当前位置:文档之家› 高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)
高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性

例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.

解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数.

评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.

(2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征.

解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.

评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性:

(1)f(x)=-

(2)f(x)=(x-1).

解:(1)f(x)的定义域为R.因为

f(-x)=|-x+1|-|-x-1|

=|x-1|-|x+1|=-f(x).

所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数.

评析用定义判断函数的奇偶性的步骤与方法如下:

(1)求函数的定义域,并考查定义域是否关于原点对称.

(2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f

(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性.

例3已知函数f(x)=.

(1)判断f(x)的奇偶性.

(2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论.解:因为f(x)的定义域为R,又

f(-x)===f(x),

所以f(x)为偶函数.

(2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数.其证明:取x1<x2<0,

f(x1)-f(x2)=- ==.

因为x1<x2<0,所以

x2-x1>0,x1+x2<0,

x21+1>0,x22+1>0,

得f(x1)-f(x2)<0,即f(x1)<f(x2).

所以f(x)在(-∞,0)上为增函数.

评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.

例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=

在(-∞,0)上是增函数还是减函数?证明你的结论.

分析根据函数的增减性的定义,可以任取x1<x2<0,进而判定F(x1)-F(x2)=-

=的正负.为此,需分别判定f(x1)、f(x2)与f(x2)的正负,而这可以从已条件中推出.

解:任取x1、x2∈(-∞,0)且x1<x2,则有-x1>-x2>0.

∵y=f(x)在(0,+∞)上是增函数,且f(x)<0,

∴f(-x2)<f(-x1)<0.①

又∵f(x)是奇函数,

∴f(-x2)=-f(x2),f(-x1)=-f(x1)②

由①、②得f(x2)>f(x1)>0.于是

F(x1)-F(x2)=>0,即F(x1)>F(x2),

所以F(x)=在(-∞,0)上是减函数.

评析本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+∞)内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在(-∞,0)内的任意性而导致错误.

避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.

例5讨论函数f(x)=(a≠0)在区间(-1,1)内的单调性.

分析根据函数的单调性定义求解.

解:设-1<x1<x2<1,则

f(x1)-f(x2)=-

∵x1,x2∈(-1,1),且x1<x2,

∴x1-x2<0,1+x1x2>0,

(1-x21)(1-x22)>0

于是,当a>0时,f(x1)<f(x2);当a<0时,f(x1)>f(x2).

故当a>0时,函数在(-1,1)上是增函数;当a<0时,函数在(-1,1)上为减函数.

评析根据定义讨论(或证明)函数的单调性的一般步骤是:

(1)设x1、x2是给定区间内任意两个值,且x1<x2;

(2)作差f(x1)-f(x2),并将此差式变形;

(3)判断f(x1)-f(x2)的正负,从而确定函数的单调性.

例6求证:f(x)=x+ (k>0)在区间(0,k]上单调递减.

解:设0<x1<x2≤k,则

f(x1)-f(x2)=x1+ -x2-

∵0<x1<x2≤k,

∴x1-x2<0,0<x1x2<k2,

∴f(x1)-f(x2)>0

∴f(x1)>f(x2),

∴f(x)=x+ 中(0,k]上是减函数.

评析函数f(x)在给定区间上的单调性反映了函数f(x)在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明f(x)在[a,b]上是增函数(减函数),就必须证明对于区间[a,b]上任意两点x1,x2,当x1<x2时,都有不等式f(x1)<f(x2)(f(x1)>f(x2))类似可以证明:

函数f(x)=x+ (k>0)在区间[k,+∞]上是增函数.

例7判断函数f(x)=的奇偶性.

分析确定函数的定义域后可脱去绝对值符号.

解:由得函数的定义域为[-1,1].这时,|x-2|=2-x.

∴f(x)=,

∴f(-x)===f(x).

且注意到f(x)不恒为零,从而可知,f(x)=是偶函数,不是奇函数.

评析由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.

