当前位置:文档之家› 桥梁抗震设计规范

桥梁抗震设计规范

桥梁抗震设计规范
桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法

一、引言

近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。

近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。

大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。

本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。

二、主要国家桥梁抗震规范基础抗震设计的概况

本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。

中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于

阪神地震的经验,地震后桥梁上部结构的修复和重建都比下部基础经济和省时、省力,因此桥梁基础的抗震能力的要求应比桥墩高。

三、日本桥粱基础抗震设计方法细节

1.按流程,先用震度法设计。震度法基本概念是把设计水平震度

Kh乘以结构Kh的计算方法如下:

其中Cz--地区调节系数;

Kh0--设计水平震度的标准值。

其中,δ是把抗震设计所确定的地基面以上的下部结构质量的80%或100%和该下部结构所支承的上部结构质量的 100%之和作为外力施加到结构上在上部结构惯性力作用点位置发生的位移。

2.用震度法设计以后,如果基础结构是桥台基础或者桥墩的扩大基础,不需要用地震时保有水平耐力法设计。这是因为设计桥台基础时,地震时动力压力的影响非常大,此外结构背面存在的主体也使结构不容易发生振劾。而对于扩大基础来说一般地基条件非常好,因此,地震时基础某些部位转动而产生非线变形可以消耗许多地震能量。

3.用地震时保有水平耐力法设计时,首先要判断基础水平耐力有没有超过桥墩的极限水平耐力。这是因为地震时保有水平耐力法的基本概念是尽量使地震时在桥墩而不是在基础出现的塑性铰。如果在基础出现塑性铰,发生损伤后,修复很困难。所以,我们要把基础的行为控制在屈服范围内。

如果基础水平耐力小于桥墩的极限水平耐力,则要判断桥墩在垂直于桥轴方向的抗震能力是不是足够大(按式(3))。因为如果桥墩在垂直于桥轴方向具有足够大的抗震能力(例如壁式桥墩),而且基础的塑性反应在容许范围以内,则基础的非线性行为能吸收大量的振动能量并且基础仍然是安全的。

桥墩的极限水平耐力Pu≥(3)

Khco--设计水平震度的标准值;

Cz--地区调节系数;

μa--容许塑性率;

W-一等价质量(W=Wu十CpWp);

Wu--振动单位的上部结构质量;Wp--振动单位的桥墩质量;

Cp--等价质量系数(剪断破坏时,剪断破坏以外是)。

4.桥墩的极限水平耐力满足Pu≥时,对基础塑性率进行对照检查。虽然基础的非线行为能吸收大量振动能量,但是对于有的基础部件来说,可能会遭受过大的损伤。所以要控制基础的反应塑性率,按如下要求:

μFR≤μFL(4)

式中μFR--基础反应塑性率;

μFL--基础反应塑性率的限度。

5.发生液化时,要降低土质系数。随后的计算(对照和检查)同上述方法基本一致。

6.在地震时保有水平耐力法的流程中,最后是对基础水平位移、转角的对照和检查。要求是基础最大水平位移为40cm左右,基础最大容许转角为左右。

四、结语

本文对世界主要的桥梁抗震设计规范的基础设计方法进行了一定的比较,主要介绍了日本桥梁抗震设计规范的基础设计方法。总的来说,日本的基础设计方法规定比较细致,相对而言,中国现行《公路工程抗震设计规范》的基础设计方法比较笼统,对于扩大基础和桩基础没有分开规定。这一点,在新规范制定时应予以重视。

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。 大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于

公路桥梁抗震设计的设防标准研究

【摘要】本文通过对国内外桥梁的抗震规范进行了细致的比较分析,以及对抗震桥梁的使用功能分类与重要性等因素的研究,提出了公路桥梁的抗震设防的标准,为中国公路桥梁的抗震设计规范的修订及完善提供了重要的依据。 【关键词】公路桥梁;抗震;设防标准 公路桥梁的抗震设防是指在地震作用下能够按照设计要求,实现预期功能的桥梁工程的预防措施。桥梁按照设定的可靠性要求以及抗震技术要求,一般是由设计地震动参数和建筑其使用功能的重要性决定的,这就是桥梁抗震设防的标准。当前,我国的《公路工程抗震设计规范》中,明确提出直接以基本烈度作为设防烈度,而且考虑到结构重要性系数,实际上没有明确的规定公路桥梁的结构抗震设防标准。而抗震设防标准是对结构抗震设防要求高低尺度的衡量,它直接关系到公路桥梁结构的安全度与工程造价的多少,是在抗震设计中不可回避的问题。 1.公路桥梁抗震的三水准设防与二阶段设计 多级抗震设防是被国内外的建筑物抗震规范中广泛运用的手段,其三水准设防设想,是通过二阶段设计实现的。 1.1三水准设防 若桥梁结构其设计的基准期是y,那么公路桥梁“小震不坏,中震可修,大震不倒”的抗震设计目标中,小震、中震、大震则分别约为y年63%、y年10%、y年3%。 在地震的作用下,桥梁的结构性能目标可分为三类,即桥梁构件没有任何损坏,结构保持在弹性范围内;桥梁构件出现可以修复的损坏,修复后可以正常使用;桥梁构件损坏严重,但整个结构其非弹性变形依然受到控制,同结构倒塌的临界变形还有一定的距离,震后能够修复,震时紧急救援车还可以通过。为实现公路桥梁的抗震设计目标,一般可以采用三水准的方法进行抗震设防。设防水准以及相应的性能目标如下表: 1.2二阶段设计 公路桥梁的抗震规范征求意见的稿拟中,所采用的二级设防,二阶段设计是满足“小震不坏,大震不倒”这一目标的,认为“中震可修”是自动满足的。所以,我国当前实际上应用的同公路桥梁抗震规范拟稿中的提议是一致的,即:在公路桥梁的抗震设计中,均采用二级设防,二阶段设计的方法,但是二者的二级设防,二阶段设计的内容是不完全相同的,在实际的应用过程中,为了能够保证结构的抗震安全性,所采取的二级设防、二阶段设计,实际上满足了“中震不坏、大震不倒”的目标,而“小震不坏”这一目标会自动满足。 2.公路桥梁抗震设防的重要性以及使用功能分类 2.1建筑抗震设防重要性的分类 根据建筑对社会、政治、经济以及文化的影响程度,将建筑抗震设防类别的重要性划分为以下几类。甲类:重大建筑工程和地震时可能发生严重次生灾害的建筑,如:大型桥梁,危险品等;抗震设防标准应高于本地区抗震设计基本地震加速度值a的要求,其值应按批准的地震安全性评价结果确定,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求;当a=0.4g时,应该按照a>0.4g的要求。乙类:地震时使用功能不能中断或需尽快恢复的建筑,如:医院,发电厂等;抗震设防标准应符合本地区抗震设计基本地震加速度值a的要求,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求。丙类:一般的建筑,如:一般的民用或工业建筑;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求。丁类:抗震次要建筑,如:一般仓库;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求,设计基本地震加速度值a减半,但最小值不得小于0.05g。 依据建筑物重要性来确定的抗震设防类别,决定了建筑抗震设计所采用的地震带来的损坏的大小以及应该采取的抗震措施的等级,而且地震的作用随着抗震设防类别的差异,可以

