当前位置:文档之家› 操作系统首次适应算法动态分配C语言代码

操作系统首次适应算法动态分配C语言代码

操作系统首次适应算法动态分配C语言代码
操作系统首次适应算法动态分配C语言代码

实验名称:操作系统动态分配姓名:杨秀龙

学号:1107300432

专业班级:创新实验班111 指导老师:霍林

实验题目

内存动态分区的分配与回收内存

实验目的

有利于我们更好的了解内存动态分区分配的操作情况,掌握可变分区首次适应算法

的原理以及其编程实现。

设计思想

可变分区分配是根据进程的实际需求,动态地为之分配内存空间。首次适应算法要求空闲空间链以地址递增的次序链接。进行内存分配时,从链表头部开始依次检索,找到第一个不小于请求空间大小的空闲空间进行分配。分配时需考虑碎片问题,若分配会导致碎片产生则将整块分区分配。内存的回收需要考虑四种情况:

⑴收分区前后两个分区都空闲,则需要和前后两个分区合并;

⑵回收分区只有前一分区空闲,则与前一分区合并;

⑶回收分区只有后一分区空闲,则和后一分区合并;

⑷回收分区独立,不考虑合并

主要数据结构

主要的数据结构有两个:空闲分区表结构和表的链结构。根据空闲分区的作用,

空闲分区表结构必须包括(分区号、分区起始地址、分区状态、分区数据大小)。

由于采用的是双向链表的结果,所以表的链结构包括(空闲分区表的信息、首指

针、尾指针)

结构程序代码如下:

typedefstruct Body

{

int ID;

int size;

int address;

int sign;

};

typedefstruct Node

{

Body data;

struct Node *prior;

struct Node *next; }*DLinkList;

流程图

运行结果

附录:

源代码如下:

#include

#include

#define Free 0 //空闲

#define Zhanyong 1 //占用

#define FINISH 1 //完成

#define ERROR 0 //出错

#define memory 512 //最大内存

#define min 10 //碎片值

typedefstruct Body

{

int ID;

int size;

int address;

int sign;

};

typedefstruct Node

{

Body data;

struct Node *prior;

struct Node *next;

}*DLinkList;

DLinkList head; //头结点

DLinkListtou; //尾结点

int Create()//初始化

{

head=(DLinkList)malloc(sizeof(Node));

tou=(DLinkList)malloc(sizeof(Node));

head->prior=NULL;

head->next=tou;

tou->prior=head;

tou->next=NULL;

tou->data.address=0;

tou->data.size=memory;

tou->data.ID=0;

tou->data.sign=Free;

return FINISH;

}

intFirstFit(intID,int space)//首次适应算法

{

DLinkListNewNode=(DLinkList)malloc(sizeof(Node));//新建作业的结点

NewNode->data.ID=ID;

NewNode->data.size=space;

NewNode->data.sign=Zhanyong;

Node *p=head;

while(p)

{

if(p->data.sign==Free && p->data.size==space)//剩余大小恰好满足{

{

p->data.sign=Zhanyong;

p->data.ID=ID;

return FINISH;

break;

}

if(p->data.sign==Free && p->data.size>space && (p->data.size-space>min))//满足需求且有剩余且不产生碎片

{

NewNode->prior=p->prior;

NewNode->next=p;

NewNode->data.address=p->data.address;

p->prior->next=NewNode;

p->prior=NewNode;

p->data.address=NewNode->data.address+NewNode->data.size;

p->data.size=p->data.size-space;

return FINISH;

break;

}

if(p->data.sign==Free && p->data.size>space && p->data.size-space<=min)//产生碎片时

{

p->data.sign=Zhanyong;

p->data.ID=ID;

return FINISH;

break;

}

p=p->next;//若已有分配,P指针后移

}

return ERROR;

}

int Allocation()//内存分配

{

intID,space;

printf("请输入分区号(不能输入相同的两个分区号):");

scanf("%d",&ID);

printf("输入分配内存大小(单位:KB):");

scanf("%d",&space);

if(space<0 ||space==0)

{

printf("分配的内存大小必须是正整数!\n");

return ERROR;

}

if(FirstFit(ID,space)==FINISH)

printf("分配成功!\n");

else

printf("内存不足,分配失败!\n");

}

int Recycle(int ID)//shifangzuoye

{

Node *p=head;

while(p)

{

if(p->data.ID==ID)

{

p->data.sign=Free;

//p->data.ID=Free;

if((p->prior->data.sign==Free)&&(p->next->data.sign==Free))//与前后的空闲块相连

{

p->prior->data.size=p->prior->data.size+p->data.size+p->next->data.size;

p->prior->next=p->next->next;

if(p->next->next==NULL)//****若p->next是最后一个结点

{p->prior->data.ID=Free;p->next=NULL;}

else{p->next->next->prior=p->prior;}

break;

