当前位置:文档之家› 《中国官僚政治研究》3.1

《中国官僚政治研究》3.1

《中国官僚政治研究》3.1
《中国官僚政治研究》3.1

《中国官僚政治研究》摘要

在历史上,封建官僚政治自秦以来直至蒋家王朝一直统治着中国,可以说是统治中国最久的政治制度,王亚南先生的《中国官僚政治研究》剖析了自秦以来直到蒋家王朝中国官僚政治的经济基础,刻画了中国官僚政治的种种劣迹、凶残、腐败的表象及其本质特征,“是批判官僚政治的锐利的理论武器”,并且被高度评价为“我国第一部用马克思主义科学方法系统地剖析传统官僚政治”的书。细读完这本书后,如孙越生先生所言,读者感受到的是“于无声处听惊雷”的思想启蒙。

作者首先从“官僚政治”的概念入手,引入西方政治学著作,提出官僚政治可以从技术和社会两方面说,作为社会体制来说的官僚政治指的是它的社会方面,而“讲形势、打官腔、遇事但求形式上能交代,一味被动地刻板地应付,一味把责任向上或向下推诿”诸如此类的官僚作风则就是指它的技术方面了。并且王亚南先生指出了“技术性的官僚作风,不但可能在一切设官而治的社会存在,在政府机关存在,且可能在一切大规模机构,如教会、公司,乃至学校中存在,可是,真正的官僚政治,当做一个社会体制看的典型的官僚政治,却只允许在社会的某一历史阶段存在,就欧洲说,却只允许在十六世纪到十八世纪末,乃至十九世纪初的那一个历史阶段存在。”这样,在我们对“官僚政治”就有了比较准确的理解基础上,王亚南先生阐述在中国特定的背景下官僚政治的发生、发展和灭亡的规律。简言之,此种政治是一定历史阶段的产物,因而是过渡性的政治;此种政治是与专制政治相伴而生的,因而是专制主义的产物;此种政治是在任何历史时代都能存在的,因而有技术面和社会面。

本书最有科学价值和现实意义的地方就在于以历史和经济分析为基础,对官僚政治之一官僚主义发展最成熟的形式本身的基本矛盾——官民对立关系作了慧眼独具的剖析,从而为探索克服官僚主义的根本克服方法提供了启示。

《中国官僚政治研究》全书由十七篇各自独立而又连贯的文章组成,指出,中国专制官僚政治被当做是一种社会体制来看,是作为专制政体的一种配合物或者补充物而产生的,帝王绝对支配权以及以家长为中心的家族制、宗法制、教育思想活动归根到底都是“建立在全社会基本生产手段——土地的全面控制上,建立在由控制土地所勒取的农业剩余劳动或其他劳动生产物的占有上的”,所以说“中国的专制政体是随着中国的封建的地主经济的产生而出现的“,“是建立在那种经济基础上的“。“整个政治权力,结局也即是整个经济权力,如何分配于全体官僚之间始得保持全体官僚阶层内部的稳定,就成为官僚头目或最大地主们所苦心焦虑的问题了。”

各级官僚与皇帝是相互依存的,他们自己“就好像围绕在鲨鱼周围的小鱼,靠着鲨鱼的分泌物而生活一

样,这绝对支配权力愈神圣、愈牢固,他们托庇它、依傍它而保持小皇帝的地位,也就愈不可侵犯和动摇了”。“在这种形势下,官僚或官吏,就不是对国家或人民负责,而只是对国王负责。国王的语言,变为他们的法律,国王的好恶,决定了他们的命运(官运和生命)、结局,他们只要把与国王的关系搞好了,或者就下级官吏而论,只要把他们对上级官吏的关系搞好了,他们就可以为所欲为地不顾国家人民的利益,而一味图其私利了。”