函数奇偶性练习

一、选择题

1.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()

A .奇函数

B .偶函数

C .既奇又偶函数

D .非奇非偶函数 2.已知函数f (x )=ax 2

+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .3

1

=

a ,

b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2

-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5

+ax 3

+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1

11

1)(2

2

+++-++=

x x x x x f 是(

A .偶函数

B .奇函数

C .非奇非偶函数

D .既是奇函数又是偶函数 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5, 则f (x )在(-∞,0)上有( )

A .最小值-5

B .最大值-5

C .最小值-1

D .最大值-3 二、填空题 7.函数2

122)(x

x x f ---=

的奇偶性为________(填奇函数或偶函数) .

8.若y =(m -1)x 2

+2mx +3是偶函数,则m =_________. 9.已知f (x )是偶函数,g (x )是奇函数,若1

1)()(-=

+x x g x f ,则f (x )的解析式为_______.

10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________. 三、解答题

11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.

12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数.

13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3

+2x 2

—1,求f (x )在R 上的表达式.

14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.

15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数.

函数的奇偶性练习参考答案

1. 解析:f (x )=ax 2

+bx +c 为偶函数,x x =)(?为奇函数,

∴g (x )=ax 3

+bx 2

+cx =f (x )·)(x ?满足奇函数的条件. 答案:A

2.解析:由f (x )=ax 2

+bx +3a +b 为偶函数,得b =0. 又定义域为[a -1,2a ],∴a -1=2a ,∴3

1

=

a .故选A . 3.解析:由x ≥0时,f (x )=x 2

-2x ,f (x )为奇函数,

∴当x <0时,f (x )=-f (-x )=-(x 2

+2x )=-x 2

-2x =x (-x -2).

∴,

,

)0()0()

2()2()(<≥---=???x x x x x x x f 即f (x )=x (|x |-2)

答案:D

4.解析:f (x )+8=x 5

+ax 3

+bx 为奇函数,

f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A

5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.解析:)(x ?、g (x )为奇函数,∴)()(2)(x bg x a x f +=-?为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.

∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C

7.答案:奇函数

8.答案:0解析:因为函数y =(m -1)x 2

+2mx +3为偶函数,

∴f (-x )=f (x ),即(m -1)(-x )2

+2m (-x )+3=(m —1)x 2

+2mx +3,整理,得m =0. 9.解析:由f (x )是偶函数,g (x )是奇函数,

1

1

)()(--=

-x x g x f ,联立

1

1)()(-=

+x x g x f ,∴

1

1)1111(21)(2-=----=

x x x x f . 答案:11)(2-=x x f 10.答案:0 11.答案:21

12.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,

∴f (y )+f (-y )=2f (0)·f (y )?f (-y )=f (y ),故f (x )为偶函数. 13.解析:本题主要是培养学生理解概念的能力.

f (x )=x 3

+2x 2

-1.因f (x )为奇函数,∴f (0)=0.

当x <0时,-x >0,f (-x )=(-x )3

+2(-x )2

-1=-x 3

+2x 2

-1, ∴f (x )=x 3

-2x 2

+1.

因此,.

)0()0()0(1

20

12)(,,2323

<=>+--+=??

?

??x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力. 14.解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.

因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)?f (x 1)<-f (x 2)?f (x 1)

>f(x2),即单调减函数.

点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.

15.解析:由x1,x2 R且不为0的任意性,令x1=x2=1代入可证,

f(1)=2f(1),∴f(1)=0.

又令x1=x2=-1,

∴f[-1×(-1)]=2f(1)=0,

∴(-1)=0.又令x1=-1,x2=x,

∴f(-x)=f(-1)+f(x)=0+f(x)=f(x),即f(x)为偶函数.

