当前位置:文档之家› 利用Excel进行指数平滑分析与预测

利用Excel进行指数平滑分析与预测

利用Excel进行指数平滑分析与预测
利用Excel进行指数平滑分析与预测

利用Excel 进行指数平滑分析与预测(1)

【例】以连续10年的灌溉面积为例说明。这个例子并不典型,采用此例仅在说明指数平滑的操作过程。将我的计算过程在Excel 上重复一遍,就会掌握指数平滑法的基本要领;然后利用SPSS 练习几遍,就能学会实用技巧。

第一步,录入数据,设置参数(图1)。

录入数据以后,开始设置参数:

⒈ 设置平滑系数:在一个自己感到方便的位置如C2单元格设定一个参数作为指数平滑系数α,由于α介于0~1之间,不妨从0开始,即首先取α=0。

⒉ 设置迭代计算的初始值S 0’。初始值有多种取法,一般取S 0’=x 1,对于本例,自然是取S 0’=28.6,写于D2单元格,与1971年对应(图1)。

图1 原始数据与参数设置

第二步,指数平滑计算。

按照下式进行

1)1(-'-+='t t t S x S αα

显然当t =1时,我们有

2011

)1(y S x S ='-+='αα 根据公式在D3单元格中输入公式“=$C$2*B2+(1-$C$2)*D2”(图2),回车,得到28.6;然

后用鼠标抓住D3单元格的右下角,下拉(图3),即可得到α=0时的全部数值,其中对应于1981年的数据便是预测值(图4),当然,此时,它们全部都是28.6,即数据被极度修匀。

第三步,复制并保存数据。

将α=0时的计算结果复制到旁边,其中最后一个数据即1981年的预测值可以不必复制;最好在结果的上面注明对应的平滑系数,以便后来识别(图5)。

第四步,计算全部结果。

在C2单元格中,将0改为0.1,立即得到α=0.1时的平滑结果,复制并保存(图6);重复以上操作,直到得到α在0~1之间的全部数值(图7)。

第五步,均方差(MSE)检验。

首先计算误差平方和(SSE ),公式为

∑∑=-=-'=-=n

t t t n t t t x S x y 2

211

2

)()(SSE

注意这里是S t -1’对应x t !例如在H2单元格中输入公式“=(B2-G2)^2”,回车,即可得到(x 1-y 1)2的数值(图8);下拉,得到1971-1980年间的全部结果:

0 86.49 141.61 49 412.09 268.96 0.36 30.25 327.61 77.44

求和,即可得到SSE=1393.8(图9)。

根据下式

∑=--'-==n

t t t x S n n 2

21)(111-SSE MSE 容易算出均方差。根据SSE 或MSE 最小原则取α=0.3(图11,图12),此时预测值为

y 11=y (1981)=38.5。

图2 指数平滑计算示意图

图3 计算的第一步

图4 平滑系数为0时的计算结果

图5 复制保存的数据

图6 平滑系数为0.1时的计算结果

图7 全部计算结果

图8 计算误差平方和示意图

图9 平滑系数为0时的误差平方和(SSE)

图10 误差平方和(SSE)和均方差(MSE)

图11 SSE随平滑系数变化的曲线

图12 MSE随平滑系数变化的曲线

第六步,绘制指数平滑曲线。

将α=0.3时的平滑结果与原数据按顺序排列(图13),然后利用Excel 的绘图功能不难绘制指数平滑曲线图——将原始数据曲线与指数平滑曲线画在统一坐标系,便于比较指数平滑的效果:两条曲线越吻合,表明指数平滑的效果越好,从而预测也就越可靠。从图14可以看出,对于本例而言,指数平滑的效果并不见佳(图14)。

图13 将指数平滑结果与原始数据按顺序排列

101520253035404550551971

1973

1975

1977

1979

灌溉面积(千亩)一次平滑

图14 一次指数平滑曲线图(与原始数据比较)