最后一章,即“中国官僚政治的前途”,是《中国官僚政治研究》一书的最大的价值所在,明确的指出官僚政治(不管是旧的,还是新的)在中国现阶段是不可能继续存在的,“因为,为官僚政治所托命的绝对主义和专制主义正同紧密封闭的棺材里面的木乃伊一样,一经与外界新鲜空气接触,马上就要腐烂”。并指出了官僚政治的根本实质和目的:官僚政治史一种特权政治。在特权政治下的政治权力,不是被运用来表达人民的意志,图谋人民的利益,反而是在“国家的”或“国民的”名义下被运用来管制人民、奴役人民,以达成权势者自私自利的目的。

《中国官僚政治研究》一书的现实意义,体现在作者对以下两个问题的回答上,这两个问题是:其一,“官僚的政治形态,在中国现阶段,是否还有继续存在的可能?”其二,“官僚要在如何的社会条件下,始能从根被清除掉?”关于第一个问题,作者的回答上面一经阐述过,“表明一个新的人民的时代已在加速形成与成长中,人民的时代绝不能容许任何特权性的任何名色的官僚政治的存在。”关于第二个问题,作者说:“中国的官僚政治,必得在作为其社会基础的封建体制(买办的或官僚的经济组织,最后仍是依存于封建的剥削关系)清除了,必得在作为其与民对立的社会身分关系洗脱了,从而必得让人民,让一般工农大众,普遍地自觉自动起来,参加并主导着政治革新运动了,那才是它(官僚政治)真正寿终正寝的时候。”不过,王亚南先生又指出:“中国是一个延续了二千余年之久的专制官僚统治国家,官僚政治既然是当做一个社会制度,当作一个延续了数千年之久而又极有包容性、贯彻性的社会制度客观地存在着,我们要改革它,要铲除它,就不能单凭自己一时的高兴,也不能单凭外面有力的推动,甚至也不能完全信赖任何伟大人物的大仁大智大勇或其决心与作为,而最先、最重要的是要依据正确的社会科学来诊断它的病源,并参证当前世界各国对于根绝那种病源所施行的最有效的内外科方术。”

王亚南先生说到相信科学和人民的重要性:“在科学的时代不相信科学,在人民的时代不信赖人民,即使是真心想求政治民主化,真心想还政于“民”,那也将证明他或他们的‘好心’、‘善意’、‘真诚’以及‘伟大怀抱’与多方努力,会在历史的顽固性面前讨没趣,或导演出一些令人啼笑皆非的滑稽剧。”20世纪50年代是一个科学的、人民的时代,任何官僚政治的存在将是越来越难,直至被革除。

【新教材】 新人教A版必修一 函数与方程 教案

2019-2020学年新人教A版必修一函数与方程教案 1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系 方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)〈0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 2.二次函数y=ax2+bx+c (a〉0)的图象与零点的关系 Δ>0Δ=0Δ〈0 二次函数y=ax2+bx +c(a〉0)的图象 与x轴的交点(x1,0),(x2,0)(x1,0)无交点 零点个数210 概念方法微思考 函数f(x)的图象连续不断,是否可得到函数f(x)只有一个零点? 提示不能. 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x轴的交点.(×) (2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×) (3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.(√) (4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)

一次不定方程的解法

一次不定方程的解法 我们现在就这个问题,先给出一个定理. 定理如果,a b 是互质的正整数,c 是整数,且方程 ax by c +=① 有一组整数解00,x y 则此方程的一切整数解可以表示为 其中0,1,2,3,t =±±±… 证因为00,x y 是方程①的整数解,当然满足 00ax by c +=② 因此 0000()()a x bt b y at ax by c -++=+=. 这表明0x x bt =-,0y y at =+也是方程①的解. 设,x y ''是方程①的任一整数解,则有 ax by c ''+=③ ③-②得00()()a x x b y y ''-=--④ 由于(,)1a b =,所以0a y y '-,即0y y at '=+,其中t 是整数.将0y y at '=+代入④,即得0x x bt '=-.因此,x y ''可以表示成0x x bt =-,0y y at =+的形式,所以0x x bt =-,0y y at =+表示方程①的一切整数解,命题得证. 有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解. 例1求11157x y +=的整数解. 解法1将方程变形得 因为x 是整数,所以715y -应是11的倍数.由观察得002,1x y ==-是这个方程的一组整数解,所以方程的解为 解法2先考察11151x y +=,通过观察易得

