当前位置:文档之家› 高中数学,函数图形考点及题型全归纳

高中数学,函数图形考点及题型全归纳

高中数学,函数图形考点及题型全归纳
高中数学,函数图形考点及题型全归纳

第五节 函数的图象

? 基础知识

1.利用描点法作函数图象

其基本步骤是列表、描点、连线. 首先:(1)确定函数的定义域;

(2)化简函数解析式;

(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次,列表,描点,连线. 2.函数图象的变换 (1)平移变换

①y =f (x )的图象――――――――→a >0,右移a 个单位

a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→

b >0,上移b 个单位b <0,下移|b |个单位

y =f (x )+b 的图象. “左加右减,上加下减”,左加右减只针对x 本身,与x 的系数,无关,上加下减指的是在f (x )整体上加减. (2)对称变换

①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象―――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称

y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象―――――――→关于直线y =x 对称

y =log a x (a >0且a ≠1)的图象. (3)伸缩变换

①y =f (x )的图象―――――――――――――――――――→a >1,横坐标缩短为原来的1

a 纵坐标不变

0

倍,纵坐标不变y =f (ax )的图象. ②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变

0

①y =f (x )的图象

――→x 轴下方部分翻折到上方x 轴及上方部分不变

y =|f (x )|的图象;

②y =f (x )的图象――→y 轴右侧部分翻折到左侧

原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.

? 常用结论

1.函数图象自身的轴对称

(1)f (-x )=f (x )?函数y =f (x )的图象关于y 轴对称;

(2)函数y =f (x )的图象关于x =a 对称?f (a +x )=f (a -x )?f (x )=f (2a -x )?f (-x )=f (2a +x );

(3)若函数y =f (x )的定义域为R ,且有f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b

2对称.

2.函数图象自身的中心对称

(1)f (-x )=-f (x )?函数y =f (x )的图象关于原点对称;

(2)函数y =f (x )的图象关于(a,0)对称?f (a +x )=-f (a -x )?f (x )=-f (2a -x )?f (-x )=-f (2a +x ); (3)函数y =f (x )的图象关于点(a ,b )成中心对称?f (a +x )=2b -f (a -x )?f (x )=2b -f (2a -x ). 3.两个函数图象之间的对称关系

(1)函数y =f (a +x )与y =f (b -x )的图象关于直线x =b -a

2对称(由a +x =b -x 得对称轴方程);

(2)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称; (3)函数y =f (x )与y =2b -f (-x )的图象关于点(0,b )对称; (4)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )对称.

考点一 作函数的图象

[典例] 作出下列函数的图象.

(1)y =?

????

-2x +3,x ≤1,-x 2+4x -2,x >1;

(2)y =2x +

2; (3)y =x 2-2|x |-1.

[解] (1)分段分别画出函数的图象,如图①所示.

(2)y =2x

+2

的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.

(3)y =?

????

x 2-2x -1,x ≥0,

x 2+2x -1,x <0,其图象如图③所示.

[变透练清]

1.[变条件]若本例(2)变为y =????12x -2

,试作出其图象.

解:y =????12x -2的图象是由y =???

?12x 的图象向右平移2个单位长度得到的,其图象如图 所示.

2.[变条件]若本例(3)变为y =|x 2-2x -1|,试作出其图象.

解:y =?

??

x 2-2x -1,x ≥1+2或x ≤1-2,

-x 2+2x +1,1-2

考点二 函数图象的识辨

[例1] (2018·全国卷Ⅱ)函数f (x )=e x -e -

x

x 2

的图象大致为( )

[解析] ∵y =e x -e -

x 是奇函数,y =x 2是偶函数,

∴f (x )=e x -e -x

x 2是奇函数,图象关于原点对称,排除A 选项;

当x =1时,f (1)=e -1

e >0,排除D 选项;

又e>2,∴1e <12,∴e -1

e >1,排除C 选项.故选B.