}

if(p->prior->data.sign==Free)//与前面的空闲块相连

{

p->prior->data.size+=p->data.size;

p->prior->next=p->next;

p->next->prior=p->prior;

break;

}

if(p->next->data.sign==Free)//与后面的空闲块相连

{

p->data.size+=p->next->data.size;

if(p->next->next==NULL)//若p->next是最后一个结点

p->next=NULL;

else{

p->next->next->prior=p;

p->next=p->next->next;}

break;

}

break;

}

p=p->next;

}

printf("分区号为%d的内存回收成功\n",ID);

return FINISH;

}

void show()

{

printf("************************当前内存分配情况*************************\n");

Node *p=head->next;

while(p)

{

printf("分区号:");

if(p->data.ID==Free)

printf("未分配");

else

printf("%6d",p->data.ID);

printf(" 始地址:%4d",p->data.address);

printf(" 分区大小:%4dKB",p->data.size);

printf(" 状态:");

if(p->data.sign==Free)

printf("空闲\n");

else if(p->data.sign==Zhanyong)

printf("已分配\n");

p=p->next;

}

printf("\n");

}

int main()

{

Create();

int choice;

inti;

for(i=0;;i++)

{

printf("请选择操作:\n");

printf("1.分配内存\n");

printf("2.回收内存\n");

printf("3.显示内存分配情况\n");

printf("0.退出程序\n");

scanf("%d",&choice);

if(choice==1)

Allocation();

else if(choice==2)

{ i nt ID;

printf("输入要回收的分区号:");

scanf("%d",&ID);

Recycle(ID);

}

else if(choice==3)

show();

else if(choice==0)

break;

else

{

printf("输入有误!\n");

continue;

}

}

}

操作系统实验四实验报告动态分区分配算法

操作系统实验四 【实验题目】:动态分区分配算法 【实验学时】:4学时 【实验目的】 通过这次实验,加深对动态分区分配算法的理解,进一步掌握首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的实现方法。 【实验内容及要求】 问题描述: 设计程序模拟四种动态分区分配算法:首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的工作过程。假设内存中空闲分区个数为n,空闲分区大小分别为P1, … ,P n,在动态分区分配过程中需要分配的进程个数为m(m≤n),它们需要的分区大小分别为S1, … ,S m,分别利用四种动态分区分配算法将m个进程放入n个空闲分区,给出进程在空闲分区中的分配情况。 程序要求: 1)利用首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法四种动态分区分配算法模拟分区分配过程。 2)模拟四种算法的分区分配过程,给出每种算法进程在空闲分区中的分配情况。 3)输入:空闲分区个数n,空闲分区大小P1, … ,P n,进程个数m,进程需要的分区大小S1, … ,S m。

4)输出:首次适应算法,循环首次适应算法,最佳适应算法,最坏适应算法,最终内存空闲分区的分配情况。 实现源代码: #include #include #include #include #define max 100 using namespace std; int work_num; int zone_num; struct Data{ int data; char name; }; Data *d=new Data[max]; struct Table{ int data; char array[max]; int length; };

【CN110315527A】一种自适应动态规划的柔性机械臂控制方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910140183.X (22)申请日 2019.02.26 (71)申请人 浙江树人学院(浙江树人大学) 地址 312028 浙江省绍兴市柯桥区杨汛桥 镇江夏路2016号 (72)发明人 吴凡  (74)专利代理机构 杭州永航联科专利代理有限 公司 33304 代理人 李铃 (51)Int.Cl. B25J 9/16(2006.01) (54)发明名称 一种自适应动态规划的柔性机械臂控制方 法 (57)摘要 本发明涉及柔性机械臂技术领域,且公开了 一种自适应动态规划的柔性机械臂控制方法,所 述控制方法包括以下步骤:步骤1、建立柔性机械 臂的的动力学模型;步骤2、设计基于动态模式的 柔性机械臂的控制器;步骤3、对柔性机械臂的角 度运动进行控制:步骤3.1、对柔性机械臂的不定 性参数进行分析建模;步骤3.2、对柔性机械臂的 角度的位移和转动进行控制;步骤3.3、对柔性机 械臂各关节的角度位置矢量进行控制;步骤3.4、 对柔性机械臂的智能角度空间差进行集合控制 柔性机械臂的位姿。该自适应动态规划的柔性机 械臂控制方法,较好的提高了对柔性机械臂的控 制精度,操作简单方便,能够有效的缩短控制时 间, 提高了控制效率。权利要求书2页 说明书4页CN 110315527 A 2019.10.11 C N 110315527 A