第七步,二次指数平滑。

二次指数平滑是在一次指数平滑的基础上进行的,其计算过程和检验方法与对原始数据进行指数平滑的步骤完全一样。但是,有一点无需注意:在我们的指数平滑模型中,我们取

t t S y '=+1 而y t 作为计算值对应的是x t ,故x t 实际上对应的是S t -1’。若以1971年为第t =1个时点,则1972年才对应S 1’(1971年对应于S 0’)。二次指数平滑的公式为

1)1(-''-+'=''t t t S S S αα

显然,我们的计算的起点是从S 1’开始的,亦即从1972年开始的,否则会有t -1=-1的现象,而

我们的时间序号不取负值。

根据习惯方法,取S 0’’=S 1’=x 1=28.6,平滑系数不妨仍然从0开始,以C3单元格表示新的平滑系数α=0所在,在E3单元格输入28.6表示S 0’’,在E4单元格中建立公式“= $C$3*D3+ (1-$C$3)*E3”(参见图15。注意这里是D3表示S 1’,E3表示S 0’’,后面的三次指数平滑要考虑这个问题),回车,得到S 1’’ =28.6;下拉至1982年,给出α=0时全部的二次平滑结果;1971年对应的年份空着,取28.6。复制,保存(可以只保存1971-1980年间的结果)。

图15 二次指数平滑的初始值的计算(α=0)

图16 平滑系数α=0时的全部二次指数平滑结果

在C3单元格中改变α值,以0.1为步长,分别取α=0.1、α=0.2、…、α=1,给出、复制、保存基于不同平滑系数的计算结果,最后比较发现,当α=1时,误差平方和SSE 从均方差MSE 最小,此时SSE=82.592,MSE=82.592/(10-1)=9.177(图17)。

我们知道,当α=1时,原始数据实际上未经过任何修匀,但由于计算起点相对于一次指数平滑下移一步,故本例所谓的二次指数平滑实际上是对一次指数平滑的结果进行一次平移,

这一点从二次指数平滑坐标图可以看出。根据图17中的数据容易画出两次指数平滑曲线,二次指数平滑曲线(蓝色)实际上是对一次指数平滑曲线(绿色)的右向平移(图18)。因此,对于本例而言,二次指数平滑没有必要,当然三次指数平滑更是多余。不过,为了说明三次指数平滑的方法,我们还是计算三次指数平滑的结果。

图17 二次平滑系数α=1时的计算结果及其误差、误差平方和

图18 两次指数平滑曲线图

在理论上,我们可以建立指数平滑预测的线性模型

T b a y t t T t ?+=+

式中

)

(12t t t t t t S S b S S a ''-'-='

'-'=α

α

运用模型时原则上要求MSE 最小条件下的两次指数平滑系数没有差别,但是,对于本例,二次指数平滑系数不仅与第一次不同,而且不能代入上面的公式,因为α=1时,必有b t =∞,从而模型无意义。未来说明基于指数平滑结果的线性模型创建方法,姑取α=0.3,即假定SSE 最小时的平滑系数没有变化。

在F2单元格中输入公式“=2*D2-E2”,回车得a 1=28.6,下拉至1981年,得到全部的a t ;在G2单元格中,输入公式“=[0.3/(1-0.3)]*(D2-E2)”,回车得b 1=0,下拉至1982年,得到全部的b t (图19)。取T =1,根据模型y t =a t +b t T ,在H3单元格中输入公式“=F2+G2*1”,得到y 2=28.6,下拉至1982年,得到全部的预测值。显然,根据1980年对应的参数a 10=42.281,b 10=1.421,可以建立线性预测模型

T y T 421.1281.4210+=+ 根据1981年对应的参数可以建立预测模型

T y T 201.0027.3811-=+

利用误差序列Err 计算自相关系数进行检验——只要自相关系数的绝对值不大于1.96/√n ,就

认为模型可以接受。从预测曲线与原始曲线的关系可以看出,预测效果不太理想(图20)。

图19 基于两次指数平滑结果的线性模型参数及其预测结果

图20 线性预测曲线与原始数据曲线的关系(二者并不吻合)