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

桥梁抗震设计理念及抗震验算

桥梁抗震设计理念及抗震验算

抗震设计理念

地震 ?地震是一种自然现象,是地球内部缓慢积累的能量突然释放而引起的地表振动。 ?地球上一年发生的地震约500万次左右,人能感觉到的有5万多次,轻微破坏的有1000余次,7级以上造成巨大灾害的有10余次,能造成唐山、汶川地震那样特别严重灾害的地震1—2次。

序号地震名称时间震级(M)死亡人数伤残人数倒塌房屋(间) 1青海玉树县2010.04.147.12220800090% 2台湾高雄2010.03.04 6.7--96-- 3西藏当雄2008.10.06 6.6919147 4四川汶川2008.05.128.08.7万37万779万 5台湾集集1999.09.217.3241211030511万 6云南丽江1996.02.037.0311370648万 7云南澜沧耿马1988.11.067.6743775122.4万 8新疆乌恰1985.08.237.4702003万 9四川松潘1976.08.167.238345000 10河北唐山1976.07.287.824.2万16.4万530万 11云南龙陵1976.05.297.498248242万 12辽宁海城1975.02.047.3132829579111万 13云南大关1974.05.117.114231600 2.8万 14四川炉霍1973.02.067.921752756 4.7万 15云南通海1970.01.057.7156212678333.8万16河北邢台1966.03.087.2818251395400万 17新疆乌恰1955.04.157.018-200 18四川康定1955.04.147.584224636 19西藏察隅1950.08.158.54000--

JTGD60-2015 公路桥涵设计通用规范及删减列表

JTGD60-2015 公路桥涵设计通用规范新规范删减列表 1.0.4、设计使用年限(新增) 桥涵主体结构和可更换部件的使用年限提出明确要求。 1..0.6、增加抗风、抗震、抗撞设计要求。 3.1.2、公路桥涵线形设计:(引用公路路线设计规范)。 3.1.4、地震状况应做承载力极限状态设计(从偶然状况中剥离)。 3.1.5、公路桥梁钢结构部分应根据需要进行抗疲劳设计(通用规范新增内容,对应的钢结构设计新规范执行)。 3.1.6、风险评估:初步设计阶段实行风险评估制度(新增,对应交公路发(2010)175号)。 3.2.3、增加斜交桥梁桥墩斜交正做时,墩台边缘净距的计算简式。 3.2.7、新增跨线桥桥墩设置及防护要求。 3.4.1、紧急停车带的设计长度要求修改。 3.4.2、人行道设置宽度修改。最小宽度有原来0.75或1米,修改为1米。增加路缘石高度设置的进一步说明。 3.5.1、增加易结冰、积雪的桥梁纵坡不宜大于3%的要求。 3.5.3、第四条,增加逆风、冰冻、漂流物的影响下,提高铺砌高度。 3.5.5、详细补充桥台搭板设置长度、宽度、搭接以及厚度要求。 3.6.6、增加桥梁栏杆与桥面板的连接方式描述。 3.6.8、条纹中补充了盆式支座、球钢支座等支座。 3.6.9、简化伸缩缝的要求,删除了数模式伸缩缝中钢梁高度的要求。 3.7.6、增加桥面排水、桥台排水、支挡构造物排水的要求,详见《公路排水设计规范》 3.8.2、新增永久观测点的设置要求。(特大桥、大桥) 3.8.4、修改防雷设计要求。(参考《建筑物防雷设计规范》、《高速公路设施防雷设

计规范》) 3.8.6、新增结构监测设施设置要求(技术复杂的大型桥梁)。 3.8.7、新增跨线桥设置防抛网要求。 4.1.5、基本组合中将汽车荷载按照车辆荷载的加载时,车辆荷载分项系数调整为1.8。 4.1.5、桥涵结构设计安全等级修改,将原不同情况下的大桥、中桥、小桥的结构设计安全等级提高了一个等级。 4.1.5、偶然组合:修改作用的分项系数。 4.1.6、取消长期组合、短期组合的说法,改为:准永久组合及频遇组合。 4.1.7、增加钢结构疲劳设计荷载组合规定。 4.2.2、增加预加力标准值计算公式。 4.2.5、第五条,增加水浮力标准值计算公式。 4.3.1、各等级公路桥涵的汽车荷载等级做了一定调整,将二级公路荷载等级标准提高了一半(由偏向公路二级,改为偏向公路一级)。车道荷载中集中荷载Pk的起始计算标准提高,由180KN提高至270KN。对交通组成中重载交通比重较大的公路桥涵,宜采用与该公路交通组成相适应的汽车荷载模式进行整体和局部验算。 4.3.1、汽车横向折减系数改为横向车道布载系数,提高单车道布载系数至1.2。 4.3.3、离心力计算取消了半径的限制,弯桥均需计算离心力。 4.3.7、增加疲劳荷载计算模型。 4.3.8、风荷载标准直接引用《公路桥梁抗风设计规范》,删除原来规范中规定的内容。 4.3.12、无悬臂宽幅箱梁,宜考虑横向温度梯度引起的效应。(新增内容) 4.3.13、支座摩擦系数增加盆式支座、球形支座的规定。 4.4.1、取消内河航道等级为1-3级内河船舶撞击作用设计值,要求按照专题研究确定。