11(4)1531?-+?=, 所以 11(47)15(37)7?-?+??=, 可取0028,21x y =-=,从而 可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.将解中的参数t 做适当代换,就可化为同一形式. 例2求方程62290x y +=的非负整数解. 解因为(6,22)2=,所以方程两边同除以2得 31145x y +=① 由观察知,114,1x y ==-是方程 3111x y +=② 的一组整数解,从而方程①的一组整数解为 由定理,可得方程①的一切整数解为 因为要求的是原方程的非负整数解,所以必有 1801104530t t -≥??-+≥? ③ 由于t 是整数,由③得1516t ≤≤,所以只有15,16t t ==两种可能. 当15,15,0t x y ===;当16,4,3t x y ===.所以原方程的非负整数解是 150x y =??=? ,43x y =??=? 例3求方程719213x y +=的所有正整数解. 分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解. 解用方程

二元一次方程及其解法

一、问题引入 问题一:如图,已知一个矩形的宽为3,周长为24,求矩形的长。如果我们设长为x ,则可 列方程为:x +3=12 ;如果把问题中矩形的宽改为y ,则可得到什么样的等量关系! 解:x +y =12 问题二:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? 解:如果设鸡有x 只,兔有y 只,则可列方程为: x +y =35 2x +4y =94 1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程。 例1.下列方程组中,哪些是二元一次方程组_______________ 判断一个一个方程时候为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程 (与分式区分开来) 想一想:二元一次方程的解与一元一次方程的解有什么区别? ①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。 例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意: ①含未知项的次数为1; ②含有未知项的系数不能为0 2.二元一次方程组的解 二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。 2、把下列各对数代入二元一次方程3x+2y=10,哪些能使方程两边的值相等? (1)X=2,y=2 是 (2)x=3,y=1 否 (3)x=0,y=5 是 (4)x=2/3,y=6 是 2(1)3 x y y z +=?? +=?,5(2)6x y xy +=?? =?, 7(3)6 a b b -=??=?, 2(4)13x y x y +=-???-=??,52(5)122 y x x y =-?? ?+=??,25(6)312 x y -=?? +=?,213257m n x y --+=211 321 m n -=??-=?1(2)2a x a y -+-=

高一数学必修一函数与方程知识梳理

高一数学必修一函数与方程知识梳理 函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,以下是函数与方程知识梳理,请大家学习。 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy 的零点。 (2)方程0)(xf有实根函数()yfx的图像与x轴有交点函数()yfx 有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 ③若函数()fx在区间,ab上的图像是一条连续的曲线,则 0)()(bfaf是()fx在区间,ab内有零点的充分不必要条件。 2、函数零点的判定 (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab 内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。(2)函数)(xfy零点个数(或方程0)(xf实数根的个

数)确定方法 ①代数法:函数)(xfy的零点0)(xf的根; ②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。(3)零点个数确定 0)(xfy有2个零点0)(xf有两个不等实根; 0)(xfy有1个零点0)(xf有两个相等实根; 0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: ①确定区间[,]ab,验证()()0fafb,给定精确度 ②求区间(,)ab的中点c; ③计算()fc; (ⅰ)若()0fc,则c就是函数的零点; (ⅱ) 若()()0fafc,则令bc(此时零点0(,)xac (ⅲ) 若()()0fcfb,则令ac(此时零点0(,)xcb 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的

一次不定方程的解法

一次不定方程的解法

一次不定方程的解法 我们现在就这个问题,先给出一个定理. 定理 如果,a b 是互质的正整数,c 是整数,且方程 ax by c += ① 有一组整数解00,x y 则此方程的一切整数解可 以表示为 00x x bt y y at =-??=+? 其中0,1,2,3,t =±±±… 证 因为00 ,x y 是方程①的整数解,当然满足 00ax by c += ② 因此 0000()()a x bt b y at ax by c -++=+=. 这表明0x x bt =-,0y y at =+也是方程①的解. 设,x y ''是方程①的任一整数解,则有 ax by c ''+= ③ ③-②得 00()()a x x b y y ''-=-- ④ 由于(,)1a b =,所以0a y y '-,即0y y at '=+,其中t 是整数.将 0y y at '=+代入④,即得0x x bt '=-.因此,x y ''可以表示成0x x bt =-,0y y at =+的形式,所以0x x bt =-,0y y at =+表示 方程①的一切整数解,命题得证.