点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x1=x2=1,x1=x2=-1或x1=x2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析 数学函数奇偶性练习题及答案解析 1.下列命题中,真命题是 A.函数y=1x是奇函数,且在定义域内为减函数 B.函数y=x3x-10是奇函数,且在定义域内为增函数 C.函数y=x2是偶函数,且在-3,0上为减函数 D.函数y=ax2+cac≠0是偶函数,且在0,2上为增函数 解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+cac≠0在0,2上为减函数,故选C. 2.奇函数fx在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f-6+f-3的值为 A.10 B.-10 C.-15 D.15 解析:选C.fx在[3,6]上为增函数,fxmax=f6=8,fxmin=f3=-1.∴2f-6+f-3=-2f6- f3=-2×8+1=-15. 3.fx=x3+1x的图象关于 A.原点对称 B.y轴对称 C.y=x对称 D.y=-x对称 解析:选A.x≠0,f-x=-x3+1-x=-fx,fx为奇函数,关于原点对称. 4.如果定义在区间[3-a,5]上的函数fx为奇函数,那么a=________. 解析:∵fx是[3-a,5]上的奇函数, ∴区间[3-a,5]关于原点对称, ∴3-a=-5,a=8. 答案:8 1.函数fx=x的奇偶性为

A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 解析:选D.定义域为{x|x≥0},不关于原点对称. 2.下列函数为偶函数的是 A.fx=|x|+x B.fx=x2+1x C.fx=x2+x D.fx=|x|x2 解析:选D.只有D符合偶函数定义. 3.设fx是R上的任意函数,则下列叙述正确的是 A.fxf-x是奇函数 B.fx|f-x|是奇函数 C.fx-f-x是偶函数 D.fx+f-x是偶函数 解析:选D.设Fx=fxf-x 则F-x=Fx为偶函数. 设Gx=fx|f-x|, 则G-x=f-x|fx|. ∴Gx与G-x关系不定. 设Mx=fx-f-x, ∴M-x=f-x-fx=-Mx为奇函数. 设Nx=fx+f-x,则N-x=f-x+fx. Nx为偶函数. 4.已知函数fx=ax2+bx+ca≠0是偶函数,那么gx=ax3+bx2+cx A.是奇函数 B.是偶函数 C.既是奇函数又是偶函数

高一数学必修一函数的奇偶性

函数的单调性和奇偶性 教材复习 基本知识方法 1.奇偶函数的性质: ()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数?()f x 的图象关于y 轴对称;()f x 是奇函数?()f x 的图象关于原点对称; ()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的 单调性. 2.()f x 为偶函数()()(||)f x f x f x ?=-=. 3.若奇函数()f x 的定义域包含0,则(0)0f =. 4.判断函数的奇偶性的方法: ()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ()2图象法; ()3性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇; 5. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1() f x f x =±-. 6.判断函数的单调性的方法: (1)定义法;(2)图象法;(3)性质法:在公共定义域内,利用函数的运算性质:若()f x 、)(x g 同为增函数,则①()()f x g x +为增函数;②()()f x g x 为增函数;③()1()0() f x f x >为减函数; ()()0f x ≥为增函数;⑤()f x -为减函数.

1.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数。 2.函数)11()(+--=x x x x f 是( ) A .是奇函数又是减函数 B .是奇函数但不是减函数 C .是减函数但不是奇函数 D .不是奇函数也不是减函数 3.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)2 52()23 (2++-a a f f 与的大小关系是( ) A .)23(-f >)252(2++a a f B .)23(-f <)2 52(2 ++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)2 52(2++a a f 4.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是( ) A .{}|303x x x -<<>或B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或 5.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 6.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =_____________________。 7.若函数2()1 x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 8.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x =. 9.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 和()g x 的解析式. 10.利用函数的单调性求函数x x y 21++=的值域;

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

函数的奇偶性练习题

函数的奇偶性 一、选择题 1.若)(x f 是奇函数,则其图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线x y =对称 2.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象 上的是( ) A . (())a f a ,- B . (())--a f a , C . (())---a f a , D .(())a f a ,- 3.下列函数中为偶函数的是( ) A .x y = B .x y = C .2x y = D .13+=x y 4. 如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( ) A .增函数,最小值是-5 B .增函数,最大值是-5 C .减函数,最小值是-5 D .减函数,最大值是-5 5. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 6.已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是( ) A .)2()2 ()(f f f >- >-π π B .)()2 ()2(ππ ->->f f f C .)2 ()2()(π π- >>-f f f D .)()2()2 (ππ ->>- f f f 二、填空题 7.若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ . 8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为__________________________. 9.已知)(x f 是定义在[)2,0-?(]0,2上的奇函数,当0>x 时,)(x f 的图象如右图所示,那么f (x ) 的值域是 .