1.一种自适应动态规划的柔性机械臂控制方法,其特征在于,所述控制方法包括以下步骤: 步骤1、建立柔性机械臂的的动力学模型; 步骤2、设计基于动态模式的柔性机械臂的控制器; 步骤3、对柔性机械臂的角度运动进行控制: 步骤3.1、对柔性机械臂的不定性参数进行分析建模; 步骤3.2、对柔性机械臂的角度的位移和转动进行控制; 步骤3.3、对柔性机械臂各关节的角度位置矢量进行控制; 步骤3.4、对柔性机械臂的智能角度空间差进行集合控制柔性机械臂的位姿; 步骤4、对柔性机械臂的关机角速度进行控制。 2.根据权利要求1所述的一种自适应动态规划的柔性机械臂控制方法,其特征在于:所述柔性机械臂的动力学模型为:其中,q=[q r *q f ]T ,q r 表示m个关节角矢量,q f 表示n -m维弹性模态坐标矢量,M是对称正定的质量矩阵,C代表反对称的柯氏力和向心力矩阵,F是摩擦力矩矢量,u是m个关节的输入力矩矢量,用差商代替 导数可得到如下的差分方程: 3.根据权利要求1所述的一种自适应动态规划的柔性机械臂控制方法,其特征在于:所述柔性机械臂控制器的最小二乘法:令p=q i +K α(r i -q i ),r i 是系统的参考输入矢量,K α为正的对角矩阵,用q代替q r+1可得到如下关系:B(q i )u=M(q i )(p -2q i +q i -1)/h 2,用解矛盾方程的最小二乘法求出u,u=(B T (q i )B(q i ))-1B T (q i )K βM(q i )(p -2q i +q i -1)/h 2,K β为正的对角矩阵。 4.根据权利要求1所述的一种自适应动态规划的柔性机械臂控制方法,其特征在于:所述柔性机械臂的不定参数的分析建模方法如下:在建立的二维机械手臂模型中,排除摩擦力的影响,只对外部干扰与不定性参数进行研究分析建立模型,用公式表示为 : 其中,d j 为坐标系广义坐标,速度为广义速度,W d 为柔性机械臂 运动过程中的广义力,d为旋转角度,q表示连接杆距离。 5.根据权利要求1所述的一种自适应动态规划的柔性机械臂控制方法,其特征在于:所述柔性机械臂的角度的位移和转动进行控制的具体方法如下:柔性机械臂在不同的环境下工作,关节的位移和转动都会引起能量变化,N表示动能,U表示势能,用公式表示为 : 将U 1与U 2代入柔性机械臂的动能与势能方程中可得: 排除干扰量的柔性机械臂的的运动能量变化转换控制完成。 6.根据权利要求1所述的一种自适应动态规划的柔性机械臂控制方法,其特征在于:柔 权 利 要 求 书1/2页2CN 110315527 A

分区分配算法的实现

分区分配算法的实现 实验要求: ?分区空闲表要表示出分区号、始址、大小 ?作业序列能够动态输入 ?内存不足,必须有提示功能 ?总结收获体会及对该题解的改进意见和见解 (红色字体为再修改处)

源代码: /********************操作系统实验四:首次适应(first fit)算法的分区分配算法*******************/ #include void main() { int m,n,i,j,j0,k,k0,A[30][3],B[30]; printf("请输入空闲分区块数:"); scanf("%d",&m); printf("\t分区号\t\t大小\t\t起始地址\n"); for(i=0;i

} } } printf("\n---------首次适应算法按地址从小到大排列后空闲区---------\n"); printf("\t分区号\t\t大小\t\t起始地址\n"); for(i=0;i

C语言几种常见的排序方法

C语言几种常见的排序方法 2009-04-2219:55 插入排序是这样实现的: 首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。 从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。 重复2号步骤,直至原数列为空。 插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。 冒泡排序 冒泡排序是这样实现的: 首先将所有待排序的数字放入工作列表中。 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。 重复2号步骤,直至再也不能交换。 冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。 选择排序 选择排序是这样实现的: 设数组内存放了n个待排数字,数组下标从1开始,到n结束。 i=1 从数组的第i个元素开始到第n个元素,寻找最小的元素。 将上一步找到的最小元素和第i位元素交换。 如果i=n-1算法结束,否则回到第3步 选择排序的平均时间复杂度也是O(n²)的。 快速排序 现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。 堆排序 堆排序与前面的算法都不同,它是这样的: 首先新建一个空列表,作用与插入排序中的"有序列表"相同。 找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。 重复2号步骤,直至原数列为空。 堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。