例2 求方程62290x y +=的非负整数解. 解 因为(6,22)2=,所以方程两边同除以2得 31145x y += ① 由观察知,114,1x y ==-是方程 3111x y += ② 的一组整数解,从而方程①的一组整数解为 0045418045(1)45 x y =?=??=?-=-? 由定理,可得方程①的一切整数解为 18011453x t y t =-??=-+? 因为要求的是原方程的非负整数解,所以必有 1801104530t t -≥??-+≥? ③ 由于t 是整数,由③得1516t ≤≤,所以只有15,16t t ==两种可能. 当15,15,0t x y ===;当16,4,3t x y ===.所以原方程的非负整数解是 150x y =??=? ,43x y =??=? 例3 求方程719213x y +=的所有正整数解. 分析 这个方程的系数较大,用观察法去求

高一数学必修一公式

高一数学必修一公式 必修一 一、集合 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集 合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋, 大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队 员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:B A?有两种可能(1)A是B的一部分,;(2)A与 B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子 集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B

一次不定方程的解法

精心整理 一次不定方程的解我们现在就这个问题,先给出一个定理 定理如是互质的正整数是整数,且方,①cby?ax?有一组整数解则此 方程的一切整数解可以表示为yx,00其中…3,??1,?2,t?0,证因为是方程①的整数解,当然满足y,x00②c?ax?by00因此 .cby?at)?ax?ba(x?bt)?(y?0000这表明,也是方程①的解.at?y??x?xbty00设是方程①的任一整数解,则有??y,x③??caxby???②得④③ ??)y(?)x(ax??by?00精心整理. 精心整理 t是整数.将,其中代入④,即得由于,所以,即??? atyy?y?at??y ya?y1)?,(ab000.因此可以表示成,的形式,所以, ???y?y?atx?x?x?x?btyy?x??x?btatbty,x00000表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解. 例1求的整数解.715y?11x?将方程变形得1解是这个方程的的倍数.由观察是整数,所应是因211组整数解,所以方程的解先考,通过观 察易得解11114所以 (7711,,从而可取21?x??28,y00可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于 求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是 t一样的.将解中的参数做适当代换,就可化为同一 形式.求方程的非负整数解.2例9022y??6x得因为,所以方程两边同

除以解2?(6,22)2①45?3x?11y由观察知,是方程1??yx?4,11②1?11y?x3 的一组整数解,从而方程①的一组整数解为 由定理,可得方程①的一切整数解为精心整理. 精心整理 因为要求的是原方程的非负整数解,所以必有 180?11t?0?③??45?3t?0?由于是整数,由③得,所以只有两种可能.16?t?15,tt16t?15?当;当.所以原方程的非负整数解是 3??4,yy?0?t16,xt?15,x?15,x?415x???,??y?3y?0??求方的所有正整数解211?分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解 解用方 211?的最小系除方程①的各项,并移项 211y②?30?2y?x?77y?53.化简得到是整数,故因为也是整数,于是?u yx,3?7u5y?7③3??7u5y3?2u(整数),由此得令?v5④35v?2u?u??1u??1??是方程④的一组解.将代入③得,再将由观察知代入②得 2?2y?y??v?1v?1??x?25x?25?19t??t为整数,所以它的一切解为.于是方程①有一组解025x???y?2y?2?7t??0由于要求方程的正整数解,所以 解不等式,得只能取.因此得原方程的正整数解为0,1t精心整理.精心整理 x?25x?6??,??y?2y?9??当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明.

