当前位置:文档之家› 地震数据处理方法

地震数据处理方法

地震数据处理方法
地震数据处理方法

安徽理工大学

一、名词解释(20分)

1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。

2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。(对离散化后的信号进行的滤波,输入输出都是离散信号)

3、模拟信号:随时间连续变化的信号。

4、数字信号:模拟数据经量化后得到的离散的值。

5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt.

6、采样定理:

7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。

8、假频:抽样数据产生的频率上的混淆。某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。这两个频率fN+Y和fN-Y相互成为假频。

9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。产生伪门的原因就是由于对h(t)离散采样造成的。

10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。

11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。

12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。为了消除球面扩散的影响,只需A0=Ar*r即可,此即为几何扩散校正,

13、反滤波(又称反褶积):为了从与干扰混杂的地震讯息中把有效波提取出来,则必须设法消除由于水层、地层等所形成的滤波作用,按照这种思路所提出的消除干扰的办法称为反滤波,即把有效波在传播过程中所经受的种种我们不希望的滤波作用消除掉。

14、校正不足或欠校正:如果动校正采用的速度高于正确速度,计算得到的动校正量偏小,动校正后的同相轴下拉。反之称为校正过量或过校正。

15、动校正:消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。

16、剩余时差:当采用一次波的正常时差公式进行动校正之后,除了一次反射波之外,其他类型的波仍存在一定量的时差,我们将这种进过动校正后残留的时差叫做剩余时差。

17、速度谱:把地震波的能量相对于波速的变化关系的曲线称为速度谱。在地震勘探中,速度谱通常指多次覆盖技术中的叠加速度谱。

18、射线追踪:

19、水平叠加:将不同接收点接收到得来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好。

20、叠加速度:对一组共反射点道集上的某个同相轴,利用双曲线公式选用一系列不同速度来计算各道的动校正量,对道集内各道进行动校正,当取某一个速度能把同相轴校成水平直线(将得到最哈的叠加效果)时,则这个速度就是这条同相轴对应的反射波的叠加速度。

21、沿层速度分析:为了研究沿着某一个反射层的叠加速度变化情况,可以沿着这个反射层,以反射层在叠加剖面上的t0时间为中心取一时窗,进行叠加速度分析,这种速度分析方法称为沿层速度分析。它可以提供叠加速度横向变化的详细资料,改善叠加剖面质量。

22、静校正:把由于激发和接收时地表条件变化所引起的时差找出来,再对其进行校正,使畸变了的时距曲线恢复成双曲线,以便能够正确地解释地下的构造情况,这个过程叫做静校正。

23、波场延拓(也称外推):由波场u(x,z=0,t)推算波场u(x,z,t)的过程。或是利用地面记录的波场,通过运算,得到地下某个深度上地震波场的过程。

成像:由u(x,z,t)计算u(x,z,0)的过程。或是利用延拓后的波场值得到该深度的反射位置和反射强度的过程。

24、圆弧叠加法:叠加剖面上每一个脉冲的偏移响应轨迹为偏移剖面上的一个半圆,偏移响应在半圆轨迹上的振幅与输入脉冲的振幅成正比,进行时深转换后,沿着x方向做半圆,相交段处的同相轴就反映了了地层真实位置和形态。

25、相关:定量地表示两个函数之间相似程度的一种数学方法。

26、自相关:表示波形本身在不同相对时移值时的相关程度。(一个时间信号与自身的互相关)

27、环境噪音:由自然条件或环境(如风吹草动、工业交流电的干扰等)造成的对地震波有效信号的干扰。

28、有效信号:野外地震工作想要得到的含有地下地质信息的地震信号。

29、振幅:振动物体离开平衡位置的最大距离,在数值上等于最大位移的大小。

30、共中心点:在不同激发点、不同接收点的记录中具有公共炮检的点。

31、共深度点:不同炮点、检波点,经动校正后能反映地下同一点的信息,此点即为共深度点。

32、绕射:当地震波通过弹性不连续地间断点(如断层、地层尖灭点或地层不整合面的凸起点)时,按照惠更斯原理,在这些凸起点上会形成新的震源,产生新的扰动向弹性空间四周传播,这种波在地震勘探中叫绕射波,这种现象称为绕射。

33、偏移:在水平叠加时间剖面上显示出来的反射点位置是沿地层下倾方向偏离了反射点的真实位置的,这种现象就称为偏移。地震剖面的偏移归位,就是把水

平叠加剖面上偏移了的反射层,进行“反偏移”,使地层的真实位置形态得到恢复,有时常常把这一工作也称为“偏移”。

34、切除:对记录中不希望保留的部分进行充零处理。包括初至切除和动校正拉伸切除

35、剩余静校正:由于低速带的速度和厚度在横向上的变化,使野外表层参数不精确,导致野外静校正后,爆炸点和接收点的静校正量还残存着或正或负的误差,即剩余静校正量,对其误差进行的校正称为剩余静校正。

36、波动方程:描述波在弹性介质中传播的微分方程。

37、地震信号:震源激发后,有检波器接收到的反映地下情况的信息。

38、均方根速度:把水平层状介质情况下的反射波时距曲线近似地当做双曲线,求出的速度。

39、、AVO:通过研究地震反射波振幅随炮检距的变化特征来探讨反射系数响应随炮检距的变化,进而确定反射界面上覆、下伏介质的岩性特征及物性参数的方法。

40、DM:消除由地层倾角引起的倾角时差的方法。

41、增益:由于地震波能量由浅至深衰减很快,为将这些能量全部记录下来,通常在地震仪的放大器中设置了“增益控制”,在浅层用小的放大倍数,深层用大的放大倍数,扩大地震信号的过程叫做增益。

42、最大相位:对于一组信号bn,其z变换的根在单位圆内,且能量集中在序列的后部,则bn是最大相位的。

43、最小相位:对于一组信号bn,其z变换的根在单位圆外,且能量集中在序列的前部,则bn是最小相位的。

44、混合相位:对于一组信号bn,其z变换的根在单位圆内、外都有,且能量集中在序列的中部,则bn是混合相位的。

44、零相位:相位谱为零的信号是零相位的。

45、反射波:当界面两边介质的波阻抗不同时,波在界面处会发生反射,形成反射波。

46、面波:在地表与空气接触的自由表面或在不同弹性的介质分界面上产生的一些特殊的沿界面附近介质传播的波。

47、折射波:当滑行波沿界面传播时,必然引起界面上质点的振动,按照惠更斯原理,滑行波经过界面的每一点看作是一个新震源,由于界面两侧的介质存在着弹性关系,因此滑行波沿界面传播时,在上覆介质中将产生新波,即折射波,又称为首波。

48、直达波:从震源出发沿测线传播直接到达检波点的波。

49、反射系数:反射振幅与入射振幅的比值。

50、模拟记录:把地面振动情况,以模拟的方式录制在磁带上。

一、简答:

1、什么是地震资料数字处理?为什么有进行地震资料数字处理?以及它的主要流程包括哪些内容?

答:地震数据处理是在室内利用数字计算机对所采集的地震数据进行谷中数字处理;它的目的是提高地震数据的信噪比、分辨率和保真度,并对地下构造和地质体成像,以便于进行地质解释。

地震资料数字处理主要流程:输入→定义观测系统→数据预处理(废炮道、预滤波、反

褶积)→野外静校正→速度分析→动校正→剩余静校正→叠加→偏移→显示。

2、一维数字滤波有哪些种类,它的原理分别是什么?为何要进行二维滤波以及如何进行二维滤波?

答:一维滤波分为:一维频率域滤波和一维时间域滤波(也叫褶积虑波)。前者原理是:图1-8

后者原理是:式1-66.

褶积虑波的物理意义相当于把地震信息x(t)分解为起始时间、极性、振幅各不相同的脉冲序列,令这些脉冲按时间顺序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的起始时间、极性、和振幅(这个振幅是与引起它的输入脉冲响应成正比的),将它们叠加起来就得到滤波后的x^(t).