操作系统实验动态分区分配算法

操作系统实验报告实验2 动态分区分配算法 报告日期:2016-6-15 姓名: 学号: 班级: 任课教师:

5k 10k 14k 26k 32k 512k 实验2 动态分区分配算法 一、实验内容 编写一个内存动态分区分配模拟程序,模拟内存的分配和回收的完整过程。 二、实验目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现与主存储器的管理方式有关的,通过本实验帮助学生理 解在可变分区管理方式下应怎样实现主存空间的分配和回收。 三、实验原理 模拟在可变分区管理方式下采用最先适应算法实现主存分配和回收。 (1)可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离,主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。例如: 为了说明哪些区是空闲的,可以用来装入新作业,必须要有一张空闲区说明表,格式如下: 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区。

操作系统实验_首次适应算法与循环首次适应算法

学号P7******* 专业计算机科学与技术姓名 实验日期2017.11.16 教师签字成绩 实验报告 【实验名称】首次适应算法和循环首次适应算法 【实验目的】 学会主存空间分配与回收的基本方法首次适应算法和循环首次适应算法。 【实验原理】 理解在连续分区动态的存储管理方式下,如何实现贮存空间的分配与回收。 采用可变式分区管理,使用最佳适应算法实现主存空间的分配与回收。 采用可变式分区管理,使用最坏适应算法实现主存空间的分配与回收。 数据结构: 1、bool ROM[N]; //定义主存信息,如果内存被占用,则标记为1,否则标记为0,设置内存单元为1024 2、pcb num[20];//定义作业数组,最大支持20个作业 3、typedef struct Pcb //定义作业结构体,包括名称,开始时间,大小,是否执行状态 { char name[10]; int start; int size; int state=0; } pcb; typedef struct Free_rom //空闲区结构体

{ int num; int start; int end; int space; } Free_room; Free_rom free_rom[100];//设置空闲区数组为100个 主要函数 void init();//初始化信息,包括初始化内存信息,和初始化作业队列 void insert_pcb1(pcb &a);插入作业函数,首次适应算法,如果有适合的就插入,无合适输出‘插入失败’ void insert_pcb1(pcb &a);插入作业函数,循环首次适应算法,如果有适合的就插入,无合适输出‘插入失败’ void Delete(pcb &a)//删除作业信息,包括修改内存状态修改作业状态并对作业进行初始化 void show();//显示信息 void find_free_rom() //寻找空闲区 算法流程图

动态规划的原理及应用

动态规划的原理及应用 班级:计科1302班 小组成员:王海涛蔡佳韦舒 蒋宪豪尹卓 完成时间:2015年5月26日

动态规划的原理及应用 学生:算法设计第5组,计算机系 指导教师:甘靖,计算机系 摘要:动态规划是解决多阶段决策过程最优化问题的一种方法。特点是把多阶段决策问题变换为一系列相互联系的单阶段问题,然后逐个加以解决。其基本思想就是把全局的问题化为局部的问题,为了全局最优必须局部最优,适用于在解决问题过程中需要多次重复解决子问题的问题。其应用领域广泛,涉及到管理学、经济学、交通、军事和计算机等多个领域,将动态规划思想正确地应用于实践,将对我们的生活带来便利,甚至带给我们的社会和国家以保障。 关键词:动态规划;最优决策;应用;领域 The Principle and Application of Dynamic Programing The dynamic programing is a way to solve optimization problem in the process of multi-stage decision,whose feature is alter the multi-stage decision problems to single phase problems which are connected with each other,and then solve them one by one.The basic idea is to change the overall problem into partcial problem.And the partcial one must keep the best in order to promise the quality of overall one,which splies to repeatedly solving subproblem throughout the whole process.It is spreading to many fields,like management,economics,traffic,military and computer. Put the idea of dynamic programing correctly into practice will bring a lot of convenience to our daily life,our society as well as our country.

C语言9种常用排序法

C语言9种常用排序法 1.冒泡排序 2.选择排序 3.插入排序 4.快速排序 5.希尔排序 6.归并排序 7.堆排序 8.带哨兵的直接插入排序 9.基数排序 例子:乱序输入n个数,输出从小到大排序后的结果1.冒泡排序 #include int main() { int i, j, n, a[100], temp; while(scanf("%d",&n)!=EOF) { for(i=0;i

for(i=0;ia[j+1]) //比较a[j]与a[j+1],使a[j+1]大于a[j] { temp = a[j+1]; a[j+1] = a[j]; a[j] = temp; } } } for(i=0;i int main() {

int i, j, n, a[100], t, temp; while(scanf("%d",&n)!=EOF) { for(i=0;ia[j]) t = j; } temp = a[i]; a[i] = a[t]; a[t] = temp; } for(i=0;i