第八步,三次指数平滑。

三次指数平滑与二次指数平滑一样,是在平滑的结果上进行的,起点则是从1973年开始,原因与二次指数平滑从1972年开始一样。取S 0’’’=S 1’’= 28.6,平滑系数仍然从0开始,以C4单元格表示新的平滑系数α=0所在,在F4单元格输入28.6表示S 0’’’,在F5单元格中建立公式“= $C$4*E4+ (1-$C$4)*F4”,回车,得S 1’’’= 28.6,下拉至1983年,得到全部的三次平滑结果;在1971、1972年对应F 单元格中取28.6、28.6。改变α值,可得不同平滑系数条件下的三次平滑结果(图21)。正如所料,当α=1,误差平方和最小,此时SSE=71.606,MSE=7.956(图22)。根据图22中的数据,可以画出三次指数平滑曲线图(图23)。进而可以建立二次抛物线性预测模型,由于对于本例而言抛物线模型没有实质意义,在此从略。

图23 三次平滑系数α=1时的计算结果及其误差、误差平方和

101520253035404550551971

1973

1975

1977

1979

灌溉面积(千亩)一次平滑二次平滑三次平滑

图24 三次指数平滑曲线图

二次指数平滑法程序

二次指数平滑法程序 线性指数平滑法Matlab程序,代码如下: 注:Data-原始数据 s-一次和二次平滑结果 at-预测式中的a参数 bt-预测式中的b参数 y1-预测结果 本例是取alpha为0.8时的情况 arr=[0;6;8.3;9.8;13;15;13.5;26.1;80.3;86;102.6]; [m,n]=size(arr); alf=0.2; for j=1:2 s(1,j)=arr(1,1) end for i=2:m for j=1:2 if j==1 s(i,j)=alf*arr(i,1)+(1-alf)*s(i-1,j); else s(i,j)=alf*s(i,j-1)+(1-alf)*s(i-1,j); end end end temp=alf/(1-alf); for i=1:m at(i,1)=2*s(i,1)-s(i,2); bt(i,1)=temp*(s(i,1)-s(i,2)); yy(i+1)=at(i,1)+bt(i,1); end for i=2:11 y1(i-1)=yy(i); end for i=2:11 b(i-1)=arr(i); end for i=1:3 y2(i)=at(m,1)+bt(m,1)*(i+1); end year=[1999:2011]; year=year'; y1=y1'; y2=y2';

data=cat(1,y1,y2); data1=cat(1,b,y2); % plot(year,data,'-rs','markerFaceColor','g', 'MarkerSize',3); % plot(year,data,'-rs',year,data1,'-rs'); 因论文中要分析旅游时间分布,预测不同年份旅游者人数,从而做了一个Matlab布朗单一参数线性指数平滑法Matlab程序,代码如下: 注:Data-原始数据 s-一次和二次平滑结果 at-预测式中的a参数 bt-预测式中的b参数 y1-预测结果 本例是取alpha为0.8时的情况 arr=[0;6;8.3;9.8;13;15;13.5;26.1;80.3;86;102.6]; [m,n]=size(arr); alf=0.2; for j=1:2 s(1,j)=arr(1,1) end for i=2:m for j=1:2 if j==1 s(i,j)=alf*arr(i,1)+(1-alf)*s(i-1,j); else s(i,j)=alf*s(i,j-1)+(1-alf)*s(i-1,j); end end end temp=alf/(1-alf); for i=1:m at(i,1)=2*s(i,1)-s(i,2); bt(i,1)=temp*(s(i,1)-s(i,2)); yy(i+1)=at(i,1)+bt(i,1); end for i=2:11 y1(i-1)=yy(i); end for i=2:11 b(i-1)=arr(i); end for i=1:3 y2(i)=at(m,1)+bt(m,1)*(i+1);

一次指数平滑法(精.选)