[答案] B

[例2] 已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )

[解析]法一:先作出函数y=f(x)的图象关于y轴的对称图象,得到y=f(-x)的图象;

然后将y=f(-x)的图象向右平移2个单位,得到y=f(2-x)的图象;

再作y=f(2-x)的图象关于x轴的对称图象,得到y=-f(2-x)的图象.故选D.

法二:先作出函数y=f(x)的图象关于原点的对称图象,得到y=-f(-x)的图象;然后将y=-f(-x)的图象向右平移2个单位,得到y=-f(2-x)的图象.故选D.

[答案] D

[解题技法]

1.函数图象与解析式之间的4种对应关系

(1)从函数的定义域,判断图象的左右位置,从函数的值域(或有界性),判断图象的上下位置;

(2)从函数的单调性,判断图象的升降变化趋势;

(3)从函数的奇偶性,判断图象的对称性:奇函数的图象关于原点对称,在对称的区间上单调性一致,偶函数的图象关于y轴对称,在对称的区间上单调性相反;

(4)从函数的周期性,判断图象是否具有循环往复特点.

2.通过图象变换识别函数图象要掌握的两点

(1)熟悉基本初等函数的图象(如指数函数、对数函数等函数的图象);

(2)了解一些常见的变换形式,如平移变换、翻折变换.

3.借助动点探究函数图象

解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象,也可以采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.

[题组训练]

1.(2019?郑州调研)已知函数f (x )=????

?

x 2,x ≥01x ,x <0

,g (x )=-f (-x ),则函数g (x )的图象是( )

解析:选D

法一:由题设得函数g (x )=-f (-x )=????

?

-x 2,x ≤0,1x ,x >0,据此可画出该函数的图象,如题图选项D 中图

象.故选D.

法二:先画出函数f (x )的图象,如图1所示,再根据函数f (x )与-f (-x )的图象关于坐标原点对称,即可画出函数-f (-x ),即g (x )的图象,如图2所示.故选D.

2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是( )

解析:选C 当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.

考点三 函数图象的应用

考法(一) 研究函数的性质

[典例] 已知函数f (x )=x |x |-2x ,则下列结论正确的是( )

A .f (x )是偶函数,递增区间是(0,+∞)

B .f (x )是偶函数,递减区间是(-∞,1)

C .f (x )是奇函数,递减区间是(-1,1)

D .f (x )是奇函数,递增区间是(-∞,0)

[解析] 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=?

????

x 2-2x ,x ≥0,

-x 2-2x ,x <0,画出函数f (x )的图

象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减. [答案] C

[解题技法] 利用函数的图象研究函数的性质

对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;

(3)从图象的走向趋势,分析函数的单调性、周期性.

考法(二) 在不等式中的应用

[典例] 若不等式(x -1)20,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( )

A .(1,2] B.??

?

?

22,1

C .(1,2)

D .(2,2)

[解析] 要使当x ∈(1,2)时,不等式(x -1)2

当01时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1

当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上下关系问题,从而利用数形结合法求解.

[题组训练]

1.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )

x

<0的解集为( )

A .(-1,0)∪(1,+∞)

B .(-∞,-1)∪(0,1)

C .(-∞,-1)∪(1,+∞)

D .(-1,0)∪(0,1)

解析:选D 因为f (x )为奇函数,

所以不等式f (x )-f (-x )x <0可化为f (x )

x <0,

即xf (x )<0,f (x )的大致图象如图所示. 所以xf (x )<0的解集为(-1,0)∪(0,1).

2.对a ,b ∈R ,记max{a ,b }=????

?

a ,a ≥

b ,b ,a

函数f (x )=max{|x +1|,|x -2|}(x ∈R)的最小值是________.

解析:函数f (x )=max{|x +1|,|x -2|}(x ∈R)的图象如图所示,

由图象可得,其最小值为3

2

.

答案:32

3.已知函数f (x )=???

log 2???

?-x

2,x ≤-1,-13x 2

+43x +2

3,x >-1,

若f (x )在区间[m,4]上的值域为[-1,2],则实数m 的取值

范围为________.