存储管理---动态分区分配算法的模拟

一、设计任务 完成存储器动态分区分配算法的模拟实现。 二、设计思想 在对数据结构有一定掌握程度的情况下设计合理的数据结构来描述存储空间,实现分区存储管理的内存分配功能,应该选择最合适的适应算法(首次适应算法,最佳适应算法,最后适应算法,最坏适应算法),实现分区存储管理的内存回收算法,在这些存储管理中间必然会有碎片的产生,当碎片产生时,进行碎片的拼接,等等相关的内容。 三、预期目的 让我们了解操作系统的基本概念,理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。通过课程设计,我们可以进一步理解在计算机系统上运行的其它各类操作系统,并懂得在操作系统的支持下建立自己的应用系统。操作系统课程设计,对于训练学生掌握程序设计、熟悉上机操作和程序调试技术都有重要作用。重点培养学生的思维能力、设计能力、创新能力和排错能力。 四、设计方案 首先是对相关知识的掌握,例如数据结构,计算方法,组成原理以及操作系统等。在这些基本知识的基础上进行扩展,用语言的形式从函数,数据结构原代码,原程序等方面来达到自己想要的目的。该设计就是要达到对各个细节的问题的解决将各个数据块连接起来,最终达到存储器动态分区分配算法的模拟实现。 五、数据结构 1.设计合理的数据结构来描述存储空间: 1)对于未分配出去的部分,用空闲分区链表来描述。 struct freeList { int startAddress; /* 分区起始地址 */ int size; /* 分区大小 */ struct freeList *next; /* 分区链表指针 */ }

struct usedList { int startAddress; /* 分区起始地址 */ int jobID; /* 分区中存放作业ID */ struct usedList *next; /* 分区链表指针 */ } 3)将作业组织成链表。 struct jobList { int id; /* 作业ID */ int size; /* 作业大小(需要的存储空间大小)*/ int status; /* 作业状态 0 : new job ,1 : in the memory , 2 : finished . */ struct jobList *next; /* 作业链表指针 */ } 以上将存储空间分为空闲可占用两部分,在usedlist中设jobID而不设size,可以在不增加空间复杂度(与freelist相比)的同时更方便的实现可变分区存储管理(从后面的一些函数的实现上可以得出这个结论)。 尽管设置joblist增加了空间复杂度,但它的存在,使得该程序可以方便的直接利用D盘中的JOB文件。该文件可以认为是一个和其他进程共享的资源。通过这个文件,其他进程写入数据供读取。这中思想在操作系统设计中体现的很多。 2.实现分区存储管理的内存分配功能,选择适应算法(首次适应算法,最佳适应算法,最后适应算法,最坏适应算法)。 基本原理分析: 1) Best fit :将空闲分区按大小从小到大排序,从头找到大小合适的分区。 2) Worst fit:将空闲分区按大小从大到小排序,从头找到大小合适的分区。 3) First fit :将空闲分区按起始地址大小从小到大排序,…… 4) Last fit :将空闲分区按起始地址大小从大到小排序,…… 由此,可将空闲分区先做合适的排序后用对应的适应算法给作业分配存储空间。排序函数 order(bySize为零则按分区大小排序,否则按分区起始地址;inc为零从小到大排序,否则从大到小排序;通过empty指针返回结果)。 void order(struct freeList **empty,int bySize,int inc) {

采用首次适应算法的动态分区分配模拟课程设计实验报告

】 1 需求分析 1)本程序要求实现对内存的动态分配与回收的模拟,同时,在内存的分配时还必须使用首次适应算法,最后,还要显示内存块分配和回收后空闲内存分区链的情况。 2)要实现对作业的内存分配,首先要有一个对作业进行创建和分配内存的模块,其中,该模块在分配内存时要使用首次适应算法;要实现对内存的回收,要有一个内存回收的模块,其中,该模块在回收内存时要考虑内存回收的四种情况;最后,还要有一个能显示内存空闲分区链的情况的模块。 2 概要设计 1)首次适应算法的结构如图1: 图1 首次适应算法的结构图 》