桥梁抗震规范

桥梁抗震规范 当前主要国家桥梁抗展设计规范的基本思想和设计准则是:设计地展作用基本地震工程与工程振动上分为两个等级,都可归纳为功能设计地震和安全设计地震。虽然各规范使用的名词不同,但其思想是基本一致的。 功能设计地震具有较大的发生概率,安全设计地震具有很小的发生概率。在功能设计地震作用下,桥梁结构只允许发生十分轻微的破坏,不影响正常的交通,不经修复也可以继续使用;在安全设计地震的作用下,允许桥梁结构发生较大的破坏,但不允许发生整体破坏,如倒塌、落梁等欧洲规范对此规定得最为清楚、具体。比较起来,我国公路工程抗震设计规范仍在使用烈度概念,而几关于抗震设计的指导思想对于桥梁来说过于笼统。各国桥梁抗震设计规范中虽然设定了两个水准,但在具体的设计程序上绝大多数仍坚持以安全设计地震为准的单一水平设计手法,并认为第一设计水准的要求自动满足。这种情况可能发生变化,TC一32和日本即将出版的新的桥梁抗震设计规范都建议对两个设计地震动水准进行直接设计。这代表了桥梁结构抗震设计具体程序上的一个变动方向。 除了我国现行区划图外,其它主要地震国家均采用了地震动参数区划。采用烈度进行桥梁结构抗震设计无论是在概念上,还是在数值方面都存在很多问题闭,因此我国正在编制的第四代区划图已经使用了地震动参数区划。日本规范确定设计地震动的方法比较独特,设计地震动

的概率特征十分不明显。第一级设计地震虽有统计意义,但仍是确定性成分较多;第二级设计地震以确定性方法规定。第一类主要参考了1923年关东地震(大陆边缘地震)第二类主要参考了1995年阪神地震(都市直下型地震)I,这与日本地域狭小和地震类型相对比较清楚有关。我国城市桥梁抗震设计规范的建议 〔1)l抗震设防标准。这是桥梁结构抗震设计的最基本问题。过去的几十年的时间里,研究者和工程2期范立础等:桥梁抗震设计规范的现状与发展趋势师都提出分级抗震设防的原则:即小震不坏,中震发生有限的结构或非结构构件的破坏,大震发生严重的结构和非结构构件的破坏但不产生严重的人员伤亡。而在可能袭击工程场地最严重的地震作用下,结构不倒塌。这些基本的结构性能目标今天被大多数的设计规程所采用。但传统的作法是,只针对单一的地震作用水平进行结构的抗展设计。现在的问题是针对每一个目标都给出相应的具体设计程序,这样一来,就需要对目前实际上还是单一水准强度抗震设计原则进行修订,采用多水准、多设防目标和多阶段的抗震设计原则。(2)延性和位移设计。传统的桥梁抗震设计采用强度设计方法,即使考虑到延性和位移,也是通过强度指标间接地实现。现在人们越来越认识到了位移在桥梁结构抗震设计中的重要性,很多研究者和工程师建议在抗震设计中直接使用位移为设计参数,这样就将形成多参数抗震设计方法。在这方面,各种非弹性反应谱的研究和应用工作一直在进行。一些建筑结构抗震设计指南和准则已经引人了位移设计的概念和

公路桥梁抗震设计

公路桥梁抗震设计 一、基本要求 1、地震作用:作用在结构上的地震动,包括水平地震作用和竖向地震作用。 E1地震作用:工程场地重现期较短的地震作用,对应于第一级设防水准。 E2地震作用:工程场地重现期较长的地震作用,对应于第二级设防水准。 2、各抗震设防类别桥梁的抗震设防目标符合下表 3、一般情况下,桥梁抗震设防分类应根据各桥梁抗震设防类别的适用范围按下表的规定确定。但对抗震救灾以及在经济、国防上具有重要意义的桥梁或破坏后修复(抢修)困难的桥梁,可按国家批准权限,报请批准后,提高设防类别。 4、A类、B类和C类桥梁必须进行E1地震作用和E2地震作用下的抗震设计。D类桥梁只须进行E1地震作用下的抗震设计。抗震设防烈度为6度区的B类、C类、D类桥梁,可只进行抗震措施设计。 5、各类桥梁的抗震设防标准,应符合下列规定: (1)各类桥梁在不同抗震设防烈度下的抗震设防措施等级按下表

表3 各类公路桥梁抗震设防措施等级 注:g—重力加速度 (2)立体交叉的跨线桥梁,抗震设计不应低于下线桥梁的要求。 6、公路桥梁抗震设防烈度和设计基本地震动加速度取值的对应关系见下表 表4 各类公路桥梁抗震设防措施等级 注:g—重力加速度 二、抗震措施 1、各类桥梁抗震措施等级的选择,按照表3确定。 2、6度区 简支梁梁端至墩、台帽或盖梁边缘应有一定的距离。其最小值a(厘米) 按下式计算:a≥70+0.5L 式中:L—梁的计算跨径(米)。 3、7度区 (1)7度区的抗震措施,除应符合6度区的规定外,尚应符合本节的规定。 (2)拱桥基础宜置于地质条件一致、两岸地形相似的坚硬土层或岩石上。实腹式拱桥宜减小拱上填料厚度,并宜采用轻质填料,填料必须逐层夯实。 (3)桥台胸墙应适当加强,并在梁与梁之间和桥台胸墙之间加装橡胶垫或其他弹性衬垫,以缓和冲击作用和限制梁的位移。 (4)桥面不连续的简支梁(板)桥,宜采用挡块、螺栓连接和钢夹板连接等防止纵横向落梁的措施。连续梁桥和桥面连续的简支梁(板)桥,应采取防止横向产生较大位移的措施。 (5)在软弱黏性土层、液化土层和不稳定的河岸处建桥时,对于大、中桥,可适当增加桥长,合理布置桥孔,使墩、台避开地震时可能发生滑动的岸坡或地形突变的不稳定地段。否则,应采取措施增强基础抗侧移的刚度和加大基础埋置深度;对于小桥可在两桥台基础之间设置支撑梁或采用浆砌片(块)石满铺河床。