解析:作出函数f (x )的图象,当x ≤-1时,函数f (x )=log 2????-x

2单调递减,且最小值为f (-1)=-1,则令log 2????-x 2=2,解得x =-8;当x >-1时,函数f (x )=-13x 2+43x +2

3在(-1,2)上单调递增,在[2,+∞)上单调递减,则最大值为f (2)=2,又f (4)=2

3<2,f (-1)=-1,故所求实数m 的取值范围为[-8,-

1].

答案:[-8,-1]

[课时跟踪检测]

A级

1.为了得到函数y=2x-2的图象,可以把函数y=2x的图象上所有的点()

A.向右平行移动2个单位长度

B.向右平行移动1个单位长度

C.向左平行移动2个单位长度

D.向左平行移动1个单位长度

解析:选B因为y=2x-2=2(x-1),所以只需将函数y=2x的图象上所有的点向右平移1个单位长度,即可得到y=2(x-1)=2x-2的图象.

2.若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()

解析:选C要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到

y =-f (x )的图象,然后向左平移1个单位长度得到y =-f (x +1)的图象,根据上述步骤可知C 正确. 3.(2018·浙江高考)函数y =2|x |sin 2x 的图象可能是( )

解析:选D 由y =2|x |sin 2x 知函数的定义域为R ,

令f (x )=2|x |sin 2x ,

则f (-x )=2|-

x |sin(-2x )=-2|x |sin 2x . ∵f (x )=-f (-x ),∴f (x )为奇函数. ∴f (x )的图象关于原点对称,故排除A 、B. 令f (x )=2|x |sin 2x =0,解得x =k π

2(k ∈Z),

∴当k =1时,x =π

2

,故排除C ,选D.

4.下列函数y =f (x )图象中,满足f ????

14>f (3)>f (2)的只可能是( )

解析:选D 因为f ????14>f (3)>f (2),所以函数f (x )有增有减,排除A 、B.在C 中,f ???

?14<f (0)=1,f (3)>

f (0),即f ????

14<f (3),排除C ,选D.

5.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )

A .f (x )=ln|x |

x

B .f (x )=e x

x

C .f (x )=1

x

2-1

D .f (x )=x -1

x

解析:选A 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -1

x ,则x →+∞时,

f (x )→+∞,排除D.

6.已知函数y =f (x +1)的图象过点(3,2),则函数y =f (x )的图象关于x 轴的对称图形一定过点________. 解析:因为函数y =f (x +1)的图象过点(3,2),所以函数y =f (x )的图象一定过点(4,2),所以函数y =f (x )的图象关于x 轴的对称图形一定过点(4,-2). 答案:(4,-2)

7.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.

解析:当-1≤x ≤0时,设解析式为f (x )=kx +b (k ≠0),

则????? -k +b =0,b =1,得?????

k =1,

b =1.

∴当-1≤x ≤0时,f (x )=x +1.

当x >0时,设解析式为f (x )=a (x -2)2-1(a ≠0), ∵图象过点(4,0), ∴0=a (4-2)2-1,∴a =14

.

故函数f (x )的解析式为f (x )=????

?

x +1,-1≤x ≤0,14(x -2)2-1,x >0. 答案:f (x )=?????

x +1,-1≤x ≤0,14(x -2)2

-1,x >0

8.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.

解析:令y =log 2(x +1),作出函数y =log 2(x +1)图象如图所示.

由????? x +y =2,y =log 2(x +1)得?????

x =1,y =1.

∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1

(1)y =e ln x ; (2)y =|x -2|·(x +1).

解:(1)因为函数的定义域为{x |x >0}且y =e ln x =x (x >0),

所以其图象如图所示. (2)当x ≥2,即x -2≥0时,

y =(x -2)(x +1)=x 2-x -2=????x -122-9

4; 当x <2,即x -2<0时,

y =-(x -2)(x +1)=-x 2+x +2=-????x -122+9

4

. 所以y =

???

