分分开分解,再合起来

因式分解的十二种方法

因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下: 1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式. 例1、分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式. 例2、分解因式a +4ab+4b (2003南通市中考题) a +4ab+4 b =(a+2b) 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析:1 -3 7 2 2-21=-19 7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解. 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解. 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a)

相关主题
文本预览
相关文档 最新文档