2020高考数学刷题首选卷考点测试7函数的奇偶性与周期性(理)(含解析)

考点测试7 函数的奇偶性与周期性 高考概览 本考点是高考的必考知识点,常考题型为选择题、填空题,分值5分,中等难度 考纲研读 1.结合具体函数,了解函数奇偶性的含义 2.会运用函数图象理解和研究函数的奇偶性 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性 一、基础小题 1.若函数f (x )=x (2x +1)(x -a )为奇函数,则实数a =( ) A .12 B .23 C .3 4 D .1 答案 A 解析 函数f (x )的定义域为xx ≠-1 2且x ≠a . ∵奇函数定义域关于原点对称. ∴a =1 2 .故选A . 2.已知定义在R 上的函数f (x )是奇函数,且是以2为周期的周期函数,则f (1)+f (4)+f (7)=( ) A .-1 B .0 C .1 D .4 答案 B 解析 由题意知f (-x )=-f (x )且f (x +2)=f (x ),所以f (1)+f (4)+f (7)=f (1)+

f (0)+f (-1)=0.故选B . 3.已知f (x )为奇函数,在[3,6]上是增函数,且在[3,6]上的最大值为8,最小值为-1,则2f (-6)+f (-3)=( ) A .-15 B .-13 C .-5 D .5 答案 A 解析 因为函数在[3,6]上是增函数,所以f (6)=8,f (3)=-1.又因为函数为奇函数,所以2f (-6)+f (-3)=-2f (6)-f (3)=-2×8+1=-15.故选A . 4.已知函数f (x )为奇函数,当x >0时,f (x )=x 2 -x ,则当x <0时,函数f (x )的最大值为( ) A .-14 B .14 C .12 D .-12 答案 B 解析 解法一:设x <0,则-x >0,所以f (-x )=x 2+x ,又函数f (x )为奇函数,所以 f (x )=-f (-x )=-x 2-x =-? ?? ?? x +12 2+14,所以当x <0时,函数f (x )的最大值为14 .故选B . 解法二:当x >0时,f (x )=x 2-x =? ????x -122-14 ,最小值为-14, 因为函数f (x )为奇函数, 所以当x <0时,函数f (x )的最大值为1 4 .故选B . 5.已知f (x )是定义在R 上的函数,且f (x +2)=-f (x ).当x ∈(0,2)时,f (x )=2x 2 ,则f (7)=( ) A .-2 B .2 C .-98 D .98 答案 A 解析 由f (x +2)=-f (x ),得f (7)=-f (5)=f (3)=-f (1)=-2.故选A . 6.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -x B .12(e x +e -x ) C .e x +e -x D .12(e x -e -x ) 答案 D 解析 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).故选D . 7.已知函数f (x )=g (x )+x 2 ,对于任意x ∈R 总有f (-x )+f (x )=0,且g (-1)=1,则g (1)=( ) A .-1 B .1 C .3 D .-3

人教A版数学必修一函数的奇偶性

数学·必修1(人教A版) 1.3.3 函数的奇偶性 ?基础达标 1.已知f(x)是定义在R上的奇函数,则f(0)的值为( ) A.-1 B.0 C.1 D.无法确定