城市轨道交通桥梁设计常用规范(截止2015年12月31日)

序号规范名称有效版本1《地铁设计规范》GB50157-2013 2《城市轨道交通工程设计文件编制深度规定》建质2013-160号3《城市轨道交通技术规范》GB50490-2009 4《城市轨道交通工程项目建设标准》建标104-2008 5《城际铁路设计规范》TB10623-2014 6《高速铁路设计规范》TB10621-2014 7《跨座式单轨交通设计规范》GB50458-2008 8《内河通航标准》GB50139-2014 9《混凝土结构设计规范》(2015版)GB50010-2010 10《铁路混凝土结构耐久性设计规范》TB10005-2010 11《铁路混凝土工程预防碱-骨料反应技术条件》TB/T3054-2002 12《铁路桥涵设计基本规范》TB10002.1-2005 13《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB10002.3-2005 14《铁路桥涵混凝土和砌体结构设计规范》TB10002.4-2005 15《铁路桥涵地基和基础设计规范》(2009版)TB10002.5-2005 16《铁路工程抗震设计规范》GB50111-2006 17《城市轨道交通结构抗震设计规范》GB50909-2014 18《混凝土结构加固设计规范 》GB50367-2013 19《混凝土结构后锚固技术规程》JGJ145-2013 20《铁路桥梁钢结构设计规范 》TB10002.2-2005 21《铁路结合梁设计规定》TBJ 24-89 22《钢-混凝土组合桥梁设计规范》GB50917-2013 23《公路钢混组合桥梁设计与施工规范》JTG/T D64-01-2015 24《公路钢结构桥梁设计规范》JTG D64-2015 25《钢结构设计规范》GB50017-2003 26《新建时速200公里客货共线铁路设计暂行规定》铁建设2005-285号27《铁路工程设计防火规范》TB10063-2007 28《铁路工程地质勘察规范》TB10012-2007 29《城市轨道交通岩土工程勘察规范》GB50307-2012 30《市政工程勘查规范》CJJ56-2012 31《城市地下管线探测技术规程》CJJ61-2003 32《铁路工程基桩检测技术规程》TB10218-2008 33《建筑基桩检测技术规范》JGJ106-2014 34《铁路桥涵工程施工安全技术规程》TB10303-2009 35《铁路桥梁盆式橡胶支座》TB/T2331-2013 36《铁路桥梁球形支座》TB/T3320-2013 37《桥梁球型支座》GB/T17955-2009 38《城市轨道交通桥梁盆式支座》CJ/T464-2014 39《城市轨道交通桥梁球型钢支座》CJ/T482-2015 40《钢筋混凝土用钢第1部分:热轧光圆钢筋》GB1499.1-2008 41《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB1499.2-2007 42《钢筋混凝土用钢筋焊接网》GB/T1499.3-2010 43《预应力混凝土用螺纹钢筋》GB/T20065-2006 44《预应力混凝土用钢绞线》GB/T5224-2014 45《预应力混凝土桥梁用塑料波纹管》JT/T529-2004 46《预应力混凝土用金属波纹管》JG225-2007 47《预应力筋用锚具、夹具和联结器》GB/T14370-2007 48《铁路工程预应力筋用夹片式锚具、夹具和连接器技术条件》TB/T3193-2008 49《碳素结构钢》GB/T700-2006 50《桥梁用结构钢》GB/T714-2015 51《低合金高强度结构钢》GB/T1591-2008 52《电弧螺柱焊用圆柱头焊钉》GB/T10433-2002 53《钢结构焊接规范》GB50661-2011 54《钢结构高强度螺栓连接技术规程》JGJ82-2011 55《铁路钢桥高强度螺栓连接施工规定》TBJ214-92 56《金属熔化焊焊接接头射线照相》GB/T3323-2005 57《无损检测 焊缝磁粉检测》JB/T6061-2007铁路桥涵规范的修订内容见铁道部、铁总相关文件 (一)设计规范 (截止2015年12月31日) 拉索、缆索、冷铸 镦头锚、索鞍、索 夹等材料规范不在 此列表中

桥梁抗风与抗震

桥梁抗风与抗震 1.桥梁抗震 1.1桥梁的震害及破坏机理 调查与分析桥梁的震害及其破坏机理是建立正确的抗震设计方法,采取有效抗震措施的科学依据。 国内外学者对桥梁震害的调查研究结果表明,桥梁震害主要表现为: (1)上部结构的破坏:桥梁上部结构本身遭受震害而被毁坏的情形不多,一般都是由于桥梁结构的其他部位的毁坏而引起的。如落梁,一种是由于弹性设计理论采用毛截面刚度,这样就会低估横向地震作用和位移。导致活动节点处所设置的支座长度明显不足以及相邻梁体之间因横向距离不足而引起的相互冲击,造成落梁及相邻结构的撞击破坏;另外一种是由于地基土的作用造成大的地震位移,这种桥梁震害主要发生在建在软土或者可能液化的地基土上的桥梁上。软土通常会使结构的振动反应放大,使得落梁的可能性增加。 (2)支座连接部位的破坏:这中破坏比较常见,由于连接部位的破坏会引起力传递方式的变化,从而对结构其他部位的抗震产生影响,进一步加重震害。这种破坏是抗震设计中最关注的问题之一。 (3)下部结构和基础的破坏:下部结构和基础的严重破坏是引起桥梁倒塌,并在震后难以修复使用的主要原因。除了地基毁坏的情况,桥梁墩台和基础的震害是由于受到较大的水平地震力,瞬时反复振动在相对薄弱的截面产生破坏而引起的,从大量震害实例来看,比较高柔的桥墩多为弯曲破坏,矮粗的桥墩多为剪切型破坏,介于两者之间的为混合型。地基破坏主要表现为砂土液化,地基失效,基础沉降和不均匀沉降破坏及由于其上承载力和稳定性不够,导致地面产生大变形,地层发生水平滑移,下沉,断裂。 (4)桥台沉陷,当地震加速度作用时,由于桥台填土与桥台是不完全固结的,桥台填土的纵向土压力增大,桥梁与桥台之间的冲撞会产生相当大的被动土压力,造成桥台有向桥跨方向移动的趋势。由于桥面的支撑作用,桥台将发生以桥台顶端为支点的竖向旋转,导致基础破坏。如果桥台基础在液化土上,又将引起桥台垂直沉陷,最终导致桥梁破坏。 以上所介绍桥梁的几种破坏形式是相互影响的,不同的地质条件和不同的抗震措施所造成的破坏程度和类型往往是不同的。这就要求我们在桥梁设计中尤其是不规则桥梁和大跨度桥梁,必须从整体分析桥梁的抗震性能。 1.2抗震分析理论