????x -122-94

,x ≥2,

-????x -122

+9

4,x <2.

这是分段函数,每段函数的图象可根据二次函数图象作出(其图象如图所示).

10.已知函数f (x )=?

????

3-x 2,x ∈[-1,2],

x -3,x ∈(2,5].

(1)在如图所示给定的直角坐标系内画出f(x)的图象;

(2)写出f(x)的单调递增区间;

(3)由图象指出当x取什么值时f(x)有最值.

解:(1)函数f(x)的图象如图所示.

(2)由图象可知,函数f(x)的单调递增区间为[-1,0],[2,5].

(3)由图象知当x=2时,f(x)min=f(2)=-1,

当x=0时,f(x)max=f(0)=3.

B级

1.若函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在(-1,3)上的解集为()

A.(1,3)B.(-1,1)

C.(-1,0)∪(1,3) D.(-1,0)∪(0,1)

解析:选C作出函数f(x)的图象如图所示.

当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈?; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).

2.(2019·山西四校联考)已知函数f (x )=|x 2-1|,若0

A .(0,+∞)

B .(1,+∞)

C .(1,2)

D .(1,2)

解析:选C 作出函数f (x )=|x 2-1|在区间(0,+∞)上的图象如图所示,作出直线y =1,交f (x )的图象于点B ,由x 2-1=1可得x B =2,结合函数图象可得b 的取值范围是(1,2). 3.已知函数f (x )的图象与函数h (x )=x +1

x

+2的图象关于点A (0,1)对称.

(1)求f (x )的解析式;

(2)若g (x )=f (x )+a

x

,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.

解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,

即2-y =-x -1x +2,∴y =f (x )=x +1

x (x ≠0).

(2)g (x )=f (x )+a

x =x +a +1x ,∴g ′(x )=1-a +1x

2.

∵g (x )在(0,2]上为减函数,∴1-a +1

x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,

∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).

4.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,求a 的取值范围. 解:不等式4a x -1<3x -4等价于a x -

1<34

x -1.

令f (x )=a x -

1,g (x )=34

x -1,

当a >1时,在同一坐标系中作出两个函数的图象如图(1)所示,由图知不满足条件; 当0

1≤34

×2-1,

解得a ≤1

2

,所以a 的取值范围是????0,12.

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

高中数学,函数图形考点及题型全归纳

第五节 函数的图象 ? 基础知识 1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:(1)确定函数的定义域; (2)化简函数解析式; (3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次,列表,描点,连线. 2.函数图象的变换 (1)平移变换 ①y =f (x )的图象――――――――→a >0,右移a 个单位 a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→ b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b 的图象. “左加右减,上加下减”,左加右减只针对x 本身,与x 的系数,无关,上加下减指的是在f (x )整体上加减. (2)对称变换 ①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象―――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称 y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象―――――――→关于直线y =x 对称 y =log a x (a >0且a ≠1)的图象. (3)伸缩变换 ①y =f (x )的图象―――――――――――――――――――→a >1,横坐标缩短为原来的1 a 纵坐标不变 01,纵坐标伸长为原来的a 倍,横坐标不变 0

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高中数学各大题型详细方法总结

一三角函数 三角函数的题有两种考法,其中10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。 1.解三角形 不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。 所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。 2.三角函数 然后求解需要求的。套路一般是给一个比较复杂的式子,然后问这个函数的定义域、值域、周期、频率、单调性等问题。 解决方法就是,首先利用“和差倍半”对式子进行化简。化简成:

掌握以上公式,足够了。 关于题型,见下图: 二立体几何 立体几何的相关题目,稍微复杂一些,可能会卡住一些人。 这个题目一般有2~3问,一般会考查某条线的大小或者证明某个线/面与另外一个线/面平行或垂直,以及求二面角。 这类题目的解题方法有两种:空间向量法和传统法。这两种方法各有利弊。