解析:∵f(x)为R上的奇函数, ∴f(-x)=-f(x),∴f(0)=-f(0),∴f(0)=0. 答案:B 2.(2013·山东卷)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+1 x ,则f(-1)=( ) A.-2B.0C.1D.2 答案:A 3.如果偶函数在区间[a,b]上有最大值,那么该函数在区间[-b,-a]上( ) A.有最大值B.有最小值 C.没有最大值D.没有最小值 解析:∵偶函数图象关于y轴对称,由偶函数在区间[a,b]上具有最大值,∴在区间[-b,-a]上有最大值. 答案:A 4.已知f(x)=ax3+bx+5,其中a,b为常数,若f(-7)=-7,则f(7)=( ) A.7B.-7C.12D.17 解析:∵f(-7)=-7, ∴a(-7)3+b(-7)+5=-7, ∴73a+7b=12. ∴f(7)=73a+7b+5=12+5=17. 答案:D 5.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递减区间是________. 解析:∵f(x)是偶函数,∴f(-x)=f(x), ∴k-1=0,∴k=1,

∴f(x)=-x2+3的递减区间为[0,+∞). 答案:[0,+∞) ?巩固提高 6.设f(x)是R上的任意函数,则下列叙述正确的是( ) A.f(x)f(-x)是奇函数 B.f(x)|f(-x)|是奇函数 C.f(x)-f(-x)是偶函数 D.f(x)+f(-x)是偶函数 解析:取f(x)=x,则f(x)f(-x)=-x2是偶函数,A错,f(x)|f(-x)|=x2是偶函数,B错;f(x)-f(-x)=2x是奇函数,C 错.故选D. 答案:D 7.已知定义在R上的偶函数f(x)的单调递减区间为[0,+∞),则使f(x)<f(2)成立的自变量取值范围是( ) A.(-∞,2) B.(2,+∞) C.(-2,2)D.(-∞,-2)∪(2,+∞) 解析:∵f(x)是偶函数且在[0,+∞)为减区间,示意图如下:由图示可知:f(x)<f(2)成立的自变量的取值范围是(-∞,- 2)∪(2,+∞). 答案:D

第招 如何判断函数的奇偶性

第11招 如何判断函数的奇偶性? 判断函数的奇偶性(有的还牵涉三角函数)是高考中常考的知识点,一般以选择题形式出现. 解法指导与经典范例 (一) 判断函数奇偶性的方法 1. 定义法 这是最常用的方法.其解法步骤如下:(1)确定函数的定义域是否是关于原点的对称区间.若不是,可判断该函数是非奇非偶函数.若是,再按下列步骤继续进行.(2)在定义域内任取x ,以-x 代换f(x)中的x 得f(-x).(3)依据定义得出结论. 注意:(1)既是奇函数又是偶函数的函数只能是f(x)=0. (2)若奇函数f(x)在x=0处有定义,则f(0)=0.(如例6证一) 【例1】函数 ()()是x x x x f +-? +=11( ). A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D0非奇非偶函数 解 (]()() 的奇偶性】判断函数【例原点对称的区间由于这定义域不是关于想)的定义域为函数得?????>+-<+=-≤<-≥+-00)(2. .1,19,1101122x x x x x x x f f x x x 解 当x<0时,-x>0,()()() ().)(22x f x x x x x f -=+-=-+--=-∴ 而当x>0时,-x<0,()()()()x f x x x x x f -=-=-+-=-∴22 ()()()()().,,00,为奇函数故都有对任意x f x f x f x =-+∞∞-∈∴ 【例3】2002.北京文三(22)已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、b R ∈都满足:()()().a bf b af b a f +=? (1) 求f(0)、f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论. 解(1)()()()()()()=?==?+?=?=111.00000000f f f f f f ()()1111f f ?+? ()f f ∴=,12(1)=0. (2)f(x)是奇函数.证明如下: ()()()[]()()()()().01.01,1211111=-∴=--=----=-?-=f f f f f f f 而 又 ()()()()()().,11是奇函数x f x f xf x f x f x f ∴-=-+-=?-=- 2. 利用定义的等价命题来判断 ()()()()()().00是偶函数是奇函数;x f x f x f x f x f x f ?=--?=-+ 或:当()()()()()() ().110是偶函数是奇函数;时, x f x f x f x f x f x f x f ?=-?-=-≠

高一数学函数的奇偶性练习题

1、判断奇偶性:2211)(x x x f -+-= 2、已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f 3、判断函数???<≥-=) 0()0()(22x x x x x f 的奇偶性。

4、若3)3()2()(2+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间 6、定义在R 上的偶函数)(x f 在)0,(-∞是单调递减,若)2()6(a f a f <-,则a 的取值范围是如何 7、设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象如右图,则不等 式()0

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数. (2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f

高中数学知识点:函数的奇偶性概念及判断步骤

高中数学知识点:函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:()()()0,1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数.