CJJ 《城市桥梁设计荷载标准》

目次 1总则 2术语、符号 3城市桥梁设计荷载 4城市桥梁设计可变荷载 附录A本标准用词说明 附加说明 1总则 1.0.1为改进城市桥梁设计荷载现行方法,采用按车道均布荷载进行加载设计,以达到与国际桥梁荷载标准相接轨的目的,制定本标准。 1.0.2本标准适用于在城市内新建、改建的永久性桥梁和城市高架道路结构以及承受机动车辆荷载的其他结构物的荷载设计。 1.0.3本标准规定的基本可变荷载,适用于桥梁跨径或加载长度不大于150m的城市桥梁结构。 1.0.4本标准的设计活载分为两个等级,即城-A级和城-B级。 1.0.5城市桥梁设计荷载,除应符合本标准外,尚应符合国家现行有关标准的规定。

2术语、符号 2.1术语 2.1.1作用 结构承受各种荷重和变形所引起力效应的通称。 2.1.2荷载 各种车辆、人、雪、风引起的重力,包括永久性、可变性和偶然性三类。 2.1.3永久荷载 在设计有效期内,其值不随时间变化,或其变化与平均值相比可忽略不计的荷载。 2.1.4可变荷载 在设计有效期内,其值随时间变化,且其变化与平均值相比不可忽略的荷载,按其对桥梁结构的影响程度,又可分为基本可变荷载(活载)和其他可变荷载。 2.1.5偶然荷载 在设计有效期内,不一定出现,一旦出现,其值将很大且持续时间很短的荷载。 2.1.6承载能力极限状态设计 结构达到承载能力的极限状态时,引起结构的效应等于材料的抗力时作为设计条件的设计方法。

2.1.7正常使用极限状态设计 结构在正常工作阶段,裂缝、应力与挠度达到最大功能时的设计方法。2.1.8容许应力设计 按各种材料截面达到容许应力时的设计方法。 2.1.9效应 结构或构件承受内力和变形的大小。 2.1.10抗力 结构或构件材料抵抗外力的能力。 2.1.11桥面铺装 桥梁上部结构面板上铺设的防水层与摩损层。 2.1.12行车道板 承受行车重力的板式结构。 2.1.13重力密度 物质单位体积的重力。 2.1.14车道横向折减系数 多车道桥面在横向车道上,当不同时出现活载时,结构效应应予折减的系数。

《公路桥梁抗震设计规范JTG T 2231-01—2020》解读

《公路桥梁抗震设计规范JTG/T 2231-01—2020》解读 近日,交通运输部发布了《公路桥梁抗震设计规范》(JTG/T 2231-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年9月1日起施行。原《公路桥梁抗震设计细则》(JTG/T B02-01—2008,以下简称原《细则》)同时废止。为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下: 一、修订背景 原《细则》自2008年实施以来,在公路桥梁抗震设计方面发挥了重要的规范和指导作用。近年来,我国公路桥梁建设技术发展迅速,桥梁抗震设计技术也取得了重要进展,积累了大量设计经验和成熟的研究成果。原《细则》已不能全面反映我国目前公路桥梁抗震设计的技术水平,为适应公路桥梁建设技术和抗震设计技术的发展,交通运输部组织完成了《规范》的修订工作。 二、《规范》的定位 《规范》适用于单跨跨径不超过150m的圬工或混凝土拱桥、下部结构为混凝土结构的梁桥的抗震设计。斜拉桥、悬索桥、单跨跨径超过150m的梁桥和拱桥的抗震设计,除满足本规范要求外,还应进行专项研究。《规范》既考虑了当前我国桥梁抗震设计的技术需求及国内外桥梁抗震设计技术的新进展,也重点考虑了与《公路桥涵通用设计规范》《公路工程抗震规范》《钢筋混凝土及预应力混凝土桥涵设计规范》《中国地震动参数区划图》等相关标准的衔接。《规范》的体系更为完善、适用性和可操作性更强,对进一步提升我国公路桥梁抗震设计水平具有指导作用。 三、特点及主要修订内容 《规范》保持两水准设防、两阶段设计,抗震设防标准(地震作用重现期)和性能目标与原《细则》一致。根据现行《中国地震动参数区划图》(GB18306-2015)的规定将计算地震作用常数调整为2.5,对抗震设计提出了更高的要求。E1地震作用下,采用弹性抗震设计,要求墩、梁、基础等桥梁主体结构保持弹性状态,主要验算结构和构件的强度以及支座的抗震能力;E2地震作用下,对采用延性抗震设计的桥梁,主要验算结构变形(位移)和能力保护构件的强度以及支座的抗震能力,对采用减隔震设计的桥梁,主要验算结构强度以及减隔震装置的能力。 《规范》主要吸收了近年来国内外在桥梁抗震概念设计、延性抗震设计、减隔震设计以及构造措施等方面的成熟研究成果,修订和完善了相关设计规定和计算方法,增强了《规范》体系的完整性以及设计和计算方法的适用性和可操作性。 具体来讲,《规范》的主要修订内容包括: (一)在基本要求方面:增加了桥梁结构抗震体系的内容,明确了B类和C类梁桥可采用的抗震体系包括延性抗震体系和减隔震体系两类。细化了抗震概念设计的内容,增加了梁式桥一联内桥墩的刚度比要求和多联梁式桥相邻联的基本周期比要求。