因为一维滤波存在以下缺点:单独的频率域滤波和波数域滤波都存在不足,它们在进行滤波时改变了波剖面的形状,而波数域滤波时改变了振动图的形状。只有根据两者的联系组成频率--波数域滤波才能得到在所希望的频率间隔内,视速度为某一范围的有线波得到加强,同时对干扰波进行压制。

如何进行二位滤波:

3、预处理有哪些工作?以及真振幅恢复的目的?

答:预处理主要包括数据解编、格式转换、道编辑、观测形同定义等。

因为地震数据是按各道同一时刻的样点值成列排放的,解编就是将数据重排成行。

真振幅恢复的目的:是尽量对地震波能量的衰减和畸变进行补偿和校正,主要包括波前扩散能量补偿,地层吸收能量补偿和地表一致性能量调整。

4、何为反滤波?目的是什么?反滤波过程是什么?

答:反滤波也叫反褶积,是压缩地震记录中的地震子波,压制鸣震和多次波以提高地震的垂直分辨率的处理过程。

反滤波的实现:将反子波作为反滤波的滤波因子,与输入的地震记录褶积,既可得到反射系数序列。当地震子波是最小相位时,其反子波也是最小相位的,这时反滤波的滤波因子系数为收敛序列,反滤波器才是稳定的。

图3-6和图3-8.

5、地震子波如何求取以及需用哪些假设?①直接观测法,知适用于海上地震勘探。②

自相关法:选取记录质量高的一段,取时窗起点为时间起点,长度为T。假设反射系数r(t)为白噪声且地震子波w(t)是最小相位的和满足稳定性条件。或者地震子波不是最小相位,而是零相位,则需满足反射系数为白噪声。③多项式求根法:假设地震子波是最小相位,反射系数为白噪声。④利用测井资料求子波:要求有良好的声波测井和密度测井资料,并有井旁质量较高的地震记录。⑤对数分解法:假设地震记录是地震子波与反射系数褶积的结果;对数谱序列平均法:假设各地震记录道上的地震子波是相同的;各道的反射系数是随机分布的;各道的噪声也是随机分布的。

6、何为最佳维纳滤波(又称最小平方滤波)?地表一致性反褶积的目的以及如何实现地表一致性反褶积?

答:最佳维纳滤波原理:滤波器实际输出与期望输出的误差平方和为最小的情况下,确定滤波器的滤波因子,也称为最小平方滤波。

地表一致性反褶积的目的在于消除由于近地表条件的变化对地震子波波形的影响。

过程:首先,对每个频率ω解出各振幅成分,将所有的频率ω的结果合并在一起,得到各振幅谱成分,然后对各振幅成分取指数并进行傅立叶反变换得到各谱成分所对应的时间函数。这时地表一致性脉冲反褶积因子就是Si(t)*Gi(t)*Hi(t)的最小相位的逆。利用这个反褶积因子对全部数据中的每一道地震记录Xij(t)进行反褶积,就消除地表条件不一致性所带来的地震波形的变化,得到地表一致性反褶积结果。7、何为动校正及叠加?目的是什么?何为“动”?动矫正模型有哪些?

答:动校正:将不同炮检距的反射时间校正到零炮检距反射时间的过程就叫做动校正。

叠加的目的是压制干扰,提高地震数据的信噪比。动校正的目的是消除炮检距对反射波旅行时的影响,校平共深度点反射波时距曲线的轨迹,增强利用叠加技术压制干扰的能力,减小叠加过程引起的反射波同相轴畸变。

“动”是指同一地震道上不同反射时间的动校正量不同。

模型有:水平层状介质模型,单一倾斜层模型,任意倾斜层状介质模型等。

8、离散动校正对地震记录波形的影响?何为动校正拉伸?如何反映动矫正拉伸?

答:离散动校正对地震记录波形的影响:在动校正过程中,各个离散点动校正量不同,动校正之后的子波不在保持原来的形态,子波形态发生相对畸变。表现为波形拉伸。

动校正拉伸:动校正后子波的延续时间T'=T+(Δτ1+Δτ2),由于浅层的动校正时差大于深层的动校正时差,所以T'>T,在动校正后的地震记录上,子波的波形被拉伸了,我们就把数字动校正造成的波形拉伸称为动校正拉伸。图p4-8 p106

我们用拉伸系数来反映动矫正拉伸。拉伸系数公式4--19,和4-28,

反射深度越浅,炮检距越大,动校正拉伸越严重,子波的主频向低频转移也随之严重。克服动校正拉伸的方法是外切除,即对拉伸率大于某个百分比的地震数据进行切除。

9、水平叠加原理?自适应水平叠加产生原因及其原理?

答:水平叠加的原理:利用最小平方原理,计算任意地震道与标准道的误差平方和最小。标准道公式4-32就是N道叠加的平均。

自适应水平叠加产生的原因:由公式4-32,

参加叠加各道的加权系数是相等的,而且各道的加权系数不随时间变化,加权系数为1,但实际上参加各道的地震道的质量是有差别的,等权叠加不会取得理想的叠加效果,如果根据地震道质量的好坏,来确定参加叠加的道数进行叠加,这样会产生更好的叠加效果,这就是自适应水平叠加的基本思想。

自适应水平叠加的差本原理:地震记录道的质量在时间和空间上都会有差异,可以根据此差异来控制它们参与叠加的成分,这可以通过对每个地震道上随时间乘上不同的加权系数来达到,用最小平方法原理去确定加权系数。加权系数为(公式4-35)。

10、水平叠加存在的问题?

答:有:①当动校正存在剩余时差时,水平叠加降低了地震信号的分辨率。②倾斜界面情况下,共中心点道集不再是共反射点道集。③复杂构造情况下,反射波时距曲线不再是双曲线。

④叠加剖面的振幅是不同入射角振幅的平均,不等于零炮检距反射振幅。

11、何谓静校正,其信息来源于哪些?其会产生哪些影响?何谓静校正的'静'?答:静校正也成地表一致性静校正,是校正以及消除由于地表高程和地下低、降速带变化对反射波旅行时的影响,它不仅影响着叠加剖面的信噪比和垂向分辨率,也影响叠加速度分析的质量。其因子来源于①野外测量和观测的数据②根据初至波时间和地下反射信息求解静校正量。前者(即①)称为基准面校正或野外静校正,后者称为初至折射静校正和反射波地表一致性剩余静校正。

‘静’是指地震道的静校正时差与地震道的时间无关,只与炮点和检波点的地表位置有关,即无论是浅层还是深层反射,整个地震道只有一个静校正量。

13、基准面静校正概念,分类及其推倒公式?

答:也称野外静校正,是将在地表采集的地震记录校正到基准面上,消除地表高程和风化层对地震记录旅行时的影响。因此可分为风化层校正和高程校正。公式p119.

14、初至折射静校正中计算风化层厚度公式p120。及其推导。

15、为何要进行地表一致性剩余静校正?和基于地表一致性时差分解的方法的步骤。

答:由于多种因素,一个CMP道集的各个地震道,进过上面的静校正之后,仍然存在着剩余静校正量,而且这种静校正量以高频短波长的方式出现,影响CMP叠加的质量,因此在CMP叠加之前,还要对剩余静校正量进行估算和校正,实现CMP道集的同相叠加。计算剩余静校正量的方法较多,主要有①基于地表一致性时差分解的方法②基于互相关(或称叠加能量最大)的剩余静校正方法。

步骤:首先拾取每个地震道的时差;然后对时差进行分解,得到炮点和检波点的剩余静校正量;最后在每个地震道上应用炮点和检波点静校正量。

16、互相关的剩余静校正方法:

答:与前者(题14中)不同之处在于,它不需要求解方程进行时差分解,而是利用多次覆盖的特点,在相关曲线上直接拾取静校正量。这种类型的方法有最大叠加能量法,相邻叠加道相关法。

17、如何对速度参数进行分析和提取?

答:在实际地震资料中,很难利用上述公式,所以在固定t0的情况下,任意选择一个速度vi,vi唯一确定了一条双曲线轨迹,我们沿该双曲线对各个炮检距上的反射振幅进行叠加,当速度vi=v nmo时,不同炮检距地震道上的振幅同相叠加,叠加振幅达到最大,因此我们可以通过测量不同速度对应的叠加振幅,对速度参数进行分析和提取。

18、速度分析中常用的几种判别准则?