初一 二元一次方程组及其解法(学生版)

3.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 注意:组成方程组的两个方程不必同时含有两个未知数,例如 也是二元一次方程组. 4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 注意: (1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组 的解有无数个. 题型1:二元一次方程 【例1-1】已知下列方程,其中是二元一次方程的有________. (1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6);(7);(8);(9);(10). 举一反三: 下列各方程中,是二元一次方程的是( ) A .=y+5x B .3x+2y=2x+2y C .x=y 2 +1 D . 题型2:二元一次方程的解 【例2-1】下列数组中,是二元一次方程x+y=7的解的是( ) A . B . C . D . 【例2-2】已知二元一次方程 . ?? ?=-=+5 20 13y x x x a y b =??=? 25 26 x y x y +=?? +=?1 222 x y x y +=-?? +=-?102x +=2 51x y +=132x y +=280x y -=462x y +=3 142 x y +=

(1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ; (3)用适当的数填空,使是方程的解. 举一反三: 1、若方程的一个解是,则a= . 2、已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y . 题型3:二元一次方程组及方程组的解 【例3-1】下列各方程组中,属于二元一次方程组的是( ) A . B . C . D . 【例3-2】判断下列各组数是否是二元一次方程组的解. (1) (2) 举一反三: 2 _______ x y =-??=?24ax y -=2 1x y =??=? 4221 x y x y +=?? +=-?①② 35x y =??=-?2 1x y =-??=?

二元一次方程组及其解法

3.3 二元一次方程组及其解法(5)教学目标: 知识与技能:综合运用两种基本的消元方法解二元一次方程组。 过程与方法:通过对两种消元方法的对比和选择,体会消元的本质,领悟消元、转化思想在解方程组中的作用。 情感、态度与价值观:通过解方程组时的方法选择,培养学生多角度思考问题的良好习惯,提高学生灵活运用知识的能力,并且在与他人合作交流的过程中体验成功探索的快乐,发展合作意识。 教学重点:消元法解方程组。 教学难点:根据方程组的特点灵活选择消元方法;化归思想的渗透。内容分析:本节课为综合运用两种基本的消元方法解二元一次方程组的探究学习,一方面是对同一个方程组作出解决方法的选择的学习,另一方面是化复杂的方程组为简单方程组的探索,并最终将“消元”“化归”思想共同作用于对多元方程组解法的迁移。 教学过程: 一、新课引入 前面几节课我们已经学习了二元一次方程组的解法,请同学们回忆下解二元一次方程组有哪两种方法?这两种方法的数学思想都是什么? 二、讲授新课 1.思考:解二元一次方程组什么情况下用代入法,什么情况下用加减法比较简便呢? 例.解下列方程组应先消哪个元,用哪一种方法较简便,为什么?

(1) (2) (3) (4) 从上面几个例题,你能不能总结一下一般什么情况用代入法,什么情况用加减法较简便呢? 总结:当二元一次方程组中的某个未知数的系数的绝对值为1或有一个方程的常数项是0时,用代入法;当两个方程中某个未知数的系数的绝对值相等或成整数倍时,用加减法。 练习1:请说出下列各方程组应先消哪个元,用哪一种方法简便,为什么? (1) (2) (3) (4) 例.解方程组: 分析:本题方程①和②都比较复杂,解题的关键在于能否对这两个方程进行正确的化简整理,因为方程①和②都含有分母,所以第一步应先去分母。 4m+3n=11 5m-3n=7 3x+2y=7 5x-y=3 2x+3y=1 4x+5y=1 4x+5y-31=0 3x-4y=0 ???=+=+5b 3a 710b 8a 7???=-=+9y 3x 513y 2x 3 ???=-=+1y x 27y 4x 3???=+=++0 y 3x 207y 4x 5?????=-+-=+++253y 23 2x 735y 23x