2)数据结构: struct Fq { int size,o,no; Fq *before,*next; }; 其中,Fq表示结构体的名字(类型),size表示分区的可用空间大小,o表示该分区的状态(是否已分配),no表示该分区中的作业标志,*before表示该结点的向前指针,*next表示该结点的向后指针。 3)各种函数说明: \ void alloc(int b,int no,Fq *p); 对作业no进行内存分配的功能函数;其中,参数b表示需求的内存大小,参数no表示作业的编号,参数*p表示空闲分区链的第一个非空结点的指针; void free(Fq *c); 将地址为c的分区的内存回收;其中,参数*c表示要回收内存的结点; void create(Fq *head); 创建新作业的子函数;其中,参数*head表示空闲分区链的链首指针;要配合函数alloc()使用; void cha(Fq *head); 查看内存中的空闲分区链的子函数;其中,参数*head表示空闲分区链的链首指针; # void hui(Fq *head); 回收内存的子函数;其中,参数*head表示空闲分区链的链首指针;要配合函数free()使用; 3 运行环境 1)操作系统: Windows XP ( 32位 / DirectX 11 ) 2)电脑: X86 兼容台式电脑

动态分区分配算法资料

动态分区分配算法 一实验内容与要求 内容:动态分区分配是根据进程的实际需要,动态地为之分配内存空间,而在分配时,须按照一定的分配算法,从空闲分区表或空闲分区链中选出一分区分配给该作业。在本实验中运用了三种分配算法,分别是1.首次适应算法,2.循环首次适应算法,3.最佳适应算法。 要求:动态分区算法也称为可变分区分配算法,常见的空闲区查找算法有首次适应算法,循环首次适应算法,最佳适应算法。特别注意分区回收时,相邻空闲分区需要合并。 (1)参考操作系统教材理解这3种分配算法以及回收算法。 (2)实现3种分配算法以及回收算法。 (3)已知作业申请内存和释放内存的序列,给出内存的使用情况。 (4)作业申请内存和释放内存的序列可以存放在文本文件中。 (5)设计简单的交互界面,演示所设计的功能。(可以使用MFC进行界面的设计) (6)可根据自己能力,在完成以上基本要求后,对程序功能进行适当扩充。 二、需求分析 本次实验通过用C语言进行编程并调试、运行,形象地表现出动态分区的分配方式,直观地展现了首次适应算法和最佳适应算法对内存的释放和回收方式之间的区别。加深了我们对两种算法优缺点的理解,帮助我们了解一些数据结构和分配算法,进一步加深我们对动态分区存储器管理方式及其实现过程的理解。主要的问题在于,如何解决两种算法对内存的释放和回收空间的表示。 动态分区分配:又称为可变分区分配,这种分配方式并不事先先将主存划分成一块块的分区,而是在作业进入主存时,根据作业的大小动态地建立分区。并使分区的大小正好适应作业的需要。因此系统中分区的大小是可变的,分区的数

目也是可变的。 分区分配算法: 1.首次适应法: 为作业选择分区时总是按地址从高到低搜索,只要找到可以容纳该作业的空白块,就把该空白块分配给该作业。 特点:优先利用内存中底地址部分的空闲分区 (将所有空闲区,按其地址递增的顺序链接) 2.循环首次适应算法 该算法是由首次适应算法演变而成,在为进程分配内存空间时,不再是每次都从第一个空间开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,从中划出一块与请求大小相等的内存空间分配给作业,为实现本算法,设置一个全局变量f,来控制循环查找,当f%N==0时,f=0;若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。 3.最佳适应算法: 接到内存申请时,在空闲块表中找到一个不小于请求的最小空块进行分配;为作业选择分区时总是寻找其大小最接近于作业所要求的存储区域。 三、概要设计 动态分区常用的数据结构有空闲分区表和空闲分区链,用来记录内存的使用情况,此题中我采用的是空闲分区链的结构,用链指针将所有的分区链接成一条链,每个分区的结构如下所示: typedef struct freearea//定义一个空闲区说明表结构 { int ID; //分区号 long size; //分区大小 long address; //分区地址 int state; //状态 }ElemType; typedef struct DuLNode //double linked list { ElemType data; struct DuLNode *prior; //前趋指针 struct DuLNode *next; //后继指针 }DuLNode,*DuLinkList;