答:①平均振幅能量准则:当扫描速度等于均方根速度时,平均能量E达到最大值,表明达到了信号的最佳估计。②平均振幅准则:与平均振幅能量是等价的,计算量小一些。③非归一化互相关准则:对两道不同信号做互相关运算,当扫描速度等于动校正速度是出现最大值。

④归一化互相关准则⑤相似系数准则:当扫描速度等于动校正速度时,各道上波形最为相似,在时窗范围内同相叠加,相似系数接近于1。⑥判别准则比较:相关类准则较叠加类准则具有更高的灵敏度,采用相关准则求速度谱,谱峰值明显,但抗干扰能力差些,大幅值干扰会使速度谱上出现假峰值。非归一化互相关在速度谱上起到突出强反射的作用,归一化互相关则加强速度谱的弱反射。

19、如何得到速度谱?速度谱基本原理?

答:利用平均振幅公式计算每个网格点(t0i,vj)上的平均振幅,将平均振幅以某种便于速度分析的形式显示出来,就得到了用于速度分析的速度谱。

速度谱基本原理:给定t0值和最大炮检距xN,动校正速度v nmo是以正常时差ΔtN为变量的,如果对最大炮检距处的正常值预设一个范围,取其最小值,最大值,则对应这个范围内的每一个Δt值都有一个相应的双曲线校正规则和计算得到的动校正速度。

20、偏移的目的?偏移的分类?

答:偏移:使倾斜反射归位到它们真正的地下位置,并使绕射波收敛,使地震剖面更好的展示地下构造的空间形态和接触关系。

偏移的目的:水平叠加剖面还不能真实反应地下构造的空间展布情况,特别是当地质界面的形态较复杂时,水平叠加剖面与地下深度剖面之间存在较大的差异,偏移就是为了解决这些情况。

可分为射线理论偏移与波动方程偏移;前者包括圆弧叠加法和绕射扫描叠加法;后者包括

f-k域波动方程偏移,克希霍夫积分偏移,有限差分法波动方程偏移。

21、三者的比较?

有限差分法在理论和实际应用上都较成熟,输出偏移剖面噪声小,由于采用递推算法,在形式上能处理速度的纵横向变化。缺点是受反射界面倾角的限制,当倾角较大时,产生频散现象,使波形畸变,另外,它要求等间隔剖分网格。

克希霍夫积分法偏移建立在物理地震学基础上,利用克希霍夫绕射积分公式把分散在地表各地震道上来自于同一绕射点的能量收敛到一起,置于地下相应的物理绕射点上。该法只适用于任意倾角的反射界面,对剖分网格要求较灵活。缺点是难于处理横向速度变化,偏移噪声大,'划弧'现象严重,确定偏移参数较困难,有效孔径的选择对偏移剖面的质量影响较大。频率-波数域偏移不是在时间-空间域,而是与之对应的频率-波数域进行。它兼有有限差分法和克希霍夫积分法的优点,计算效率高,无倾角限制级无频散现象,精度高,计算稳定性好。缺点是不能很好的适应横向速度剧烈变化的情况,对速度预查较敏感。

22、成像条件?

答:①爆炸反射界面成像条件适用于水平叠加后地震资料的偏移处理,同时还假设波的传播速度为实际速度的一半。②测线下延成像条件:常用于地震记录叠前偏移,也用于零炮检距记录的偏移成像。③时间一致性成像条件:即反射界面存在于地下的一些地方,这些地方,下行波的到时时间和反射波的产生时间是一致的。

23、何谓倾角时差校正?产生背景?目的?处理步骤?

答:倾角时差校正(DMO)又称为叠前部分偏移:是由于这种偏移在动校正后,叠加前进行的,而且只是把动校正后的数据偏移到零炮检距的位置上。

DMO产生背景:叠后时间偏移方法是建立在零炮检距地震记录上的,但常规的CMP叠加并不能得到真实的零炮检距地震记录。

DMO处理的目的:是将非零炮检距的地震记录转换为自激自收零炮检距的地震记录,满足叠后偏移处理对地震记录的要求。

处理步骤:首先利用正常时差校正将t时刻的反射振幅转换到tn时刻,再利用DMO校正,将中心点为yn,炮检距为2h地震道上tn时刻的采样点转换为y0地震道上τ0时刻的采样点。最后在进行叠加。由此实现反射点的归位。该流程等价于叠前时间偏移。

24、时间偏移存在的问题?以及如何消除?

时间偏移存在的问题:当速度横向变化剧烈时,由于绕射曲线严重偏离双曲线形态,绕射曲线的顶点也不再位于绕射点的正上方,时间偏移的成像结果会产生较大的预查。由此产生深度偏移。用深度偏移处理。

射线理论的深度偏移(将叠加时间剖面转换为深度偏移剖面):①用常规的时间偏移把绕射能量收敛到绕射曲线的顶点,②首先对常规时间偏移剖面进行层位解释,并把主要反射界面拾取出来。然后根据测井,地质,速度分析等综合信息确定层速度函数v(x,z),最终的偏移结果与速度函数关系很大,一旦建立了速度函数,就可利用射线追踪的方法构造出成像射线的传播路径。

一:简答题

1、地震资料数字处理主要流程?地震资料的现场处理主要包括哪些内容? 地震勘探资料数据处理中的预处理主要包括哪些内容? 简述地震资料数据中有哪些目标处理方法? 地震资料数字处理如何分类? 地震资料数字处理质量控制有哪些?

地震资料数字处理主要流程:输入→定义观测系统→数据预处理(废炮道、预滤波、反褶积)→野外静校正→速度分析→动校正→剩余静校正→叠加→偏移→显示。

地震资料的现场处理主要有:预处理、登录道头、道编辑、切除初至、抽道集、增益恢复、

设计野外观测系统、实行野外静校正、还可以进行频谱分析、速度分析、水平叠加等(2分)。

地震勘探资料数据处理中的预处理主要包括登录道头、废炮道编辑、切除初至、抽道集(4分)、增益恢复、预滤波、反褶积等.

地震资料数据中目标处理方法有高分辨率地震资料处理、三维地震资料处理、叠前深度偏移处理、井孔地震资料处理(4分)、多波多分量地震资料处理、时间推移地震资料处理等地震资料数字处理分类有数据预处理、数据校正、叠加和偏移归位、振幅处理、滤波、分析、正反演、复地震道技术等。(3分)

地震资料数字处理质量控制包括野外原始资料检查与验收、处理流程及主要参数确定、中间监视资料分析、资料处理质量科学管理。

1、简述预测反褶积原理,并简述预测反褶积应用中算子长度、预测步长和白噪系数的

影响。

预测反褶积原理:根据已知的过去数值和当前数值,设计一个预测算子(因子),对已

知信息进行处理来获得未来时刻的预测数值。

更长的算子使谱进一步白化,使它进一步靠拢尖脉冲响应谱,但增到一定算子长度后,更长的算子不能改善结果。为了选择算子长度,理想的情况是应用未知地震子波的自相关。随着预测步长增加,输出谱的宽度愈来愈窄。在理想的无噪音条件下,预测反褶积对输出的分辨率可通过调节预测步长来控制。单位预测步长意味着最高的分辨率,而较大的预测步长意味着较小的分辨率。脉冲反褶积应用于野外资料得到的结果常常是不理想的,因为它提高了资料中的高频噪音。非单位预测步长的最大优势是压制谱的高频端,并保持了输入资料的总体谱形(2分)。随着预白百分比的增加,谱的宽度都减小。预白使谱变窄而不怎么改变谱的平坦特征;而较大的预测步长使谱变窄并改变它的形状,使它看起来更像输入地震子波的谱。预白得到一个限带输出。但是与改变预测步长相比,它的影响较不易控制。通过改变预测步长,我们对输出带宽有了一定的了解,它与预测步长有关(2分)。

2、应用数字滤波方法,如何消除地震记录上的规则干扰波和随机干扰波?