3.用定义判断函数奇偶性的步骤 (1)求函数() f x的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数() f x的解析式; f x的定义域,化简函数() (3)求() f x f x的 -与() f x之间的关系,判断函数() -,可根据() f x 奇偶性. 若() f x,则() f x是奇函数; f x -=-() 若() f x是偶函数; f x,则() -=() f x 若() f x f x既不是奇函数,也不是偶函数; ≠±,则() -() f x 若() -=-() f x既是奇函数,又 f x f x,则() f x f x -() =且() 是偶函数

函数的奇偶性练习题附标准答案资料全

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值围是 ( ) A.(-¥,2) B. (2,+¥) C. (-¥,-2)è(2,+¥) D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=? ? ?>+<-). 0() 1(),0() 1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值围

8.已知函数21 ()(,,)ax f x a b c N bx c += ∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,数k 的取值围. 10下列四个命题: (1)f (x )=1是偶函数; (2)g (x )=x 3,x ∈(-1,1]是奇函数; (3)若f (x )是奇函数,g (x )是偶函数,则H (x )=f (x )·g (x )一定是奇 函数; (4)函数y =f (|x |)的图象关于y 轴对称,其中正确的命题个数是 ( ) A .1 B .2 C .3 D .4 11下列函数既是奇函数,又在区间[]1,1-上单调递减的是( ) A.()sin f x x = B.()1f x x =-+ C.() 1()2x x f x a a -=+ D.2()2x f x ln x -=+ 12若y =f (x )(x ∈R )是奇函数,则下列各点中,一定在曲线y =f (x )上的是( ) A .(a ,f (-a )) B .(-sin a ,-f (-sin a ))

必修一函数的奇偶性

函数的奇偶性 一、函数奇偶性的判断 例题:判断下列函数的奇偶性。 (1)();3 342 -+-=x x x f (2)();4422x x x f -+-= (3)()()()?????<-->+=.012 1,012122x x x x x f (4)()1 222++=x x x x f 练习:判断下列函数的奇偶性 (1)()2 22--=x x x x f ; (2)()()x x x x f -+-=111; (3)()12-+=x x x f ; (4)()()()() ?????<---=>+-=0320003222x x x x x x x x f .

二、函数奇偶性的性质运用 1、设函数()x f ,()x g 的定义域都为R ,且()x f 是奇函数,()x g 是偶函数,则()x f ()x g 是 ;()()x g x f 是 ;()()x g x f 是 ; 2、函数()的图象关于x x x f 2 3-= 对称; 3、若函数()x f 是定义在R 上的奇函数,则下列坐标表示的点一定在()x f 图象上的是( ) ()()a f a A -,. ()()a f a B --,. ()()a f a C ---,. ()()a f a D -,. 例题:已知函数()x f 是定义在R 上的奇函数,当时,0>x ()x x x f 22-=, (1)求出函数()x f 在R 上的解析式; (2)画出函数()x f 的图象。 练习1已知函数()x f 是R 上的奇函数,当()()时,当时,0,10<+-=>x x x x f x ()x f 等于

最新函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2)(,(2) x x x f -=3)( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。

函数的奇偶性练习题及答案

函数的奇偶性练习题 一、选择题 1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .a=1/3,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1111)(22+++-++=x x x x x f 是( )A 偶函数B 奇函数C 非奇非偶函数D 既是奇函数又是偶函数 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 二、填空题 7.函数212 2)(x x x f ---=的奇偶性为________(填奇函数或偶函数) 8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________ 9.已知f (x )是偶函数,g (x )是奇函数,若11 )()(-=+x x g x f ,则f (x )的解析式为_______ 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________ 三、解答题 11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数 13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2 —1,求f (x )在R 上的表达式 14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明 15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数