第1讲 二元一次方程的解法

二元一次方程的解法及其应用题 ㈠ 二元一次方程:含有两个未知数,且未知项最高次数为1的整式方程叫二元一次方程方程。 注意:①在方程中的“元”是指未知数,“二元”就是方程中有且只有两个未知数。 ②“未知项的最高次数是1”是指含有未知数的项(单项式)的次数是1,切不可理解为两个未知数的次数都是1,如3xy-2=0中含有两个未知数,且两个未知数的次数都是1,但未知项“3xy ”的次数是2,所以它不是二元一次方程。 ③二元一次方程的左边和右边都是整式,例如:11x y -=不是二元一次方程,因为它的左边不是整式. ㈡ 二元一次方程的解 使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的解。 ㈢ 二元一次方程的解法:通常求二元一次方程的解的方法是先用含有其中一个未知数的代数式表示另外一个未知数,例如,欲求二元一次方程y-2x=1的解,可先将其变形为y=2x+1,然后给出x 的一个值,就能相应地求出y 的一个值,这样得到的每一对对应值,就是二元一次方程y-2x=1的解。 注意:①二元一次方程的每一个解,都是一对数值,而并不是一个数值 ②一般情况下,一个二元一次方程有无数多个解,但如果对其未知数的取值附加某些限制条件,那么可能只有有限个解。 ㈣二元一次方程组:两个二元一次方程合在一起,就组成了一个二元一次方程组。 二元一次方程组的解法: 注意:方程组的解满足方程组中的每一个方程。 由于方程组需要用大括号“{”表示,所以方程组的解也要用大括号“{”表示 怎样检验一对数是不是某个二元一次方程组的解,:通常是将这对数值分别代入方程组中的每一个方程,只有当这对数值同时满足所有的方程时,才能说这对数值时此方程的解 消元法: (1)从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y ,用含x 的代数式表示出来,也就是写成y=ax+b 的形式; (2)将y=ax+b 代入另一个方程中,消去y ,得到一个关于x 的一元一次方程 (3)解这个一元一次方程,求出x 的值; (4)把求得的x 的值代入y=ax+b 中,求出y 的值,从而得到方程组的解。 例1 2237x y x y -=??+=?2326 x y x y +=??+=? 加减法: (1) 方程组的两个方程中,如果同一个未知数的系数间既不互为相反数又不相等,就可 用适当(通常用两个系数的最小公倍数)的数乘以方程的两边,使一个未知数的系

不定方程的解法与应用

摘要 不定方程是初等数论的一个重要内容,在相关学科和实际生活中也有着广泛的应用.本文首先归纳了整数分离法、系数逐渐减小法和辗转相除法等几种常用的二元一次不定方程的解法;其次进一步讨论了求n元一次不定方程和二次不定方程整数解的方法;最后论述了不定方程在中学数学竞赛题、公务员行测试题和其他学科中的应用,并举例说明. 关键词:不定方程;二元一次不定方程;数学竞赛;公务员试题

Abstract The integral solutions of indeterminate equation solving method is an important content of elementary number theory, has been widely used in related disciplines and in real life. This paper summarizes the integer separation method, coefficient decreases and the Euclidean algorithm and several commonly used two element indefinite equation solution, secondly is further discussed. For n linear indeterminate equation and the method of two time indefinite equation integer solution, and finally discusses the indeterminate equation applied in secondary school mathematics, civil servants for test and other subjects, and illustrated with examples. Key words: i ndeterminate equation; two element indefinite equation; Mathematics contest; civil service examination.

二元一次方程的解法

二元一次方程的解法 二元一次方程的解法:认识二元一次方程组的有关概念,会把一些简单的实际问题中的数量关系,用二元一次方程组的形式表示出来,学会用含有其中一个未知数的代数式表示另一个的方法。下面小编整理了二元一次方程的解法,供大家参考。 代入消元 (1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法. (2)代入法解二元一次方程组的步骤。 ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数; ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.); ③解这个一元一次方程,求出未知数的值; ④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值; ⑤用{联立两个未知数的值,就是方程组的解;

⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边). 例题: {x-y=3① {3x-8y=4② 由①得x=y+3③ ③代入②得 3(y+3)-8y=4 y=1 把y=1带入③ 得x=4 则:这个二元一次方程组的解 {x=4 {y=1 加减消元 (1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.[5] (2)加减法解二元一次方程组的步骤 ①利用等式的基本性质,将原方程组中某个未知数的系数化

(完整版)高中数学必修一函数大题(含详细解答)

高中函数大题专练 1、已知关于x 的不等式2 (4)(4)0kx k x --->,其中k R ∈。 ⑴试求不等式的解集A ; ⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合 B ;若不能,请说明理由。 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2 ()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-? =??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2 =++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =- ≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探 求,a b 应满足的条件。

不定方程的解法

基本介绍编辑本段 不定方程是数论的一个分支,它有着悠 久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。 古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969 年,莫德尔较系统地总结了这方面的研究成果。 2 发展历史编辑本段

希腊的丢番图早在公元3 世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus ,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus 方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189 个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。 研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5 世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何”。设x,y,z 分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。 3 常见类型编辑本段

二元一次方程解法大全.