地震记录上的规则干扰有面波、多次波、导波、折射波、侧面反射、电缆干扰等,不规则干扰包括环境噪音等。(2分)

对于规则干扰,可以将信号变换到其他域,针对该域中干扰信号与有效信号的差异,设计相应的滤波器,将规则干扰消除。如面波的特点是低频、低速、能量强,可以在频率域设计高通滤波器加以消除,也可以变换到FK域,根据其低频低速的特点,将其滤掉;(2分) 对于非规则干扰,可以在某个域中如FX域中将相干的有效信号提取,达到滤掉干扰的目的;叠加也是一种有效的去除非规则干扰的滤波方法。(2分)

3、波动方程偏移方法主要有哪些?并简述其方法原理?

4、什么是叠加速度?叠加速度在不同地层模型时的含义?

在一般情况下,都可将共中心点反射波时距曲线看作双曲线,用一个同样的式子来表示:t2=t02+x2/Vα2,其中,Vα就是叠加速度。(3分)

(1)在地下介质为水平层状介质时,叠加速度为均方根速度;(1分)

(2)在地下介质不是水平层状介质时,叠加速度不等于均方根速度,但是它与均方根速度的关系比与平均速度更加密切;(1分)

(3)对倾斜界面均匀覆盖介质的情况,叠加速度就等于有效速度。(1分)

5、 简述无干扰时时最小平方反滤波的原理及步骤?

有干扰时最小平方反褶积的原理,是维纳(N ·Weiner )最先提出的,是以这样的最佳准则来设计滤波器的:使滤波器的实际输出与期望输出的误差平方和为最小。只要我们根据实际需要改变输入、输出和期望输出,就可设计出各种具体目的所需的反褶积方法。(4分)

有干扰时最小平方反褶积的步骤:计算步骤如下:

①由已知子波b(t)通过解方程,得到脉冲反褶积算子h(t);

② h(t)作自相关,得()t hh γ,再与b(t)作互相关,得()t a ';

③()t a '与x(t)褶积,得()()t t y ξ≈。(4分)

6、 分析观测系统对偏移成像的影响?

如果波的传播速度不变,自激自收剖面的输入剖面的偏移脉冲响应为半圆形构造(2分)。道理很简单,地下界面如果是圆心在地面的一个半圆形构造,采用自激自收观测系统进行观测,反射波将会聚焦在圆心处,在时间剖面上呈现为一个脉冲波。如果输入剖面是用非零炮检距观测系统测得的(有炮检距剖面),则速度v 不变时,其输入剖面的偏移脉冲响应为椭圆(2分)。当采用自激自收观测方式,且地下介质的地震波传播速度不变时,其输入剖面的偏移脉冲响应响应为一绕射双曲线。若使用非零炮检距系统(例如共炮点观测系统)其脉冲响应仍为双曲线(2分)。

7、 简述波动方程偏移成像原理?

波动方程偏移成像原理:1)爆炸反射界面成像原理是最常用、最简单的一种成像原理,适用于叠后的地震资料的偏移处理。水平叠加剖面可以看成是这样形成的:设想把一系列爆炸震源安置在反射界面上,其产生波的强度、极性与界面反射系数的大小和极性一致,测线的每个共中心点上放置一个检波器,假定在0=t 时刻,所有的震源同时启爆激发出地震波,波沿界面法向方向向上传播直到被地面的检波器接收形成叠加剖面。这种形成叠后地震剖面的模型称为爆炸界面模型(3分)。2)测线下延成像原理,将测线下延,直到达到反射点A 时,波的旅行时间为零,炮检距也为零(3分)。3)波场延拓的时间一致性成像原理,可表示为反射界面存在于地下这样的一些地方,下行波d 的到达或产生与上行波u 的产生和到达在时间上是一致的(2分)。

8、 地震资料处理中所谓的“三高”处理是指什么?

地震资料处理中所谓的“三高”处理是指高分辨率(3分)、高信噪比(3分)和高保真度(2分)。

16、简述地震资料数据中有哪些特殊处理方法?

地震资料数据中特殊处理方法有亮点及A VO 分析、高精度地震资料反演、地震属性分析(4分)、地震资料相干体数据处理、地震资料可视化数据处理等。

17、偏移成像方法分类及其主要特点是哪些?

偏移成像方法分类按算法分:射线和波动方程偏移成像;按输入资料分:叠前和叠后偏移成像;按输出资料分:时间和深度偏移成像。(6分)主要特点与成像方法分类原理类似。

一、论述题

1、通过在地震勘探资料数据处理课程的学习和体会,论述应用时间域数字滤波方法,如何消除地震记录上的规则干扰波和随机干扰波。

主要论述要点:

简述时间域数字滤波方法原理(6分)

分析地震记录上的规则干扰波和随机干扰波(4分)

分析消除地震记录上的规则干扰波和随机干扰波过程(2分)

论述应用时间域数字滤波方法结论及建议等(2分)

2、通过在地震勘探资料数据处理课程的学习和体会,论述在地震勘探资料采集中野外进行低降速带的调查方法,并详细分析低降速带资料在地震勘探资料数据处理中应用的主要目的。[提示:包括方法或技术原理、效果分析、结论及建议等]

简述地震勘探资料采集中野外低降速带的调查方法(6分)

分析低降速带资料对地震勘探资料数据处理过程(4分)

分析消除低降速带资料对地震勘探资料数据处理影响(2分)

该方法结论及建议等(2分)

地震数据处理方法(DOC)

安徽理工大学 一、名词解释(20分) 1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。 2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。(对离散化后的信号进行的滤波,输入输出都是离散信号) 3、模拟信号:随时间连续变化的信号。 4、数字信号:模拟数据经量化后得到的离散的值。 5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt. 6、采样定理: 7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。 8、假频:抽样数据产生的频率上的混淆。某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。这两个频率fN+Y和fN-Y相互成为假频。 9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。产生伪门的原因就是由于对h(t)离散采样造成的。 10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。 11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。 12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。为了消除球面扩散的影响,只需A0=Ar*r即可,此即为几何扩散校正, 13、反滤波(又称反褶积):为了从与干扰混杂的地震讯息中把有效波提取出来,则必须设法消除由于水层、地层等所形成的滤波作用,按照这种思路所提出的消除干扰的办法称为反滤波,即把有效波在传播过程中所经受的种种我们不希望的滤波作用消除掉。 14、校正不足或欠校正:如果动校正采用的速度高于正确速度,计算得到的动校正量偏小,动校正后的同相轴下拉。反之称为校正过量或过校正。 15、动校正:消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。 16、剩余时差:当采用一次波的正常时差公式进行动校正之后,除了一次反射波之外,其他类型的波仍存在一定量的时差,我们将这种进过动校正后残留的时差叫做剩余时差。

地震等自然灾害应急预案及处理流程

地震应急预案及处理流程 为加强我院安全生产工作,做好安全生产和灾害事故应急处理工作,保护人民的生命和财产安全,根据《中华人民共和国安全生产法》和《灾害事故医疗救援工作管理办法》、参照《全国救灾防病预案》、《国家突发公共事件医疗卫生救援应急预案》和《医疗卫生机构灾害事故防范和应急处置指导意见》有关规定,结合我院实际,制定本预案: 一、指导思想 根据有关规定和我院安全工作的总体部署,切实做好地震等灾害事故各项准备工作,当破坏性地震发生后迅速启动本预案,统一部署,紧急处置,迅速全面地做好各项抗震救灾准备,高效、有序地开展应急自救工作,以最快速度恢复医疗工作正常开展,最大限度减轻地震灾害,减少人员伤亡和经济损失。 二、组织机构 1、指挥部 总指挥:院长(党支部书记) 副总指挥:业务副院长 成员:保卫科、后勤科、医务科、护理部、各临床科室主任 职责:

(1)统一领导,健全组织,强化工作职责,加强对破坏性地震及防震减灾工作的研究,完善各项应急预案的制定和各项措施的落实。 (2)充分利用各种渠道进行地震灾害知识的宣传教育,组织、指导医院防震抗震知识的普及教育,广泛开展地震灾害中的自救和互救训练,不断提高广大医务人员防震抗震的意识和基本技能。 (3)认真做好各项物资保障,严格按预案要求积极筹储、落实食品饮用水、防冻防雨、医疗器械、抢险设备等物资,强化管理,使之始终保持良好状态。 (4)破坏性地震发生后,采取一切必要手段,组织各方面力量全面进行抗震减灾工作,把地震灾害造成的损失降到最低点。 (5)调动一切积极因素,迅速恢复正常医疗秩序,全面保证和促进社会安全稳定。 指挥部设在院办,电话: 2、疏散组: 组长:保卫科科长 组员:各临床、医技科室主任、护士长 职责:平时负责全院地震等自然灾害培训演练的具体工作,保持疏散通道畅通。 (1)现场指挥,迅速组织医务人员指导患者及其家属按照