向量法: 使用向量法的好处在于:没有任何思维含量,肯定能解出最终答案。缺点就是计算量大,且容易出错。 使用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为AB=(a,b,c),然后进行后续证明与求解。 箭头指的是利用前面的方法求解。如果有些同学会觉得比较乱,以下为无箭头标注的图。

传统法: 在学立体几何的时候,有很多性质定理和判定定理。但是针对高考立体几何大题而言,解题方法基本是唯一的,除了上图中6和8有两种解题方法以外,其他都是有唯一的方法。 所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。

【精品】高中数学必修1经典题型总结

1.集合基本运算,数轴应用 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x << 2.集合基本运算,二次函数应用 已知集合{} {}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[ 3.集合基本运算,绝对值运算,指数运算 设集合{}{} ]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( ) A.]2,0[ B. )3,1( C. )3,1[ D. )4,1( 4.集合基本性质,分类讨论法 已知集合A= {} 22,25,12a a a -+,且-3 ∈A ,求a 的值 5.集合基本性质,数组,子集数量公式n 2 .集合A={(x,y)|2x+y=5,x ∈N,y ∈N },则A 的非空真子集的个数为( ) A 4 B 5 C 6 D 7 6.集合基本性质,空集意识 已知集合A={x|2a-1≤x≤a+2},集合B={x|1≤x≤5},若A∩B=A,求实数a 的取值范围. 7.函数解析式,定义域,换元法,复合函数,单调性,根式和二次函数应用,数形结合法 已知x x x f 2)1(+=+,定义域为:x>0 (1)求f(x)的解析式,定义域及单调递增区间 (2)求(-1)f x 解析式,定义域及最小值

8.函数基本性质,整体思想,解方程组 设1()满足2()()2,f x f x f x x -=求)(x f 9.函数基本性质,一次函数,多层函数,对应系数法 若f [ f (x )]=2x +3,求一次函数f (x )的解析式 10.不等式计算,穿针引线法 (1-x)(21)0(1)x x x +≥- 求x 取值范围 11.函数值域,反表示法,判别式法,二次函数应用,换元法,不等式法 求函数2241x y x +=-的值域 求函数2122 x y x x +=++的值域 求函数x x y 41332-+-=的值域 93(0)4y x x x =+> 12.函数值域,分类讨论,分段函数,数形结合,数轴应用 若函数a x x x f +++=21)(的最小值为3,则实数a 的值为 (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 13.函数单调性,对数函数性质,复合函数单调性(同增异减) 函数212 ()log (4)f x x =-的单调递增区间为 A.(0,)+∞ B.(-∞,0) C.(2,)+∞ D.(-∞,2)- 下列函数中,在区间(0,)+∞上为增函数的是( ) .A y 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+