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

实验五 动态分区分配算法

实验五动态分区分配算法 一、目的和要求 掌握动态分区分配方式中的数据结构、分配算法,针对不同的分配算法如何实现内存空间的分配与回收,必要时如何实现“紧凑”。 二、实验内容 编写一个内存动态分区分配模拟程序,分别实现:首次适应、循环首次适应、最佳适应算法,对内存的分配和回收过程,必要时进行“紧凑”。 每次分配和回收后把空闲分区的变化情况以及个进程的申请、释放情况最好以图形方式显示,尽量可能设计一个友好的用户界面,直观显示内存区域经分配、回收、紧凑后的动态变化情况。 实现提示: (1)数据结构 可采用链表表示内存使用情况,链表中的结点可以给出对应的某块内存区域的信息,如:区号、起始地址、大小、使用情况(是否空闲)、所装入的进程名等。可以设置两个链表,一个是空闲分区表,一个是已分配分区表。 可通过菜单的选项来完成进程对内存的申请或释放操作。 (2)内存分配 选择分配算法,根据进程申请的内存空间实施分配,若分配成功,返回所得的内存首地址,并显示调整后的空闲分区表。若没有单个空闲分区满足进程需求,而紧凑后可以满足,则实施紧凑并分配。若紧凑后仍不能满足,则分配失败。(3)内存回收 进程结束后,回收其占有的内存,按内存回收的四种情况进行回收。 (4)排序 无论是分配还是回收,都要按相应的分配算法对空闲分区的组织要求重新排序。 测试用例:某操作系统采用可变分区分配存储管理方法,用户区为512K 且始址为0。若分配时采用分配空闲低地址部分的方案,其初始时用户区的512K 空间空闲,对下述申请、释放序列:申请300K,申请100K,释放300K,申请150K,申请30K,申请40K,申请60K,释放30K;运行程序显示两种算法的运行结果: (1)采用首次适应算法,空闲分区中有哪些空闲块(给出始址,大小)? (2)采用最佳适应算法,空闲分区中有哪些空闲块(给出始址,大小)?

计算机操作系统内存分配实验报告记录

计算机操作系统内存分配实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

一、实验目的 熟悉主存的分配与回收。理解在不同的存储管理方式下,如何实现主存空间的分配与回收。掌握动态分区分配方式中的数据结构和分配算法及动态分区存储管理方式及其实现过程。 二、实验内容和要求 主存的分配和回收的实现是与主存储器的管理方式有关的。所谓分配,就是解决多道作业或多进程如何共享主存空间的问题。所谓回收,就是当作业运行完成时将作业或进程所占的主存空间归还给系统。 可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 实验要求使用可变分区存储管理方式,分区分配中所用的数据结构采用空闲分区表和空闲分区链来进行,分区分配中所用的算法采用首次适应算法、最佳适应算法、最差适应算法三种算法来实现主存的分配与回收。同时,要求设计一个实用友好的用户界面,并显示分配与回收的过程。同时要求设计一个实用友好的用户界面,并显示分配与回收的过程。 三、实验主要仪器设备和材料 实验环境 硬件环境:PC或兼容机 软件环境:VC++ 6.0 四、实验原理及设计分析 某系统采用可变分区存储管理,在系统运行当然开始,假设初始状态下,可用的内存空间为640KB,存储器区被分为操作系统分区(40KB)和可给用户的空间区(600KB)。 (作业1 申请130KB、作业2 申请60KB、作业3 申请100KB 、作业2 释放 60KB 、作业4 申请 200KB、作业3释放100KB、作业1 释放130KB 、作业5申请140KB 、作业6申请60KB 、作业7申请50KB) 当作业1进入内存后,分给作业1(130KB),随着作业1、2、3的进入,分别分配60KB、100KB,经过一段时间的运行后,作业2运行完毕,释放所占内存。此时,作业4进入系统,要求分配200KB内存。作业3、1运行完毕,释放所占内存。此时又有作业5申请140KB,作业6申请60KB,作业7申请50KB。为它们进行主存分配和回收。 1、采用可变分区存储管理,使用空闲分区链实现主存分配和回收。 空闲分区链:使用链指针把所有的空闲分区链成一条链,为了实现对空闲分区的分配和链接,在每个分区的起始部分设置状态位、分区的大小和链接各个分区的前向指针,由状态位指示该分区是否分配出去了;同时,在分区尾部还设置有一后向指针,用来链接后面的分区;分区中间部分是用来存放作业的空闲内存空间,当该分区分配出去后,状态位就由“0”置为“1”。 设置一个内存空闲分区链,内存空间分区通过空闲分区链来管理,在进行内存分配时,系统优先使用空闲低端的空间。 设计一个空闲分区说明链,设计一个某时刻主存空间占用情况表,作为主存当前使用基础。初始化空间区和已分配区说明链的值,设计作业申请队列以及作业完成后释放顺序,实现主存的分配和回收。要求每次分配和回收后显示出空闲内存分区链的情况。把空闲区说明