市政桥梁设计要点

桥梁设计要点 一、结构计算要点 1、根据《公路桥涵设计通用规范》(JTG D60-2004)第1.0.6条要 求,公路桥涵结构的设计基准期为100年,市政桥涵据此采用 设计基准期100年,各类主要构件及其使用材料应保证其设计 基准期要求。 2、汽车荷载根据道路、公路等级分别采用公路-I级、公路-II级, 特殊荷载根据业主要求确定。桥梁设计安全等级根据《公路桥 涵设计通用规范》(JTG D60-2004)第1.0.9条,分为一级、二 级、三级,重要性系数根据设计安全等级确定。设计中注意按 照单孔跨径确定,对多孔不等跨径桥梁,以其中最大跨作为判 断标准,同时在设计中结构重要性系数应大于等于1.0。 3、抗震设计标准:青岛市桥梁抗震设防烈度为6度,地震动峰值 加速度为0.05g。其他地区及有特殊要求桥梁根据《建筑抗震 设计规范》(GB 50011-2001)附录A规定的烈度和地震加速度,结合桥梁抗震规范和实施细则进行抗震设计。 4、环境类别根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004)第1.0.7条确定,并按照要求提出相应的耐 久性的基本要求。 5、混凝土保护层厚度根据环境类别确定,详见《公路钢筋混凝土 及预应力混凝土桥涵设计规范》(JTG D62-2004)第9.1条,当

受拉区主筋保护层厚度大于50mm时,应在保护层内设置直径不 小于6mm,间距不大于100mm的钢筋网(主要用于承台下层)。 6、护栏防撞等级根据《公路交通安全设施规范》(JTG D81-2006) 和《公路交通安全设施设计细则》(JTG/T D81-2006)确定,中 央隔离墩预制长度4米。设计规范需要在桥梁设计说明依据中 列出。 7、桥涵应进行承载能力极限状态和正常使用极限状态设计,其中 正常使用极限状态不应遗漏挠度计算和预拱度设置。 8、预应力混凝土受弯构件应根据规范进行正截面和斜截面抗裂验 算,并满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第6.3条的规定。 9、普通钢筋混凝土构件和B类预应力混凝土构件,在正常使用极 限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应 影响进行验算,其宽度限制根据环境类别确定,详见《公路钢 筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第 6.4.2条。 10、T形截面梁的翼缘有效宽度和箱形截面梁在腹板两侧上下翼缘 的有效宽度应根据《公路钢筋混凝土及预应力混凝土桥涵设计 规范》(JTG D62-2004)第4.2.2条和4.2.3条进行断面折减。 各类受力筋应布置在有效宽度范围内。 11、由于日照正温差和降温反温差引起的梁截面应力,可按附录B 计算。竖向日照温差梯度曲线可按《公路桥涵设计通用规范》

midas桥梁抗震分析与设计例题-new0810

桥梁抗震分析与设计 北京迈达斯技术有限公司 2007年8月

前言 为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震设防的性能要求,中华人民共和国建设部发布了新的《铁路工程抗震设计规范》,自2006年12月1日起实施。新规范规定了按“地震动峰值加速度”和“地震动反应谱特征周期”进行抗震设计的要求,明确了铁路构筑物应达到的抗震性能标准、设防目标及分析方法,增加了钢筋混凝土桥墩进行延性设计的要求及计算方法。 从1999年开始,中华人民共和国交通部也在积极制定新的《公路工程抗震设计规范》、《城市桥梁抗震设计规范》。从以上规范的征求意见稿中可以看出,新规范中桥梁抗震安全设置标准采用多级设防的思想,增加了延性设计和减隔震设计的相应规定,对于结构的计算模型、计算方法、以及计算结果的使用有更加具体的规定。 随着新规范的推出,工程师急迫需要具备桥梁抗震分析与设计的能力。Midas/Civil具备强大的桥梁抗震分析功能,包括振型分析、反应谱分析、时程分析、静力弹塑性分析以及动力弹塑性分析,可以很好地辅助工程师进行桥梁抗震设计。

目录 一桥梁抗震分析与设计注意事项 (1) 1. 动力分析模型刚度的模拟 (1) 2. 动力分析模型质量的模拟 (1) 3. 动力分析模型阻尼的模拟 (1) 4. 动力分析模型边界的模拟 (2) 5.特征值分析方法 (2) 6.反应谱的概念 (3) 7.反应谱荷载工况的定义 (4) 8.反应谱分析振型组合的方法 (4) 9.选取地震加速度时程曲线 (5) 10.时程分析的计算方法 (5) 二桥梁抗震分析与设计例题 (7) 1. 概要 (7) 2. 输入质量 (8) 3. 输入反应谱数据 (10) 4. 特征值分析 (12) 5. 查看振型分析与反应谱分析结果 (13) 6. 输入时程分析数据 (18) 7. 查看时程分析结果 (20) 8. 抗震设计 (22)

第二章桥梁抗震设计基本要求.