一次指数平滑法 一次指数平滑法是指以最后的一个第一次指数平滑。如果为了使指数平滑值敏感地反映最新观察值的变化,应取较大阿尔法值,如果所求指数平滑值是用来代表该时间序列的长期趋势值,则应取较小阿尔法值。同时,对于市场预测来说,还应根据中长期趋势变动和季节性变动情况的不同而取不同的阿尔法值,一般来说,应按以下情况处理:1.如果观察值的长期趋势变动接近稳定的常数,应取居中阿尔法值(一般取0.6—0.4)使观察值在指数平滑中具有大小接近的权数;2.如果观察值呈现明显的季节性变动时,则宜取较大的阿尔法值(一般取0.6一0.9),使近期观察在指数平滑值中具有较大作用,从而使近期观察值能迅速反映在未来的预测值中;3.如果观察值的长期趋势变动较缓慢,则宜取较小的e值(一般取0.1—0.4),使远期观察值的特征也能反映在指数平滑值中。在确定预测值时,还应加以修正,在指数平滑值S,的基础上再加一个趋势值b,因而,原来指数平滑公式也应加一个b。

8.1.2 指数平滑法 移动平均法的预测值实质上是以前观测值的加权和,且对不同时期的数据给予相同的加权。这往往不符合实际情况。指数平滑法则对移动平均法进行了改进和发展,其应用较为广泛。 1. 指数平滑法的基本理论 根据平滑次数不同,指数平滑法分为:一次指数平滑法、二次指数平滑法和三次指数平滑法等。但它们的基本思想都是:预测值是以前观测值的加权和,且对不同的数据给予不同的权,新数据给较大的权,旧数据给较小的权。 ①一次指数平滑法 设时间序列为,则一次指数平滑公式为: 式中为第t周期的一次指数平滑值;为加权系数,0<<1。 为了弄清指数平滑的实质,将上述公式依次展开,可得: 由于0<<1,当→∞时,→0,于是上述公式变为: 由此可见实际上是的加权平均。加权系数分别为,,…,是按几何级数衰减的,愈近的数据,权数愈大,愈远的数据,权数 愈小,且权数之和等于1,即。因为加权系数符合指数规律,且又具有平滑数据的功能,所以称为指数平滑。 用上述平滑值进行预测,就是一次指数平滑法。其预测模型为: 即以第t周期的一次指数平滑值作为第t+1期的预测值。 ②二次指数平滑法 当时间序列没有明显的趋势变动时,使用第t周期一次指数平滑就能直接预测第t+1期之值。但当时间序列的变动出现直线趋势时,用一次指数平滑法来预测仍存在着明显的滞后偏差。因此,也需要进行修正。修正的方法也是在一次指数平滑的基础上再作二次指数平滑,利用滞后偏差的规律找出曲线的发展方向和发展趋势,然后建立直线趋势预测模型。故称为二次指数平滑法。

二次指数平滑法Microsoft Word 文档

二次指数平滑法 二次指数平滑法(Second exponential smoothing method) [编辑] 什么是二次指数平滑法 二次指数平滑法是对一次指数平滑值作再一次指数平滑的方法。它不能单独地进行预测,必须与一次指数平滑法配合,建立预测的数学模型,然后运用数学模型确定预测值。一次移动平均法的两个限制因素在线性二次移动平均法中也才存在,线性二次指数,平滑法只利用三个数据和一个α值就可进行计算;在大多数情况下,一般更喜欢用线性二次指数平滑法作为预测方法。 [编辑] 二次指数平滑法的优点[1] 二次指数平滑法实质上是将历史数据进行加权平均作为未来时刻的预测结果。 它具有计算简单、样本要求量较少、适应性较强、结果较稳定。 [编辑] 二次指数平滑法的计算 线性二次指数平滑法的公式为:

(1) 式中:分别为t期和t–1期的二次指数平滑值;a为平滑系数。在和已知的条件下,二次指数平滑法的预测模型为: (2) (3) T为预测超前期数 例5:某地1983年至1993年财政入的资料如下,试用指数平滑法求解趋势直线方程并预测1996年的财政收入。计算过程及结果如下:

由上表可知:;;;,a=0.9 则 所求模型为: [编辑]