地震勘探在海洋石油勘探中的基本原理

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___ 地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

地震勘探资料处理

本科生实验报告 实验课程基于 Vista 系统的地震资料处理学院名称地球物理学院 专业名称勘查技术与工程(石油物探)学生姓名 学生学号 指导教师唐湘蓉 实验地点5417 实验成绩 2015年3月- 2015年5月

基于 Vista 系统的地震资料处理 一、实验目的及要求 1)认知熟悉地震资料处理软件系统--vista软件的基本功能,了解其并熟练掌握vista软件运行的基本操作; 2)了解并掌握地震数据处理的基本流程,掌握地震数据处理的流程和基本方法,选择合适的处理参数以提高地震数据处理的精度; 3)对比地震资料处理与解释的理论与实际资料处理的结果,深入理解理论,并在理论指导下提高处理解释的水平、提高资料处理的质量; 4)提高综合分析问题的能力与编写实验报告或生产报告的能力。 二、实验内容 总流程 图1 总流程图 1)加载数据 打开Vista软件后选择加入2D的SEG-Y格式的原始地震数据,本实验

所用数据为给定的SHOT-20。加载后的原始地震数据如图2: 图2 原始地震数据显示 2)道均衡 各个道由于炮检距的不同,导致的反射波的振幅的变化,因为在共反射点叠加中,要求每一个叠加道的振幅都应该相等,每一道对叠加所做的贡献是等价的,无特殊情况,一般就以记录图中间的振幅为基准,使近激发点的地震道振幅减少,增加远离激发点的地震道记录的振幅。道均衡流程模块如图3,道均衡结果如图4: 图3 道均衡流程模块

3)建立观测系统 图5 观测系统显示4)初至拾取 初至拾取结果显示如图6:

图6 初至拾取结果显示 5)初至切除 地震记录上的初至波包括直达波和浅层折射波,它们能量强且有一定延续时间,对紧接而来的浅层反射波有干涉和破坏作用。另外,动校正后会引起波形畸变,浅层尤其厉害。对这些强能量初至波和动校正畸变引起的处理办法是“切除”,即将这些波的采样值全部变为零值(充零)。初至切除流程模块如图7,初至切 除结果如图8: 图7 初至切除流程模块

地震数据处理vista软件使用手册

Vista 5.5的基本使用方法 数据输入 地震分析窗口 一维频谱 二维频波谱 观测系统 工作流 一、数据输入 1.1 把数据文件加入Project 首先选择File/New Project,新建一个Project,按住不放,出现按钮组合,可以选择不同类型 的数据集,选择,向Project中增加一个新的2-D数据集,按住不放,出现按钮组合, 可以选择加入不同类型的地震数据,选择,选择一个SEG-Y数据,即可将该数据文件加入新建的数据集。 1.2 命令流中数据的输入 双击进入如下界面 1.2.1 Input Data List 数据输入列表,选择已加入到Project的数据集,下面的文本框中会显示选择的数据的基本信息。 1.2.2 Data Order 选择输入数据的排列方式,对不同的处理步骤可以选择不同的数据排列方式 Sort Order a. NO SORT ORDER 输入数据原始排列方式 b. SHOT_POINT_NO 输入数据按炮点排列方式 c. FIELD_STATION_NUMBER d. CMP_NO 输入数据按共中心点排列方式 e. FIELD_STATION_NUMBER 1.2.3 Data Input Control 数据输入控制 右键-->Data Input Control a. Data Input 进入Flow Input Command(见上) b. Data Sort List 查看数据排列方式的种类 c. Data/header Selection 输入数据的选择,可以控制输入数据的道数和CMP道集 查看所有已经选择的数据 如果没有定义任何可选的数据信息,则如下图所示: 可以选择一种选择方式,单击并设置选择信息。定义有可选的数据信息后,在查看,则如下图所示,会显示选择的信息。 选择共炮点集 单击后,会弹出如下界面:

地震数据处理 重点

1.一维傅里叶变换及其应用:傅里叶变换是地震数据处理的主要数学基础。它不仅是地震道、地震记录分析和数据滤波的基础,同时在地震数据处理的各个方面都有着广泛的应用。 2.采样定理:设x(t)是连续的时间函数,x(t)的最高截止频率为fn,则可用采样间隔为Δt=1/2fn的离散序列X(nΔt)唯一的确定。采样过程:从模拟地震信号到数字地震信号的过程。采样间隔/采样率:采样所用的时间间隔。 3.数字滤波:利用频谱特征的不同来压制干扰波,以突出有效波的方法。 4.频率域滤波的步骤: ①对已知地震道进行频谱分析;②设计合适的滤波器:为了滤去干扰波的频谱成分,应当设计一个带通滤波器,保留有效波频率,把干扰波频率成分滤掉; ③进行滤波运算;④对输出信号谱X(w)进行傅里叶反变换,便得到滤波后的输出X(t). 5.相位性质:最小相位也叫相位滞后或最小能量延迟,实际上最小相位滞后是指频率域,而最小能量延迟则是指时间域而言。最小能量延迟子波:能量聚集在首部;最大能量延迟子波:能量集中在尾部;混合延迟子波:能量聚集在中部。 6.褶积滤波的物理意义: 单位脉冲响应:在时间域的表示方法中,令一个单位脉冲通过一个滤波器,然后观测滤波器的输出,这个滤波器输出的自然过程曲线称为滤波器的脉冲响应。也称滤波器的时间特性。 褶积滤波的物理意义:它相当于把地震信息x(t)分解为起始时间、极性、幅度各不相同的脉冲序列,令这些脉冲按时间书序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的的起始时间、不同的极性和不同的幅度(这个幅度是与引起它的输入脉冲幅度成正比的),将它们叠加起来就得到滤波后的输出x(t). 7.数字滤波的特殊性质:离散性:数字滤波是对离散的信号进行运算,这是所谓的离散性;有限性:在数字计算机上进行计算时,滤波因子不可能无穷项,而是取有限项,这就是所谓的有限性。 8.产生“伪门”原因:由于对A离散采样造成的,可以证明“伪门”在频率域出现的周期为A,为了避免“伪门”造成的影响,可以适当的选择采样间隔A,使第一个“伪门”出现在干扰波的频谱范围之外。9.波谱:以任何一种形式展示电磁辐射强度与波长之间的关系,叫波谱。波数:波长的倒数。K0=1/λ 二维频率-波数域中的二维频率-波数谱(简称二维频-波谱)分析是对地震波场进行分析的重要手段,它是建立在二维傅里叶变换的基础上。 10.空间假频:频率不变,倾角越大或者倾角不变,频率越高越容易产生空间假频。产生条件:地震信号的频率f一定时,地震信号倾斜时差δt越大,其频-波振幅谱中的波数k0也越大,而当地震信号频率f 增大时,具有相同倾斜时差δt的地震信号的频-波振幅谱中的波数k0随之增大,当频率f增大到某一个门槛频率fmax时,便开始产生空间假频。 11.二维滤波器的设计:一般二维滤波是指对于波动函数X(t,x)所进行的频率-波数域滤波。这时设计的滤波因子是时间-空间的函数h(t,x),滤波过程类似一维滤波在时间-空间域,可用二维褶积公式表示A. 12.共中心点CMP叠加及叠后处理流程图:野外采集地震数据-解编-预处理-反褶积-抽CMP道集-速度分析-动校正-CMP水平叠加-叠后时间深度偏移。13.共中心点叠加优点:①压制多次波;②压制规则干扰波;③压制随机噪声。综上,共中心点叠加可以有效地压制各种干扰波,增强有效波,使地震剖面的信噪比明显提高,掀桌改善地震剖面的质量。 14共中心点水平叠加存在的问题:当反射界面为弯曲界面时,其反射旅行时存在如图1所示的畸变;当反射界面为,其射旅行时发生如图2所示的畸变;当覆盖介质速度横向变化时,其反射旅行时存在如图3所示的畸变;当覆盖介质速度各向异性时,其反射旅行时存在如图4所示的畸变. 15.块状介质模型地震数据处理的特点:①介质呈块状分布,它不仅有顶部和底部界面,而且其侧面也由断层面或岩层界面所封闭;②由于剧烈的构造运动作用,界面往往呈弯曲界面,界面陡、倾角较大;③介质速度往往沿水平方向变化较快。 16.共反射点CRP叠前处理基本流程图:野外采集地震数据-解编-预处理-反褶积-抽CRP道集-层速度场-速度深度模型-叠前深度偏移 ①②③④⑤⑥⑦ 1.预处理:指地震数据处理前的准备工作,是地震数据处理中的重要基础工作,一般定义为将野外采集的地震数据正确加载到地震资料处理系统,进行观测系统定义并对地震数据进行编辑和校正的过程。预处理包括:数据解编、格式转换、道编辑、观测系统定义等工作。 2.解编:就是按照野外采集的记录格式将地震数据检测出来,并将时序的野外数据转换为道序数据,然后按照道和炮的顺序将地震记录存放起来。 3.野外观测系统定义:观测系统就是以野外文件号和