第二章桥梁抗震设计基本要求 主要内容:桥梁抗震设计基本原则、桥梁抗震设计流程,桥梁抗震设防标准、地震动输入的选择、桥梁抗震概念设计。 基本要求:掌握桥梁抗震设计基本原则、理解和掌握桥梁抗震设防标准、掌握地震动输入的选择要求、掌握桥梁抗震概念设计基本原则。 重点:桥梁抗震设防标准的确定、地震动输入的选择和桥梁抗震概念设计。难点:桥梁抗震设防标准的确定。 最近二三十年来,全球发生的对此破坏性地震造成了非常惨重的生命财产损失。一个很重要的原因是,桥梁工程在地震中遭到了严重破坏,切断了震区交通生命线,造成救灾工作的巨大困难,使次生灾害加重,从而导致了巨大的经济损失。 多次破坏性地震一再显示了桥梁工程遭到破坏的严重后果,也一再显示了桥梁工程进行正确抗震设计的重要性。自从1976年唐山地震以后,我国的桥梁抗震工作也日益受到重视。最近几年来,我国的《铁路工程抗震设计规范》、《公路桥梁抗震设计细则》以及《城市桥梁抗震设计规范》先后得到了修订或编制完成。这些规范引入了新的桥梁抗震设计理念,完善了相应的抗震设计方法,是我国桥梁设计的依据。 2.1 抗震设防标准及设防目标(课件) 2.1.1 抗震设防标准 工程抗震设防标准是指根据地震动背景,为保证工程结构在寿命期内的地震损失(经济损失及人员损失)不超过规定的水平或社会可接受的水平,规定工程结构必须具备的抗震能力。因此,抗震设防标准是工程项目进行抗震设计的准则,也是工程抗震设计中需要解决的首要问题。 通常情况下,建设工程从选址到使用寿期内的防震措施可分为三个阶段:抗震设计、保证施工质量与合理的维护保养。其中,抗震设计要遵从一定的标准,这就是抗震设防标准。它包括抗震设防目标、工程设防类别、设防地震和场地选

浅谈桥梁抗震设计

浅谈桥梁抗震设计 摘要 目前桥梁工程抗震的研究问题是当今热点问题,本文在分析桥梁结构地震破坏的主要形式基础上,阐述了桥梁抗震设计原则,最后对于桥梁抗震设计方法进行分析,重点探讨了桥梁抗震概念设计、桥梁延性抗震设计、地震响应分析及设计方法的改变以及多阶段设计方法等内容。 关键词: 地震破坏桥梁结构抗震设计抗震措施 引言 桥梁工程又是中的重中之重,桥梁工程抗震研究的重要性不言而喻。抗震概念设计是指根据地震灾害和工程经验等获得的基本设计原则和设计思想,正确地解决结构总体方案、材料使用和细部构造,以达到合理抗震设计的目的。合理的抗震设计,要求设计出来的结构在强度、刚度和延性等指标上有最佳的组合,使结构能够地实现抗震设防的目标。本文主要探讨了桥梁工程抗震设计相关问题,为今后桥梁设计起到借鉴作用。桥梁是交通生命线工程中的重要组成部分,震区桥梁的破坏不仅直接阻碍了及时救灾行动,使得次生灾害加重,导致生命财产以及间接经济损失巨大,而且给灾后的恢复与重建带来困难。在近30年的国内外大地震中,桥梁破坏均十分严重,桥梁震害及其带来的次生灾害均给桥梁抗震设计以深刻的启示。在以往地震中城市高架桥或公路上梁桥的墩柱的屈曲、开裂、混凝土剥落、压溃、剪断、钢筋裸露断裂等震害,桥梁防震越来越受到各国工程师的重视。 地震形成 地震,是地球内部发生的急剧破裂产生的震波,在一定范围内引起地面振动的现象。地震(earthquake)就是地球表层的快速振动,在古代又称为地动。它就像海啸、龙卷风、冰冻灾害一样,是地球上经常发生的一种自然灾害。大地振动是地震最直观、最普遍的

表现。在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。地震是极其频繁的,全球每年发生地震约550万次。目前衡量地震规模的标准主要有震级和烈度两种。同样大小的地震,造成的破坏不一定是相同的;同一次地震,在不同的地方造成的破坏也不一样。为了衡量地震的破坏程度,科学家又“制作”了另一把“尺子”一一地震烈度。在中国地震烈度表上,对人的感觉、一般房屋震害程度和其他现象作了描述,可以作为确定烈度的基本依据。影响烈度的因素有震级、震源深度、距震源的远近、地面状况和地层构造等。地震发生时,最基本的现象是地面的连续振动,主要特征是明显的晃动。地震分为天然地震和人工地震两大类。此外,某些特殊情况下也会产生地震,如大陨石冲击地面(陨石冲击地震)等。引起地球表层振动的原因很多,根据地震的成因,可以把地震分为以下几种: 1、构造地震由于地下深处岩石破裂、错动把长期积累起来的能量急剧释放出来,以地震波的形式向四面八方传播出去,到地面引起的房摇地动称为构造地震。这类地震发生的次数最多,破坏力也最大,约占全世界地震的90%以上。 2、火山地震由于火山作用,如岩浆活动、气体爆炸等引起的地震称为火山地震。只有在火山活动区才可能发生火山地震,这类地震只占全世界地震的7%左右。 3、塌陷地震由于地下岩洞或矿井顶部塌陷而引起的地震称为塌陷地震。这类地震的规模比较小,次数也很少,即使有,也往往发生在溶洞密布的石灰岩地区或大规模地下开采的矿区。 4、诱发地震由于水库蓄水、油田注水等活动而引发的地震称为诱发地震。这类地震仅仅在某些特定的水库库区或油田地区发生。 5、人工地震地下核爆炸、炸药爆破等人为引起的地面振动称为人工地震。人工地震是由人为活动引起的地震。如工业爆破、地下核爆炸造成的振动;在深井中进行高压注水以及大水库蓄水后增加了地壳的压力,有时也会诱发地震。 桥梁破坏形式 桥梁上部结构由于受到墩台、支座等的隔离作用,在地震中直接受惯性力作用而破坏的实例较少,由于下部结构破坏而导致上部结构破坏则是桥梁结构破坏的主要形式,下部结构常见的破坏形式有以下几种: 1 落梁破坏 震害原因