二次指数平滑法实例分析[2] 表中第③栏是我国1978-2002年全社会客运量的资料,据期绘制散点图,见下图,可以看出,各年的客运量资料基本呈线性趋势,但在几个不同的时期直线有不同的斜率,因此考虑用变参数线性趋势模型进行预测。具体步骤如下: 表 我国1978-2002年全社会客运量及预测值 单位:万人 年份 时 间t 全社会客运量y 各期的一次指数平滑值 各期的二次指数平滑值 a t b t ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 253993.0 253993.0 1978 1 253993 253993.0 253993.0 253993.0 0.0 1979 2 289665 275396.2 266834.9 283957.5 12841.9 253993.0 1980 3 341785 315229.5 295871.7 334587.3 29036.7 296799.4 1981 4 384763 356949.6 332518.4 381380.8 36646.8 363624.0 1982 5 428964 400158.2 373102.3 427214.2 40583.9 418027.5 1983 6 470614 442431.7 414699.9 470163.4 41597.6 467798.1 1984 7 530217 495102.9 462941.7 527264.1 48241.8 511761.1 1985 8 620206 570164.8 527275.5 613054.0 64333.8 575505.8

指数平滑法应用案例

Excel应用案例 指数平滑法 移动平均法的预测值实质上是以前观测值的加权和,且对不同时期的数据给予相同的加权。这往往不符合实际情况。指数平滑法则对移动平均法进行了改进和发展,其应用较为广泛。 1. 指数平滑法的基本理论 根据平滑次数不同,指数平滑法分为:一次指数平滑法、二次指数平滑法和三次指数平滑法等。但它们的基本思想都是:预测值是以前观测值的加权和,且对不同的数据给予不同的权,新数据给较大的权,旧数据给较小的权。 ①一次指数平滑法 设时间序列为 ,则一次指数平滑公式为: 式中 为第 t周期的一次指数平滑值;为加权系数,0<<1。 为了弄清指数平滑的实质,将上述公式依次展开,可得: 由于0<<1,当→∞时, →0,于是上述公式变为: 由此可见 实际上是 的加权平均。加权系数分别为, ,…,是按几何级数衰减的,愈近的数据,权数愈大,愈远的数据, 权数愈小,且权数之和等于1,即 。因为加权系数符合指数规律,且又具 有平滑数据的功能,所以称为指数平滑。 用上述平滑值进行预测,就是一次指数平滑法。其预测模型为: 即以第t周期的一次指数平滑值作为第t+1期的预测值。 ②二次指数平滑法 当时间序列没有明显的趋势变动时,使用第t周期一次指数平滑就能直接预测第t+1

期之值。但当时间序列的变动出现直线趋势时,用一次指数平滑法来预测仍存在着明显的滞后偏差。因此,也需要进行修正。修正的方法也是在一次指数平滑的基础上再作二次指数平滑,利用滞后偏差的规律找出曲线的发展方向和发展趋势,然后建立直线趋势预测模型。故称为二次指数平滑法。 设一次指数平滑为,则二次指数平滑的计算公式为: 若时间序列从某时期开始具有直线趋势,且认为未来时期亦按此直 线趋势变化,则与趋势移动平均类似,可用如下的直线趋势模型来预测。 式中t为当前时期数;T为由当前时期数t到预测期的时期数;为第t+T期的预 测值;为截距,为斜率,其计算公式为: ③三次指数平滑法 若时间序列的变动呈现出二次曲线趋势,则需要用三次指数平滑法。三次指数平滑是在二次指数平滑的基础上再进行一次平滑,其计算公式为: 三次指数平滑法的预测模型为: 其中: ④加权系数的选择 在指数平滑法中,预测成功的关键是的选择。的大小规定了在新预测值中新数据和原预测值所占的比例。值愈大,新数据所占的比重就愈大,原预测值所占比重就愈小,反之亦然。 若把一次指数平滑法的预测公式改写为:

二次指数平滑法的应用

二次指数平滑法的应用 庄赟 二次指数平滑法也称布朗指数平滑法。二次指数平滑值记 为,它是对一次指数 平滑值计 算的平滑值,即 (1) 二次指数平滑法主要用于变参数线性趋势时间序列的预测。变参数线性趋势预测模型的 表达式为: (2)式的预测模型与一般的线性趋势模型的区别在于,式 中、是参数变量,随着 时间自变量 t 的变化而变化,即直线在各时期的截距和斜率是可能不同的; 是从期开始的预测期数。(2) 运用二次指数平滑法求解(2)式可得参数变量的表达式,即 根据(3)求出各期参数变量的取值,代入(2)式,则具有无限期的预测能力,当仅作 一期预测时,有(3) (4) 表1中第③栏是我国1978-2002年全社会客运量的资料,据期绘制散点图,见图1,可以看出,各年的客运量资料基本呈线性趋势,但在几个不同的时期直线有不同的斜率,因此考虑用变参数线性趋势模型进行预测。具体步骤如下: 第一步,计算一次指数平滑值。取, ,根据一次指数平滑公式,可计算各期的一次指数平滑预测值: 1978年: 1979年: ) 2(t S ) 1(t S ) 2(1 )1()2()1(--+=t t t S αS αS T b a y t t T t +=+^ t a t b (1)(2) (1)(2)2()1t t t t t t a S S b S S αα?=-??=-?-? ^ (1)(2)(1)(2)1(1)(2) 2()121 11t t t t t t t t t y a b S S S S S S α α ααα +=+=-+---= ---6 .0=α2539931)1(0)2(0===y S S ) 1(1 ) 1()1(--+=t t t S αy αS 2539932539934.02539936.04.06.0) 1(01) 1(1=?+?=?+?=S y S 2 .2753962539934.02896656.04.06.0)1(12)1(2=?+?=?+?=S y S T t

二次指数平滑法

二次指数平滑法 一、指数平滑法 1、指数平滑法是一种特殊的加权移动平均法。 2、对同一市场现象连续计算其指数平滑值,对较早期的市场现象观察值不是一概不予考虑,而是给予递减权数。 3、市场现象观察值对预测值的影响,由近及远按等比数列减小,其首项α,公比1-α.。这种市场预测之所以被称为指数平滑市场预测法,就是应为这个等比数列若绘制成曲线是一条指数曲线,而并不是这种预测法的预测模型是指数形式。 4、指数平滑法具有所需资料少、计算方便、短期预测精度高等优点。 二、一次指数平滑法: 一次指数平滑的预测模型: Y t+1=S t+1(1)=αY t +(1-α)S t (1) α为平滑常数(0≤α≤1);S t (1)为第t 期的一次指数平滑值;Y t 为第t 期的实际观察值。 市场预测值即这一期的一次指数平滑值。 三、二次指数平滑法: 定义:是指对市场现象实际观察值计算两次平滑值,并在此基础上建立预测模型,对市场现象进行预测的方法。 二次指数平滑法的计算公式: S t (1)=αY t-1+(1-α)S t-1(1) S t (2)=αS t (1)+(1-α)S t-1(2) S t (1)为第t 期的一次指数平滑值;S t (2)为第t 期的二次指数平滑值;α为平滑 常数。 二次指数平滑法的预测模型: F t+T = a t +b t T a t =2 S t (1)- S t (2) b t = (S t (1)- S t (2)) ∧ ① ② ③ α 1-α ④ ⑤ ⑥

F t+T为第t+T期预测值;T为向未来预测的期数;a t、b t分别为模型参数。 一次指数平滑值和二次指数平滑值并不是直接运用于预测,只是用以求出线性预测模型的平滑系数(区别于一次指数平滑法市场预测值即这一期的一次指数平滑值)。 四、例题(P137 例4—7) 1、常数α的选取方法,见课本P135最后一段。 2、观察期内(预测值的意义:检验模型是否可行,观察值和预测值相比较)、预 测期。 五、总结: 1、一次指数平滑值和二次指数平滑值并不是直接运用于预测,只是用以求出线性预测模型的平滑系数。 2、在观察期内各期估计值a、b值是变化的,而在预测期各预测值的a、b值是一致的,即最后一个观察期的a、b值。 3、二次指数平滑法解决了一次指数平滑法只能向未来预测一期的不足。 4二次指数平滑法解决了一次指数平滑法不能用于有明显趋势变动的市场现象的预测。 六、补充问题 对例题(P137 例4—7)数据的进一步分析。 远方