地震资料数字处理试卷合集

一、名词解释 1.道均衡:是指在不同或同一地震记录道建立振幅平衡。 2.数字信号:相对于模拟信号,记录瞬间信息的离散的信号。 模拟信号:随时间连续变化的信号. 有效信号:能为我们所利用的信号就叫有效信号。 3.最小相位:能量集中在序列前部。 4.反射波:在波速突变的分界面上,波的传播方向要发生改变,入射波的一部分被反 射,形成反射波。 折射波:滑行波在传播过程中也会反过来影响第一种介质,并在第一种介质中激发新的波。这种由滑行波引起的波,叫折射波。 5.共深度点:CDP。地下界面水平时,在共中心点下方的点,界面倾斜时无共深度点。 6.解编:地震数据是按各道同一时刻的样点值成列排放的,解编就是将数据重排成行。 12. 最大相位:能量集中在序列后部。 16.地震波:地震波是在岩石中传播的弹性波。 多次波:在地下经过多次反射接收到的波叫多次波。 17. 切除:地震信号经动校正后被拉伸畸变,目前处理动校正拉伸畸变的方法是切除, 即把拉伸严重部分的记录全部充零。 18. 混合相位:能量集中在序列中部。 自相关:一个时间信号与自身的互相关。 互相关:一个时间信号与另一个时间信号的相关。 21.环境噪音:交流电、人、风吹草动等环境因素所引起的对地震波有干扰的信号。 随机噪音:交流电、人、风吹草动等随机因素所引起的对地震波有干扰的信号。 22.反射系数:反射振幅与入射振幅的比值。 28.模拟记录:把地面振动情况,以模拟的方式录制在磁带上。 二、简答题 1、地震资料数字处理主要流程?地震资料的现场处理主要包括哪些内容? 地震勘探资料数据处理中的预处理主要包括哪些内容? 简述地震资料数据中有哪些目标处理方法? 地震资料数字处理如何分类? 地震资料数字处理质量控制有哪些? 地震资料数字处理主要流程:输入→定义观测系统→数据预处理(废炮道、预滤波、反褶积)→野外静校正→速度分析→动校正→剩余静校正→叠加→偏移→显示。 地震资料的现场处理主要有:预处理、登录道头、道编辑、切除初至、抽道集、增益恢复、 设计野外观测系统、实行野外静校正、还可以进行频谱分析、速度分析、水平叠加等(2分)。 地震勘探资料数据处理中的预处理主要包括登录道头、废炮道编辑、切除初至、抽道集(4分)、增益恢复、预滤波、反褶积等. 地震资料数据中目标处理方法有高分辨率地震资料处理、三维地震资料处理、叠前深度偏移处理、井孔地震资料处理(4分)、多波多分量地震资料处理、时间推移地震资料处理等地震资料数字处理分类有数据预处理、数据校正、叠加和偏移归位、振幅处理、滤波、分析、正反演、复地震道技术等。(3分) 地震资料数字处理质量控制包括野外原始资料检查与验收、处理流程及主要参数确定、

地震勘探报告编制

地震勘探报告编制若干问题(潘振武) ●地震勘探工作程序 地震勘探设计—地震数据采集—地震数据处理—地震数据解释—地震勘探报告与审批—“售后服务” ●地质报告的作用 ——开采(或灾害防治)设计、可行性研究、规划的地质依据; 地质构造影响矿井采区布置、工作面划分。 由于地质构造不清,未采取防范措施,巷道遇断层揭露瓦斯突出煤层、含水层、采空区带来危险。 构造不清造成掘进巷道增加。百万吨掘进率、百万吨死亡率增加。 煤矿五大灾害(瓦斯、水、火、顶板、粉尘)都与煤矿地质条件有关。查明地质情况,采取相应对策,则为合理开采、提高资源回收率、安全生产提供了保障。 二维地震为找煤、指导下一步勘查或其它专项目的。 ——为本单位科研集累资料,集累经验; ——展示本单位在行业中形象,是客观的广告和宣传。 ●《煤炭煤层气地震勘探规范》-MT/T896-2000:(22~24 页) “编写成果报告时应充分分析有关地质、物探资料、做到报告内容齐全,观点明确,证据充分,重点突出,叙述清楚,文字简练,图表齐全,整洁、美观。” (用自己的思想和语言) 地质报告编制提纲(内容): 文字说明包括:序言;概况;地质及地震地质条件;野外施工方法;资料处理和解释;地质成果;结论等七章。 附图包括:实际材料图;反射波T0等时线平面图;煤层底板等

高线图;地震地质剖面图;地震时间剖面图等。 附表包括:测量成果表;工程量统计表;断层控制表等。 1.以往地质资料(包括矿井地质资料)收集、分析 目的:了解地层、地质构造特征;以往地质工作质量; 地震地质条件。作为物探工作设计、资料解释的依据。 存在问题:——收集不足(范围、内容) ——分析、利用不够,如测井资料 ——对以往地质资料中差错甄别不够 应收集的资料 ·最近(新)的井田勘探报告或矿井地质报告 ·地形地质图(或基岩地质图) ·综合柱状图 ·主要煤层底板等高线图 ·煤层基础资料表 ·钻孔坐标 ·主要剖面图 ·煤、岩层对比图 ·全部有关钻孔的钻孔综合柱状图(含测井曲线) ·其它物探成果资料 ·区域地质资料 ·周边其它煤矿、小窑情况 需要时:煤质、岩石力学性质,水文地质试验、观测成果表。

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

《地震资料数字处理》复习

《地震资料数字处理》复习 地震资料数字处理围绕以下三方面工作: 1、提高信噪比; 2、提高分辨率; 3、提高保真度。 一、提高信噪比的处理 1、原理 利用噪声和信号在时间、空间、频率和其他变换域中的分布差异,设计滤波因子,将噪声进行压制。 2、处理顺序 提高信噪比包含消除噪声和增强信号两部分内容。 消除噪声一般在叠前的各种道集上进行,主要针对规则干扰如多次波和面波等, 增强信号一般在叠后剖面上进行,主要针对随机噪声。 3、随机噪声 是指没有固定的频率、时间、方向的振幅扰动和震动,其成因大致是来自环境因素、次生因素和仪器因素,其中次生干扰的强度与激发能量有关。 随机噪声在记录上表现为杂乱无章的波形或脉冲,在频率上分布宽而不定,在空间上没有确定的视速度。 随机噪声的随机性与道间距有关,如果道间距减小到一定程度,许多随机噪声表现出道间的相干性,当道距大于随机噪声的相干半径才表现出随机性。 4、一维滤波器(伪门、Gibbs现象) 频率滤波器是根据信号和噪声在频率分布上的差异而设计时域或频域一维滤波算子。它压制通放带以外的频率成分,保留通放带以内的频率成分。 Gibbs现象是由于频率域的不连续或截断误差引起的,通放带和压制带之间设置过渡带可克服此现象,设计滤波器就是控制过度带的形状和宽度。 5、二维滤波器 二维滤波是根据有效信号和相干噪声在视速度分布上的差异,来压制噪声或增强信号。 通常用来压制低视速度相干噪声,在f-k平面上占据低频高波数区域。 二维滤波比较容易产生蚯蚓化现象,而且混波相现象明显,在空间采样条件不满足或陡倾角的情况下受到空间假频的影响,一般常用于压制一些规则干扰,如面波和多次波等。 6、频率-波数域二维滤波实现步骤: (1)把时间和空间窗口里的数据变换到f-k域; (2)在f-k域,通过外科切除,按径向扇形划分压制区C(乘振幅置零)、过渡区S(乘振幅置0至1变化)、通放区P (乘振幅置1) ; (3)从f-k域反变换到t-x域。 8、数字滤波有两个特殊性质: (1)数字滤波由于时域离散化会带来伪门现象,