高中数学必修一函数题型方法总结

这份资料是全部内容已经完成的一部分, 写中。此资料是必修一函数部分的总结, 同学有所帮助。 路。部分题目仅仅是题目。 的题目,总结这一类题目的思路与方法。活学活用。 第一部分典型例题解析 一、函数部分 一、函数的值域:求函数值域的常用方法有 方法、判别式、换元、分离常数法、方程法)。 1、函数y=的值域是()。A、[0,+ B、[0,4) C[0,4] D(0,4) 解析:本题是指数函数与幂函数复合, 各自的取值范围。所以本题我们用直接分析法。 [) 40160 0160,4 x x x x ∴∴≥ ≤ Q>16-4<;要根号有意义,16-4 综上可知:16-4< 2、若函数() y f x =的值域是 1 ,3 2 ?? ?? ?? ,则函 1 ()() () F x f x f x =+的值域是()。 11051010 .,3.2,.,.3, 23223 A B C D ???????? ???????? ???????? 解析:本题是复合函数求值域,可变 11 (),()(),,3 2 f x t F x F t t t t ?? ===+∈?? ?? 。 方法一:定义求单调区间 21 212121 2112 212112 12 12 12 1212 12 12 11 (),()(),,3,, 2 111 ()()()()(1). 1 011 1 11(1)0 1 1111 1 (1)0 f x t F x g t t t t t t g t g t t t t t t t t t t t t t t t t t t t t t t t t t t t t t ?? ===+∈?? ?? ∴-=+-+=-- -∴? - ? - Q 令> >,∴>。当>时,求得< <,<。此时<,函数递减。 当<时,求得>>,>。 此时>,函数递增 [] 1 ,1,1,3.. 2 151010 (),(1)2,(3).()2,. 2233 x x g g g F x ?? ∴∈∈ ?? ?? ?? ∴===∴∈?? ?? 。 时函数递减.时函数递增 学了不等式的话,我们可以由基本不等式求单调 11 0,2, 1. 1 1 ,3 2 t t t t t t t ∴+≥=?= = = 此时 时,函数取得最小值。然后判断 时的函数值即可。 2 34 x y x = - 的值域是() 44 ,)(,) 33 -∞+∞ U B. 22 (,)(,) 33 -∞+∞ U C.R 24 ,)(,) 33 -∞+∞ U 分离常数法。希望同学自己探究分离常数的方法。 22882 .0,. 3439129123 22 ,, 33 x y x x x =+≠∴≠ --- ???? ∈-∞+∞ ? ? ???? Q U 24 .(34)2.. 3432 2 320. 3 22 ,, 33 x y y x x x x y y y ?∴-=?= -- ∴-≠?≠ ???? ∈-∞+∞ ? ? ???? U 2 1 22 x y x x + = ++ 的值域是()。 11 (,) 22 - B.(11 ,,) 22 ?? -∞-+∞ ?? ?? U C. 11 , 22 ?? -?? ?? ]1,1 - () 2 2 2 2 2 (21)210. 22110, , (21)210 11 =40.,. 22 ) yx y x y x x R y x y b a c y ?+-+-= ++=++≠ ∈ +-+-= ?? -≥∈-?? ?? 方程有意义。 在R上有根。 解得 讨论一元一次方程情况 1 1 (1) 1 y x x = ++ + ,参考例题2两个方法。 R的函数() y f x =的值域为[],a b,则函数

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

高中数学必修一常见题型归类

常见题型归类 第一章集合与函数概念 1.1集合 题型1集合与元素 题型2 集合的表示 题型3 空集与0 题型4 子集、真子集 题型5 集合运算 题型5.1 已知集合,求集合运算 题型5.2 已知集合运算,求集合 题型5.3已知集合运算,求参数 题型6 “二维”集合运算 题型6自定义的集合 1.2函数及其表示 题型1 映射概念 题型2 函数概念 题型3 同一函数 题型4 函数的表示 题型5 已知函数解析式求值 题型6 求解析式 题型7定义域 题型7.1 求函数的定义域 题型7.2 已知函数的定义域问题 题型8 值域 题型8.1 图像法求函数的值域 题型8.2 转化为二次函数,求函数的值域 题型8.3转化为反比例函数,求函数的值域 题型8.4 利用有界性,求函数的值域 题型8.5单调性法求函数的值域 题型8.6 判别式法求函数的值域

题型8.7 几何法求函数值域 题型9 已知函数值域,求系数 1.3函数的基本性质单调性 题型1 判断函数的单调区间 题型2已知函数的单调区间,求参数 题型3 已知函数的单调性,比较大小 题型4 已知函数的单调性,求范围 1.4函数的基本性质奇偶性 题型1 判断函数的奇偶性 题型2 已知函数的奇偶性,求解析式 题型3 已知函数的奇偶性,求参数 题型4 已知函数的奇偶性,求值或解集等 1.5函数的图像 题型1 函数图像 题型2 去绝对值作函数图像 题型3 利用图像变换作函数图像 题型4 已知函数解析式判断图像 题型5 研究函数性质作函数图像 题型6 函数图像的对称性 第二章基本初等函数 2.1指数函数 题型1 指数运算7 题型2指数函数概念 题型3指数函数型的定义域、值域 题型4 指数函数型恒过定点 题型5 单调性 题型6 奇偶性 题型7图像 题型8方程、不等式 2.2对数函数