实验二:指数平滑法新

实验二:指数平滑法 一、实验目的 Part A:一次指数平滑法 1根据时间序列数据散点图,熟悉一次指数平滑法适用条件的判断;2熟悉应用一次指数平滑法进行相应预测; 3熟悉一次指数平滑法预测精度的分析及其最优平滑系数α的确定; Part B:二次指数平滑法 1根据时间序列数据散点图,熟悉二次指数平滑法适用条件的判断; 2熟悉应用二次指数平滑法进行相应预测; 3熟悉二次指数平滑法预测精度的分析及其最优平滑系数α的确定; 二、实验内容及实验过程 Part A 问题描述 某商场在过去1-12周的某冰箱销售量统计数据如表1所示。 (1)试分析统计数据,选择合适的模型来估计下周产品销售量。 (2)平滑系数α=0.2,S 0(1) =(X1+X2)/2采用一次指数平滑法进行预测,并分析其预 测精度。 (3)何选择合适的平滑系数α,使预测精度较高? 实验过程 步骤1:绘制过去12周冰箱销售量的“XY散点图”,如图。从散点图可以看出,冰箱销售量走势基本沿水平方向变化且无季节影响,因而可以使用一次指数平滑法进行预测。

步骤2:计算一次指数平滑预测值。 方法1:公式法 取最初2期的观测值作为初始值,即在单元格C2中输入51。平滑系数取α=0.2,单元格C3中输入一次指数平滑值,即“=0.2*B3+0.8*C2”,如图。 将单元格C3的内容复制到单元格区域C4: C14,得一次指数平滑值,如图

在单元格D3输入“=C2”,并将单元格D3的内容复制到单元格区域D14,得一次指数平滑值,如图。 方法2:指数平滑数据分析模块法 Excel的数据分析工具也提供了简单方便的指数平滑预测模块。首先,在单元格B2中输入S0(1)的值“51”,并选择“指数平滑”数据分析。点击Excel【工具】菜单下的【数据分析】子菜单,打开“数据分析”对话框,从“分析工具”列表中选择“指数平滑”,如图,并点击[确定]按钮。

二次移动平均法与指数平滑法

二次移动平均法 一次移动平均法一般只适用于现象没有明显的上升或下降趋势的现象,若时间数列呈直线趋势,则要进行二次移动平均法。二次移动平均法,就是在一次移动平均的基础上再进行一次移动平均。 建立二次移动平均法直线预测模型:式中: 和分别代表第t期的一次移动平均数和二次移动平 均数;,N为选择移动平均的时期数。 应用二次移动平均法请注意: 1.时间数列发展趋势为直线型; 2.在计算以及时,移动平均的项数N应相同,其值的确定方法同一 次移动平均; 3) 与不直接用于预测。 指数平滑法 指数平滑法是在移动平均法的基础上发展起来的一种趋势分析预测法。其具体操作方法是以前期的实际值和前期的预测值(或平滑值),经过修匀处理后作为本期预测值。根据平滑次数不同,指数平滑法分为一次指数平滑法和二次指数平滑法。 一次指数平滑法 一次指数平滑公式是由移动平均数的计算公式改进而来的,其基本公式为: 式中:为第t期一次指数平滑值;为第t–1期一次指数平滑值;a为平滑系数。平滑系数a在原数列波动不大时,a取较小值(0.1—0.3),以加重前期预测值的权重;若原数列波动较大时,则a可取较大值(如0.6—0.9),