08262026-地震勘探数据处理与解释

吉林大学实验教学大纲 教学单位名称:吉林大学地球探测科学与技术学院 课程名称:地震勘探数据处理与解释 课程代码:08262026 课程类别:专业课 课程性质:必修课 学时/学分:32/2(其中实验8学时) 面向专业:勘查技术与工程 一.实验课程的教学任务、要求和教学目的 《地震数据处理与解释》课程是应用地球物理系列课程中的一个重要方向,是地球物理勘探中的重要方法之一,与地震勘探原理一起构成了地震勘探研究方向的一个完整体系。是勘查技术与方法专业中应用地球物理方向本科生的一门重要选修课。 本实验课是与理论课紧密联系在一起的。通过实验课的教学,使学生加深对理论理解和将理论知识应用于实践的能力,熟悉基本的数据处理流程,并进行实际的地震资料处理。本实验课实际上是地震勘探数据处理与解释课程的重要组成部分。 二.学生应掌握的实验技术及基本技能 1、掌握常用地震数据处理系统的基本操作方法 2、了解常用地震记录的数据格式及剖面显示方式; 3、掌握动、静校正及水平叠加处理的方法; 4、掌握地震信号的频谱分析和一维、二维滤波; 5、掌握预测反褶积处理技术; 6、了解速度分析的方法和步骤; 7、了解地震波场偏移处理的目的和方法; 8、掌握合成地震记录的制作和分析方法; 9、掌握波动方程地震记录的正演模拟; 10、能编写简单的地震数据处理程序。 三.实验项目内容、学时分配和每组人数

四.实验教材或指导书或主要参考资料 教材采用《应用地球物理教程—地震勘探》。另外可参考以下文献: 1.《地震资料分析—地震资料处理、反演和解释》,渥.伊尔马滋 2.CWP/SU:Seismic Un*x用户手册 五.考核要求、考核方式及成绩评定标准 实验成绩可通过写实验报告,或总结性考核而定,占学生学期总成绩的20%~30%。 六.制定人、审核人、日期 制定人:王德利 审核人:潘保芝 审核日期:2009年9

地震数据处理

地震数据整体流程 不同软件的地震数据处理方式不同,但是所有软件的处理流程基本是固定不变的,最多也是在处理过程中处理顺序的不同。整体流程如下: 1 数据输入(又称为数据IO) 数据输入是将野外磁带数据转换成处理系统格式,加载到磁盘上,主要指解编或格式转换。 解编:将多路编排方式记录的数据(时序)变为道序记录方式,并对数据进行增益恢复等处理的过程。如果野外采集数据是道序数据,则只需进行格式转换,即转成处理系统可接受的格式。 注:早期的时序数据格式为记录时先记录第一道第一个采样点、第二道第一个采样点、……、第一道第二个采样点、第二道第二个采样点、……直至结束。现在的道序记录格式为记录时直接记录第一道所有数据、第二道所有数据、……直至结束,只是在每一道数据前加上道头

数据。将时序数据变为道序数据只需要对矩阵进行转置即可。 2 置道头 2.1 观测系统定义 目的为模拟野外,定义一个相对坐标系,将野外的激发点、接收点的实际位置放到这个相对的坐标系中。即将SPS文件转换为GE-Lib文件,包括1)物理点间距2)总共有多少个物理点3)炮点位置4)每炮第一道位置5)排列图形。 2.2 置道头 观测系统定义完成后,处理软件中置道头模块,可以根据定义的观测系统,计算出各个需要的道头字的值并放入地震数据的道头中。当道头置入了内容后,我们任取一道都可以从道头中了解到这一道属于哪一炮、哪一道?CMP号是多少?炮间距是多少?炮点静校正量、检波点静校正量是多少?等等。 后续处理的各个模块都是从道头中获取信息,进行相应的处理,如抽CMP道集,只要将数据道头中CMP号相同的道排在一起就可以了。因此道头如果有错误,后续工作也是错误的。 GOEAST软件有128个道头,1个道头占4个字节,关键的为2(炮号)、4(CMP号)、17(道号)、18(物理点号)、19(线号)、20(炮检距)等。 2.3 观测系统检查 利用置完道头的数据,绘制炮、检波点位置图、线性动校正图。 3 静校正(野外静校正) 静校正为利用测得的表层参数或利用地震数据计算静校正量,对地震道进行时间校正,以消除地形、风化层等表层因素变化时对地震波旅行时的影响。 静校正是实现共中心点叠加的一项最主要的基础工作。直接影响叠加效果,决定叠加剖面的信噪比和垂向分辨率,同时影响叠加速度分析的质量。 静校正方法: 1)高程静校正 2)微测井静校正-利用微测井得到的表层厚度、速度信息,计算静校正量 3)初至折射波法 4)微测井(模型法)低频+初至折射波法高频 4 叠前噪音压制 干扰波严重影响叠加剖面效果。在叠前对各种干扰进行去除,为后续资料处理打好基础。 常见干扰有:面波、折射波、直达波、多次波、50Hz工业电干扰及高能随机干扰等多种情况。不同干扰波有不同特点和产生原因,根据干扰波和一次反射波性质(如频率、相位、视速度等)上的不同,把干扰和有效波分离,从而达到干扰波的去除,提高地震资料叠加效

地震资料处理复习总结

数字地震记录中,每个地震到是按一个按一定时间采样间隔排列的时间序列数字滤波,每一个地震道都可以用一系列具有不同频率和不同振幅、相位的简谐曲线叠加而成。 应用一维傅里叶变换可以得到每个地震道德简谐成分; 应用傅里叶反变换可以将简谐成分合成为原来的地震道的时间序列函数。 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。它可以写成指数形式 式中 复数的模,称为振幅谱; 复数的幅角,称为相位谱。 离散情况下和这个差不多 一维频谱的特征: 1. 傅里叶变换的几个基本性质 线性 翻转 共轭 时移 褶积 相关(功率谱) 2. 假频 尼奎斯特频率 二维谱分析 二维波场函数X(x,t)的二维傅里叶变换° X(,)ωκ 表明了二维波场函数X(x,t)的各个频率f 一波数 简谐成分的频一波谱。 由°X(,)ωκ这些频率f 一波数 的简谐成分叠加即可恢复原来的波场函数X(x,t)。 二维傅里叶变换X(w,k)称为二维函数X(x,t)的频一波谱。其模量 为函数X(x,t)的振幅谱。 如果有效波和干扰波得平面简谐波成分有差异,有效波的平面简谐波成分与干扰波的平面简谐波成分不同的视速度传播,则可以用二维视速度滤波将他们分开,达到压制干扰,提高性噪比的目的。 二维频谱的特征:空间假频 ~~ () ()()()()i w i w X w X w e A w e ??==)(ωA ()?ω1()()tan () i r x w w x w ?- =()A w =t f ?=21N o k o k ~ X(,)k ω