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

高中数学函数知识点归纳及常考题型

《函数》知识要点和基本方法 1.映射定义:设非空集合A,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射。若集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 可建立n m 个映射。 2.函数定义:函数就是定义在非空数集A,B 上的映射f 。此时称数集A 为函数f(x)的定义域,集合C={f(x)|x ∈A}为值域,且C ?B 。 3.定义域、对应法则和值域构成了函数的三要素。 相同函数的判断方法:①定义域、值域;②对应法则。(两点必须同时具备) 4.求函数的定义域常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义;⑥正切函数角的终边不在y 轴上。 5.函数解析式的求法:①配凑法; ②换元法: ③待定系数法; ④赋值法;⑤消元法等。 6.函数值域的求法:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。 7.函数单调性及证明方法: 如果对于定义域内某个区间上的任意..两个自变量的值x 1,x 2,当x 1f(x 2)),那么就说f(x)在这个区间上是增函数(或减函数)。 第一步:设x 1、x 2是给定区间内的两个任意的值,且x 1

高中数学极坐标与参数方程高考题型全归纳题型部分

2019极坐标与参数方程高考题型全归纳 一.题型部分 (一) 极坐标与直角坐标的转化、参数方程与普通方程的转化,极坐标与参数 方程的转化 1. 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ= 。 2. 参数方程: 直线参数方程:0 0cos () sin x x t t y y t θ θ =+?? =+?为参数 00(,) x y 为直线上的定点, t 为直线上任一点(,)x y 到定点00(,)x y 的数量; 圆锥曲线参数方程: 圆的参数方程:cos ()sin x a r y b r θθθ =+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆2 2221x y a b +=的参数方程是cos ()sin x a y b θ θθ =??=?为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ =?? =?为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=? =?为参数 (二)有关圆的题型 题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= ,算出d ,在与半径

比较。 题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法) 思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= 第二步:判断直线与圆的位置关系 第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d = 题型三:直线与圆的弦长问题 弦长公式2 22 d r l -=,d 是圆心到直线的距离 延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义” (三)距离的最值: ---用“参数法” 1.曲线上的点到直线距离的最值问题 2.点与点的最值问题 “参数法”:设点---套公式--三角辅助角 ①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式 ③辅助角:利用三角函数辅助角公式进行化一 例如:在直角坐标系xOy 中,曲线1 C 的参数方程为()sin x y α αα?=?? =?? 为参数,以坐标原 点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

高中数学必修三角函数知识点与题型总结

高中数学必修三角函数知 识点与题型总结 Last updated on the afternoon of January 3, 2021

三角函数典型考题归类 1.根据解析式研究函数性质 例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84?? ????,上的最小值和最大值. 【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ????? ?=-++++ ? ? ?????? ?. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ? ?=+ ?? ?,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间. 2.根据函数性质确定函数解析式 例2(江西)如图,函数π 2cos()(00)2 y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(0,且 该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ?? ??? ,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当0y = 0ππ2x ?? ∈???? ,时,求0x 的值. 【相关高考1】(辽宁)已知函数2 ππ()sin sin 2cos 662x f x x x x ωωω??? ?=++--∈ ? ???? ?R ,(其中0ω>),(I )求函数()f x 的值域;(II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交 点间的距离为 π 2 ,求函数()y f x =的单调增区间.

高中数学排列组合题型归纳总结材料

排列组合 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1、.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解: 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2、 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解: 522 480A A A = 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序 有多少种? 解54 56A A 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两

个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4.、 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然 后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4 7A 种方法,其余的三个位置甲乙丙 共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题: 10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10 C 五.重排问题求幂策略 例5.、把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节 目插入原节目单中,那么不同插法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87 六.环排问题线排策略 例6.、 8人围桌而坐,共有多少种坐法? 解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把 圆形展成直线其余7人共有(8-1)!种排法即7! 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

相关主题
文本预览
相关文档 最新文档