以加重前期观测值的权重。 实践中可分别用几个不同的a值试算对比,然后选用误差较小的a值。 对于初始值的确定,若资料项数较大(如n大于或等于50)则可把第一期 观测值作为初始值使用,因为经过多次平滑推算后,对的影响已经不会很大了,若资料项数n较小(n小于或等于20),此时可用前几期观测值的平 均数作为使用。 二次指数平滑法 一次指数平滑一般也只能适用于没有明显趋势的现象,若时间数列呈上升或下降的直线趋势变化,则要进行二次指数平滑。二次指数平滑法是在第一次平滑的基础上再进行一次指数平滑。因此,二次指数平滑值计算公式为: 式中:分别为t期和t–1期的二次指数平滑值;a为平滑系数。 在和已知的条件下,二次指数平滑法的预测模型为:

二次指数平滑法

二次指数平滑法的计算 线性二次指数平滑法的公式为: (1) 式中:分别为t 期和t –1期的二次指数平滑值;a 为平滑系数。在和已知 的条件下,二次指数平滑法的预测模型为: (2) (3) T 为预测超前期数 例5:某地1983年至1993年财政入的资料如下,试用指数平滑法求解趋势直线方程并预测1996年的财政收入。计算过程及结果如下: 年份 t 财政 收入(元) a=0.9 初始值为23 a=0.9 初始值为28.40 1983 1 29 28.40 1984 2 36 35.24 34.56 1985 3 40 39.52 39.02

198 6 4 48 47.1 5 46.14 198 7 5 54 53.32 52.62 198 8 6 62 61.13 60.28 198 9 7 70 69.0 68.23 199 8 76 75.31 74.60 199 1 9 85 84.03 83.09 199 2 1 94 93.00 92.01 199 3 1 1 103 102.00 101.00 由上表可知:;;;,a=0.9 则 所求模型为: 1996年该地区财政收入预测值为: (万元)

[编辑] 二次指数平滑法实例分析[2] 表中第③栏是我国1978-2002年全社会客运量的资料,据期绘制散点图,见下图,可以看出,各年的客运量资料基本呈线性趋势,但在几个不同的时期直线有不同的斜率,因此考虑用变参数线性趋势模型进行预测。具体步骤如下: 表我国1978-2002年全社会客运量及预测值单位:万人 年份 时 间t 全社会客运 量y 各期的一次指数平 滑值 各期的二次指数平 滑值 a t b t ①②③④⑤⑥⑦⑧ 253993.0 253993.0 1978 1 253993 253993.0 253993.0 253993.0 0.0 1979 2 289665 275396.2 266834.9 283957.5 12841.9 253993.0 1980 3 341785 315229.5 295871.7 334587.3 29036.7 296799.4 1981 4 384763 356949.6 332518.4 381380.8 36646.8 363624.0 1982 5 428964 400158.2 373102.3 427214.2 40583.9 418027.5 1983 6 470614 442431.7 414699.9 470163.4 41597.6 467798.1 1984 7 530217 495102.9 462941.7 527264.1 48241.8 511761.1

指数平滑法

一次指数平滑法 1.一次指数平滑数列的构成 设时间序列为t x x x x ,,,,321 ,仿照移动平均法,将t M 换为t S ,得 n t t t n t n t n t t t t t n t t t t t x n S x n x n x x x x x n x n x x x x n S ----+--+-+---?-+?=?-++++++?=++++= 1 11 )(1 1)(1 11321121 假设时间序列是较平稳的,或者忽略误差,可令n t t x S --≠1,则上式可写成 ,11111111---?? ? ??-+=-+= t t t t t t S n x n S n S x n S 当1=n 时,11 =n ;当01,→∞→n n 。 故令a n a ,1 = 介于1与0之间,称a 为平滑系数。最终获得构造一次指数平滑数列的递推公式为: 1)1(-'-+='t t t S a ax S (3-9) 式中t S '迭代计算时的初始值0S '的确定,最简便且常用的方法是,令10x S ='。 2.平滑系数a 讨论 将(3-9)式递推展开可得 11221221211 )1()1()1()1()1()1(] )1()[1()1(S a x a a x a a x a a ax S a ax a ax S a ax a ax S a ax S t t t t t t t t t t t t t t '-+-++-+-+=='-+-+='-+-+='-+='-------- 因10<

相关主题
文本预览
相关文档 最新文档