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=

当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程:

人教版数学必修一函数与方程练习题

人教版数学必修一函数与方程练习题 重点:掌握零点定理的内容及应用 二次函数方程根的分布 学会利用图像进行零点分布的分析 1. 下列函数中,不能用二分法求零点的是() 2. 如果二次函数有两个不同的零点,则的取值范围是() 3. A. B. C. D. 4. 已知函数22)(m mx x x f --=,则)(x f () A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 5. 已知函数)(x f 的图象是连续不间断的,有如下的)(,x f x 对应值表 A .2个 B .3个 C .4个 D .5个 6. 若方程0=--a x a x 有两个根,则a 的取值范围是( ) A .)1(∞+ B .)1,0( C .),0(+∞ D .? 7. 设函数? ??>≤++=,0,3,0,)(2x x c bx x x f 若2)2(),0()4(-=-=-f f f ,则函数x x f y -=)(的零点的个数为( ) A .1 B .2 C .3 D .4 8. 无论m 取哪个实数值,函数)2 3(232--+-=x m x x y 的零点个数都是( ) A .1 B .2 C .3 D .不确定 9. 已知函数).0(42)( 2>++=a ax ax x f 若0,2121=+ B .)()(21x f x f = C .)()(21x f x f < D .)(1x f 与)(2x f 大小不能确定 )3(2+++=m mx x y m ()6,2-[]6,2-{}6,2-()(),26,-∞-+∞

二元一次方程及其解法

. .. . . 一、问题引入 问题一:如图,已知一个矩形的宽为3,周长为24,求矩形的长。如果我们设长为x ,则可 列方程为:x +3=12 ;如果把问题中矩形的宽改为y ,则可得到什么样的等量关系! 解:x +y =12 问题二:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? 解:如果设鸡有x 只,兔有y 只,则可列方程为: x +y =35 2x +4y =94 1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程。 例1.下列方程组中,哪些是二元一次方程组_______________ 判断一个一个方程时候为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程 (与分式区分开来) 想一想:二元一次方程的解与一元一次方程的解有什么区别? ①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。 例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意: ①含未知项的次数为1; ②含有未知项的系数不能为0 2.二元一次方程组的解 二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。 2、把下列各对数代入二元一次方程3x+2y=10,哪些能使方程两边的值相等? (1)X=2,y=2 是 (2)x=3,y=1 否 (3)x=0,y=5 是 (4)x=2/3,y=6 是 2(1)3x y y z +=?? +=?,5(2)6 x y xy +=?? =?, 7(3)6 a b b -=??=?, 2(4)13x y x y +=-???-=??,52(5)122 y x x y =-?? ?+=??,25(6)312 x y -=?? +=?,2132 57m n x y --+=211 321 m n -=??-=?1(2)2a x a y -+-=