实验报告-动态分区分配算法

南昌大学实验报告 学生姓名:马江涛学号: 8000612091 专业班级:计算机软件121班 实验类型:□验证□综合□设计□创新实验日期: 2014-05-08 实验成绩: 【实验要求】 1、编程实现首次适应算法和最佳适应算法的动态分区分配的分配过程和回收过程。其中,空闲分区通过分区链来管理;在进行内存分配时,系统优先使用空闲区低端的空间。 2、假设初始状态下,可用内存空间为640K,并依次有下列请求序列: 1)作业1申请130KB。 2)作业2申请60KB。 3)作业3申请100KB。 4)作业2释放60KB。 5)作业4申请200KB。 6)作业3释放100KB。 7)作业1释放130KB。 8)作业5申请140KB。 9)作业6申请60KB。 10)作业7申请50KB。 11)作业6释放60KB。 请分别用首次适应算法和最佳适应算法进行内存块的分配和回收,要求每次分配和回收后显示出空闲内存分区链的情况【可参考后文的实验提示】。 3、上机时认真的进行测试,输入不同的资源分配请求,写出实验结果; 4、具体要求: (1)对你的程序关键代码处进行注释。 (2)给出实验数据,对结果进行分析,说明对相关知识点的理解。 【实验目的】 了解动态分区分配方式中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。 【实验思路】 首次适应算法(First-fit):当要分配内存空间时,就查表,在各空闲区中查找满足大小要求的可用块。只要找到第一个足以满足要球的空闲块就停止查找,并把它分配出去;如果该空闲空间与所需空间大小一样,则从空闲表中取消该项;如果还有剩余,则余下的部分仍留在空闲表中,但应修改分区大小和分区始址。 最佳适应算法(Best-fit):当要分配内存空间时,就查找空闲表中满足要求的空闲块,并使得剩余块是最小的。然后把它分配出去,若大小恰好合适,则

数据结构经典算法 C语言版

//插入排序法 void InsertSort() { int s[100]; int n,m,j,i=0,temp1,temp2; printf("请输入待排序的元素个数:"); scanf("%d",&n); printf("请输入原序列:"); for (i=0; is[n-1]); s[n]=m; for (i=0; im) { temp1=s[i]; s[i]=m; for (j=i+1; j

//堆排序 static a[8] = {0,25,4,36,1,60,10,58,}; int count=1; void adjust(int i,int n) { int j,k,r,done=0; k = r = a[i]; j = 2*i; while((j<=n)&&(done==0)) { if(j=a[j]) done = 1; else { a[j/2] = a[j]; j = 2* j; } } a[j/2] = r; } void heap(int n) { int i,j,t; for(i =n/2;i>0;i--) adjust(i,n); printf("\n初始化成堆===> "); for(i = 1;i < 8;i++) printf("%5d",a[i]); for(i = n-1;i>0;i--) { t = a[i+1]; a[i+1] = a[1]; a[1] = t; adjust(1,i); printf("\n第%2d步操作结果===>",count++); for(j = 1;j<8;j++) printf("%5d",a[j]); } }

操作系统_动态分区分配算法课程设计_java版

湖南文理学院实验报告 课程名称操作系统课程设计 实验名称存储管理——动态分区分配算法的模拟 成绩 学生姓名曹乐专业计算机 班级、学号 13101 18 同组者姓名 实验日期 12.21 1、实验目的 通过这次实验,加深对动态分区分配算法的理解,进一步掌握首次适应算法、循环首次适应算法、最佳适应算法、最坏适应算法和快速适应算法的实现方法。 2、试验内容 问题描述: 设计程序模拟四种动态分区分配算法:首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的工作过程。假设内存中空闲分区个数为n,空闲分区大小分别为P1, … ,P n,在动态分区分配过程中需要分配的进程个数为m(m≤n),它们需要的分区大小分别为S1, … ,S m,分别利用四种动态分区分配算法将m个进程放入n个空闲分区,给出进程在空闲分区中的分配情况。 3、程序要求: 1)利用首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法四种动态分区分配算法模拟分区分配过程。

2)模拟四种算法的分区分配过程,给出每种算法进程在空闲分区中的分配情况。 3)输入:空闲分区个数n,空闲分区大小P1, … ,P n,进程个数m,进程需要的分区大小S1, … ,S m,算法选择1-首次适应算法,2-循环首次适应算法,3-最佳适应算法,4-最坏适应算法,5-快速适应算法。 4、需求分析 (1) 输入的形式和输入值的范围 算法选择 空闲分区个数 空闲分区大小(KB) 作业个数 作业名称 作业大小(KB) (2) 输出的形式 最终内存空闲分区的分配情况 5、调试分析 通过这次课程设计我练习了用JAVA写系统软件,对OS中可变分区存储管理有了更深刻的了解。在写程序的时候也遇到了一些困难。比如在设计数据结构时特别犹豫,总想找一个很合适的。但是,后来才知道,关键要多尝试,而空想是没有用的。最后我证实了自己的设计

相关主题
文本预览
相关文档 最新文档