高中数学必修一函数的奇偶性练习

单元测试(2) 一、选择题:(每小题4,共40分) 1. 下列哪组中的两个函数是同一函数 ( ) A .2y =与y x = B 。3y =与y x = C .y = 2y = D 。y =与2 x y x = 2. 若()f x =(3)f -等于 ( ) (A)32- (B)34 - (C)34 (D)32± 3. 函数f(x)=2-x +(x-4)0的定义域为 ( ) A . {x|x>2,x ≠4} B 。{x|x ≥2,或x ≠4} C 。[) ()2,44,+∞ D 。[)2,+∞ 4.函数y=x 2-1的值域是 ( ) A . (-∞,-1) B 。 [)1,-+∞ C 。 [-1,0] D 。 R 5. 函数f(x)=x|x|+x 3是 ( ) A . 偶函数 B 。奇函数 C 。非奇非偶函数 D 。既奇又偶函数 6.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上 ( ) A .必是增函数 B 。必是减函数 C .是增函数或是减函数 D 。无法确定增减性 7.函数x x x x f +=)(的图象是 ( ) 8. .函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是 ( ) A.[)3,-+∞ B.(],3-∞- C.(-∞,5) D.[)3,+∞ 9、设偶函数f(x)的定义域为R ,当x [0,)∈+∞时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是 A B C D

( ) A 。f(π)>f(-3)>f(-2) B 。f(π)>f(-2)>f(-3) C .f(π)-a >0,则F (x )= f (x)-f (-x)的定义域是 . 12.若函数 f (x )=(k -2)x 2+(k-1)x +3是偶函数,则f (x )的递减区间是 . 13.函数y=(x-1)2-2,0≤x ≤2的最大值是 ,最小值是 . 14.设奇函数f(x)的定义域为[?5,5].若当x ∈[0,5]时,f (x )的图象如右图, 则不等式f (x )<0的解集是 . 三、解答题:(共40分). 15.已知,a b 为常数,若22 ()43,()1024,f x x x f ax b x x =+++=++ 则求b a -5的值。 16. (12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ),并写出它的定义域.

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数的奇偶性例题解析

函数的奇偶性例题解析 [例1]判断下列函数的奇偶性. (1)f (x )=|x |(x 2+1); (2)f (x )=x x 1+; (3)f (x )=x x -+ -22; (4)f (x )=1122-++-x x 。 选题意图:本题主要考查函数的奇偶性的概念,利用定义判断或证明函数的奇偶性的方法. 解:(1)此函数的定义域为R. ∵f (-x )=|-x |[(-x )2+1]=|x |(x 2+1)=f (x ), ∴f (-x )=f (x ),即f (x )是偶函数. (2)此函数的定义域为x >0,由于定义域关于原点不对称,故f (x )既不是奇函数也不是偶函数. (3)此函数的定义域为{2},由于定义域关于原点不对称,故f (x )既不是奇函数也不是偶函数. (4)此函数的定义域为{1,-1},且f (x )=0,可知图象既关于原点对称、又关于y 轴对称,故此函数既是奇函数又是偶函数. 点评:用定义判断函数的奇偶性的步骤是:定义域(关于原点对称)→验证f (-x )=±f (x )→下结论,还可以利用图象法或定义的等价命题f (-x )±f (x )=0或 ) ()(x f x f -=1±(f (x )≠0)来判断. [例2]设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+3x ),那么当x ∈(-∞,0)时,求f (x )解析式. 选题意图:本题考查函数的奇偶性,利用奇偶性质求某区间未知解析式的方法. 解:∵f (x )是奇函数, ∴当x <0时,-x >0. 由已知f (-x )=-x (1+3x -), -f (x )=-x (1-3x ), ∴f (x )=x (1-3x ) (x <0),

相关主题
文本预览
相关文档 最新文档