二元一次不定方程的解法总结与例题

探究二元一次不定方程 (Inquires into the dual indefinite equation) 冯晓梁(XiaoLiang Feng)(江西科技师范学院数计学院数一班 330031)【摘要】:二元一次不定方程是最简单的不定方程, 一些复杂的不定方程常常化为二元一次不定方程问题加以解决。我们讨论二元一次方程的整数解。 The dual indefinite equation is the simple the indefinite equation, some complex indefinite equations change into the dual indefinite equation question to solve frequently. We discuss the dual linear equation the integer solution. 【关键字】:二元一次不定方程初等数论整数解 (Dual indefinite equation Primary theory of numbers Integer solution) 二元一次方程的概念:含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程。一个方程是二元一次方程必须同时满足下列条件;①等号两边的代数式是整式; ②具有两个未知数;③未知项的次数是1。 如:2x-3y=7是二元一次方程,而方程4xy-3=0中含有两个未知数,且两个未知数的次数都是1,但是未知项4xy的次数是2,所以,它是二元二次方程,而不是二元一次方程。 定理1.形如(不同时为零)的方程称为二元一次不定方程。 [1] 二元一次方程的解和解二元一次方程:能使一个二元一次方程两边的值相等的未知数的一组值叫做这个方程的一个解,但若对未知数的取值附加某些限制,方程的解可能只有有限个。 通常求一个二元一次方程的解的方法是用一个未知数的代数式表示另一个未知数,如x-2y=3变形为x=3+2y,然后给出一个y的值就能求出x的一个对应值,这样得到的x、y的每对对应值,都是x-2y=3的一个解。 定理2.方程有解的充要是;[2] 若,且为的一个解,则方程的一切解都可以表示成: (t为任意整数)

五年级奥数二元一次方程组的解法

第2讲二元一次方程组的解法 搜集整理:百汇教育数学组陈超【知识要点】 1.二元一次方程组的有关概念 (1)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。例如3x+4y=9。 (2)二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值。因此,任何一个二元一次方程都有无数多个解。由这些解组成的集合,叫做这个二元一次方程的解集。 (3)二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组。一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。 2.二元一次方程组的解法 (1)代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法。 (2)加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法。 代入消元法将在《七年级数学(上册·上海科技出版社)》教材中学习到。本次课,我们主要讲解加减消元法。 【典型例题】 用加减消元法解下列方程组: 例1、 x-5y = 0 ① 3x+5y =16 ② 解:由①+②得:x+3x=16 即4x=16 所以x=4 把x=4代入②得:3×4+5y=16 解得 y=0.8 所以原方程组的解为 x=4 y=0.8 例2、2x+2y=11 ① 2x+7y=36 ② 解:由②-①得:7y-2y=36-11 即5y=25 所以y=5 把y=5代入①得:2x+2×5=11 解得 x=0.5 所以原方程组的解为 x=0.5 y=5 { {{ {

解三元一次不定方程组

题目:小明的妈妈去超市购物,已知买13个鸡蛋,5个鸭蛋,9个鹌鹑蛋需付9.25元,买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋需付3.20元,小明妈妈想买一个鸡蛋一个鸭蛋一个鹌鹑蛋需付多少钱? 分析:此方程组是三元一次不定方程组,由于只有两个三元一次方程,因而要分别求出x、y、z的值是不可能的,但注意到所求的是x+y+z的代数和,因此,可通过变形变换得到多种解法. 解:设鸡、鸭、鹌鹑三种蛋的单价分别为x、y、z元,则根据题意,得13x+5y+9z=9.25 ① 2x+4y+3z=3.20 ② (1)凑整法 解法1: (①+②)/3: 5x+3y+4z=4.15 ③ ∴②+③,得 7(x+y+z)=7.35 ∴ x+y+z=1.05 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元。 解法2: 原方程组可变形为 13(x++y+z)-4(2y+z)=9.25 ① 2(x++y+z)+4(2y+z)=3.20 ② 解之得x+y+z=1.05 (2)主元法 解法3: 视x、y为主元,视z为常数,解①、②得x=0.5-0.5z,y=0.55-0.5z.∴x+y+z=0.55+0.5-z+z=1.05. 解法4: 视y、z为主元,视x为常数,解①、②得y=0.05+x,z=1-2x. ∴x+y+z=1.05+x-2x+x=1.05. 解法5: 视z、x为主元,视y为常数,解①、②得x=y-0.05,z=1.1-2y ∴x+y+z=y-0.05+y+1.1-2y=1.05. (3)参数法 解法6: 设x+y+z=k,则 13x+5y+9z=9.25 ① 2x+4y+3z=3.20 ② x+y+z=k ③ ∴①-②×3,得x-y=-0.05 ④ ③×3-②,得x-y=3k-3.2 ⑤

相关主题
文本预览
相关文档 最新文档