在地震勘探中,用数字仪器记录地震波时,为了保持更多的波得特征,,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。有效波和干扰波得差异表现在多个方面(频谱、传播方向、能量……)。利用频谱特征的不同来压制干扰波,以突出有效波的方法就是数字滤波。 滤波器的响应特性:对滤波器能力的最普遍度量是其响应特性 滤波器的频率特性:其滤波器时间函数或滤波因子 的频谱 称为滤波器的频率特性, 滤波器的时间特性(单位脉冲响应):在时间域的表示方法中,令一个单位脉冲通过一个滤波器,然后观侧滤波器的输出,这个滤波器输出的自然过程曲线称为滤波器的时间特性。也 称滤波器的“脉冲响应” 频率响应函数应该就是 时间和频率响应函数合起来应该就是就是响应特征 滤波机理: 输出信号的振幅谱等于输入信号的振幅谱与滤波器的振幅频率特性的乘积, 输出信号的相位谱等于输入信号的相位潜与滤波器相位特性之和。 (频率) 时间域上就是褶积 褶积滤波的物理意义:它相当于把地震信息 分解为起始时间、极性、幅度各不相同的脉冲序列,令这些脉冲按时间顺序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的起始时间,不同的极性和不同的幅度(这个幅度是与引起它的输入脉冲幅度成正比的),将它们叠加起来就得到滤波后的输出分。 频率域滤波的步骤 (1)对已知地震记录道进行频谱分析。 (2)设计合适的滤波器 (3)进行滤波运算 (4)对输出信号谱 进行傅里叶反变换 褶积滤波的具体计算 褶积滤波的具体计算步骤如下: (1)对地震记录进行频谱分析,确定通频带中心频率 和带宽 。 (2)确定滤波因子长度N 。 )()()(~ ~~w H w X w X =)(t x ∧ )(~ w H )(t h )(~ w H ) ()()(w w w H x x Φ+Φ=Φ∧)()()(~ ~w H w X w X ?=∧)(~ w X )(t x

地震勘探原理的基本问题

地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线. 动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正. 多次覆盖:对被追踪的界面进行多次观测. 剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等. 几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学. 水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh. 时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系 剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差. 绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波. 三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征. 水平切片:就是用一个水平面去切三维数据体得出某一时刻tk各道的信息,更便于了解地下构造形态个查明某些特殊地质现象. 同相轴:一串套合很好的波峰或波谷. 相位:一个完整波形的第i个波峰或波谷. 纵波:传播方向与质点振动方向一致的波. 转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波. 反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同. 地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。 爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这时的地震波为地震子波。 正常时差的定义第一种定义:界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引起的时差. 第二种定义:在水平界面情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差. 1.简述地震勘探原理 地震勘探根据岩石的弹性差别进行工作的,波遇到障碍物会发生反射和透射,折射.通过测反射波和透射波的性质,可以确定障碍物的距离.地震勘探是人工激发地震波.通过在地面布置测线,接收反射波,然后进行一些处理,从而来反映地下构造情况,为寻找油气和其他勘探目的的服务,生产工作包括三个环节:1野外数据采集2室内数据处理3地震资料解释,与其他方法

地震数据处理课程设计(报告)

《地震资料数据处理》课程设计 总结报告 专业班级: 姓名: 学号: 设计时间: 指导老师: 2011年5月30日

目录 一、设计内容……………………………………………………………… (1)褶积滤波……………………………………………… (2)快变滤波……………………………………………… (3)褶积滤波与快变滤波的比较………………………… (4)设计高通滤波因子…………………………………… (5)频谱分析……………………………………………… (6)分析补零对振幅谱的影响…………………………… (7)线性褶积与循环褶积………………………………… (8)最小平方反滤波……………………………………… (9)零相位转换…………………………………………… (10)最小相位转换………………………………………… (11)静校正………………………………………………… 二、附录………………………………………………………………………… (1)附录1:相关程序…………………………………… (2)附录2:相关图件……………………………………

【附录1:有关程序】 1.褶积滤波 CCCCCCCCCCCCCCCCC 褶积滤波CCCCCCCCCCCCCCCCC PROGRAM MAIN DIMENSION X(100),H1(-50:50),H2(-50:50),Y_LOW(200),Y_BAND(200) PARAMETER (PI=3.141592654) CCCCCCCC H1是低通滤波因子,H2为带通滤波因子CCCCCC REAL X,H1,H2,Y_LOW,Y_BAND REAL dt,F,F1,F2 INTEGER I dt=0.002 F=70.0 F1=10.0 F2=80.0 OPEN(1,FILE='INPUT1.DA T',FORM='FORMATTED',STATUS='UNKNOWN') READ(1,*)(X(I),I=1,100) CCCCCCCCCCCCCCCCCC低通滤波器CCCCCCCCCCCCCCCCC DO 10 I=-50,50 IF (I.EQ.0)THEN H1(I)=2*F*PI/PI ELSE H1(I)=SIN(2*PI*F*I*dt)/(PI*I*dt) END IF 10 CONTINUE CCCCCCCCCCCCCCCC输出低通滤波因子CCCCCCCCCCCCCCCC OPEN(2,FILE='H1_LOW.DAT',FORM='FORMATTED',STATUS='UNKNOWN') WRITE(2,*)(H1(I),I=-50,50) CLOSE(2) CALL CON(X,H1,Y_LOW,100,101,200) CCCCCCCCCCCCCCCC输出滤波后的数据CCCCCCCCCCCCCCCC OPEN(3,FILE='Y_LOW.DA T',FORM='FORMATTED',STATUS='UNKNOWN') WRITE(3,*)(Y_LOW(I),I=51,150) CLOSE(3) CCCCCCCCCCCCCCCCCC带通滤波器CCCCCCCCCCCCCCCCCCCC DO 20 I=-50,50 IF(I.EQ.0)THEN H2(I)=140 ELSE H2(I)=SIN(2*PI*F2*I*dt)/(PI*I*dt)-SIN(2*PI*F1*I*dt)/(PI*I*dt) END IF 20 CONTINUE CCCCCCCCCCCCCCC输出带通滤波因子CCCCCCCCCCCCCCCCC OPEN(4,FILE='H2_BAND.DAT',FORM='FORMA TTED',STATUS='UNKNOWN')

地震数据处复习

地震资料的处理方法和结果在很大程度上受野外采集参数的影响。 地震剖面的“三高”:高信噪比、高分辨率和高保真度。 地震资料处理主要有三个阶段;每一个阶段都是为了提高地震分辨率,即分离出两个无论在空间上还是时间上都非常相近的同相轴的能力。 ●(a)反褶积是通过压缩基本地震子波成为尖脉冲并压制交混 回响,沿着时间方向提高时间分辨率; ●(b)叠加是沿着偏移距方向压缩,把地震资料的数据量压缩 成零偏移距剖面,以提高信噪比; ●(c)偏移是一个使绕射收敛,并将叠加剖面上的倾斜同相轴 归到它们地下的真实位置上,通常在叠加剖面(接近于零偏移 距剖面)上做偏移,来提高横向分辨率。 ●几何扩散校正:通过给数据加一增益恢复函数以校正波前(球面)扩散对振幅的影响。 ●建立野外观测系统:把所有道的炮点和接收点位置坐标等测量信息都储存于道头中以保证各道的正确叠加。 ●野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。

关于分辩率的讨论: 有一种普遍的误解,认为要增加时间分辨率只需要高频,这是不 真实的。 只有低频或只有高频不能改善时间分辨率。要增加时间分辨率低 频和高频两者都需要。 时间分辨率取决于有效信号的频带宽度. 最小平方法---根据误差的平方和最小来设计滤波器; 最小相位信号是具有对相同振幅谱的物理可实现信号中相位最 小的信号,或者说能量延迟最小的信号。 最小相位滤波器是具有同样振幅响应的一切可能的滤波器簇中 能量延迟最小的滤波器,也称最小延迟滤波器。 若最小相位滤波器的输入是最小相位,则其输出也是最小相位, 对于地震子波,除了零相位子波外,最小相位子波的分辨率最高。 下面的四个子波中哪一个是最小相位的: 子波A :(4,0,-1) 子波B :(2,3,-2) 子波C :(-2,3,2) 子波D :(-1,0,4) 频率、视波数和视速度的关系为: **=k f V

相关主题
文本预览
相关文档 最新文档