市政桥梁抗震设计问题研究 张红阳

市政桥梁抗震设计问题研究张红阳 发表时间:2017-06-30T15:32:59.697Z 来源:《建筑学研究前沿》2017年3月上作者:张红阳[导读] 更加有助于提高桥梁的稳定性和安全性,从而有效地延长桥梁的使用寿命,提高桥梁抵御自然灾害的能力。上海千年城市规划工程设计股份有限公司上海 201108 摘要:市政桥梁是城市交通体系中一个非常重要的组成部分,城市交通的发展往往离不开桥梁的建设,而在进行市政桥梁设计的过程中,抗震设计一直以来都是一个非常重要的内容,只有合理地进行抗震设计,才能够保证市政桥梁的安全和稳定,同时也更好地保证人们的生命财产安全。 关键词:市政;桥梁;抗震设计;问题 1 引言 在进行桥梁设计的过程中,抗震设计往往也是一个难点,必须要考虑多方面因素的影响,同时还必须要结合桥梁工程的实际情况,从而使得桥梁的抗震性能能够最佳,最大限度地保证桥梁在地震来临时结构不发生破坏,所以对于市政桥梁抗震设计问题进行研究有着非常重要的意义。 2 桥梁抗震设计规范 设计地震作用基本分为两个等级,都可归纳为功能设计地震和安全设计地震。在功能设计地震作用下,桥梁结构只允许发生十分轻微的破坏,不影响正常的交通,不经修复也可以继续使用;在安全设计地震的作用下,允许桥梁结构发生较大的破坏,但不允许发生整体破坏,如倒塌、落梁,欧洲规范对此规定得最为清楚、具体。要更好地进行市政桥梁抗震设计,首先必须要把握市政桥梁抗震设计的基本原则,在此基础之上再采取合理的措施进行桥梁设计。而从抗震的角度出发,要想保证桥梁结构的抗震性能,首先桥梁结构必须要具有明确的计算简图和合理的地震作用传递途径;其次,桥梁结构还必须要有合理的刚度以及承载力分布,只有刚度和承载力的分布合理,才能够有效地避免因为局部削弱或者是突变使得桥梁存在薄弱部位;最后,桥梁还必须要具有良好的承载力、变形能力以及耗能能力。只有严格按照这几个要求来进行桥梁抗震设计,才能够更好地保证桥梁的抗震性能。 3 地震作用的计算 《公路工程抗震设计规范》对可以近似视为单自由度体系的规则桥梁,其地震作用的理论公式为: 式中,Ci和CZ分别为桥梁重要性系数和综合影响系数。《建筑抗震设计规范》中,按照反应谱理论单质点体系所受到的最大地震作用F 为:F=αG。式中,α为地震影响系数。对不能简化为单自由度体系的复杂桥梁与建筑结构,无法直接利用单振型反应谱分析方法,应采用振型分解反应谱法进行计算。对于建筑结构,特别是房屋层数较多时,计算过程十分冗繁。为了简化计算,建筑抗震设计规范规定在满足一定条件下,可采用近似计算方法,即底部剪力法。可见,应用反应谱法计算地震作用时,桥梁抗震设计规范采用基本地震烈度下的地震动参数Kh,再通过综合影响系数CZ进行折减。建筑抗震设计规范直接采用多遇地震(小震)下的地震影响系数α,二者本质上是一样的。同时,桥梁抗震设计规范采用β-T曲线,建筑抗震设计规范采用α-T曲线,二者均是加速度反应谱仅仅是表达形式不同而已。它们都是从求解单自由度振子的振动方程出发,通过大量地震加速度记录输入绘制得到众多反应谱曲线的基础上,再经过平均化与光滑化之后,最后得到供设计使用的规范反应谱曲线。 4 市政桥梁抗震设计要点 4.1 桥梁减隔震技术 减隔震技术是桥梁设计过程中常用的一种抗震设计手段,减隔震技术可以被分为地基隔震方法和基础隔震,其中地基隔震方法又可以被分为绝缘和屏蔽两种,绝缘所指的是对于地基自身的输入波加以降低,而降低的方法主要包括采用高刚性基础、软弱地基以及利用地基逸散衰减的方法,而屏蔽则是通过在建筑物的周围埋设屏蔽板,或者是在建筑物周围挖深沟,都可以有效地进行屏蔽。基础隔震指的是通过在基础结构和上部结构之间设置隔震装置来达到隔震的目的的一种方法,基础隔震主要可以分为能量吸收、周期延长以及绝缘等方式,所谓的能量吸收指的是通过隔震装置的安装来对于地震所产生的能量加以吸收,从而有效地避免桥梁结构在地震发生时出现较大的变形,而周期延长法则是指的通过对于特定装置的利用来使得整体结构体系的周期得以加长,从而起到隔震的作用。并不是所有的市政桥梁都适合听过减隔震技术来进行抗震设计,也不是在所有的情况下都适合采用减隔震技术,在运用减隔震技术时,如果场地较为软弱或者是在延长了桥梁结构的周期之后,桥梁结构十分容易出现共振的情况,此时就不适合采用隔震技术。 4.2 基于性能的抗震设计方法 目前基于性能的抗震设计方法是桥梁设计中常用的一种方法,在进行桥梁抗震设计的过程中,该方法对基于性能抗震设计的目标性能进行了明确,其先定义了一组合适的桥梁结构的抗震性能水平,性能水平就是指的一种有限的破坏状态,其涉及到结构构件和非结构构件的破坏因素,比如说“一般不损坏、不需修复可继续使用和不致倒塌”等都属于性能水平。其次,该方法还定义了一组参照的地震风险和相应的设计水平,美国从功能和破坏程度两个方面对于桥梁结构在两级设计地震水平下的性能准则进行了相应的规定。再次,此方法还确定了桥梁结构抗震设计的目标性能,所谓的目标性能就是指的在一定超越概率的地震发生时,结构期望的最大破坏程度,在《公路桥梁抗震设计细则》中,对于公路桥梁的目标性能进行了规定。此外,该方法还实现了目标性能的等级化,从而能够针对不同的人群来对目标性能进行表述。最后还通过目标性能矩阵来计划赋予结构的要求性能。在进行桥梁设计的过程中,基于性能的抗震设计方法,通过该方法,有效地克服了当前桥梁抗震设计的局限性,对于桥梁的性能要求加以明确,而且还能够通过不同的方式方法来使得桥梁结构满足这些性能要求。

相关主题
文本预览
相关文档 最新文档